


The	correct	bibliographic	citation	for	this	manual	is	as	follows:
Shreve,	Joni	N.	and	Donna	Dea	Holland	.	2018.	SAS®	Certification	Prep
Guide:	Statistical	Business	Analysis	Using	SAS®9.	Cary,	NC:	SAS	Institute
Inc.

SAS®	Certification	Prep	Guide:	Statistical	Business	Analysis	Using
SAS®9

Copyright	©	2018,	SAS	Institute	Inc.,	Cary,	NC,	USA

978-1-62960-381-0	(Hardcopy)
978-1-63526-352-7	(Web	PDF)
978-1-63526-350-3	(epub)
978-1-63526-351-0	(mobi)

All	Rights	Reserved.	Produced	in	the	United	States	of	America.

For	a	hard-copy	book:	No	part	of	this	publication	may	be
reproduced,	stored	in	a	retrieval	system,	or	transmitted,	in	any	form
or	by	any	means,	electronic,	mechanical,	photocopying,	or	otherwise,
without	the	prior	written	permission	of	the	publisher,	SAS	Institute
Inc.

For	a	web	download	or	e-book:	Your	use	of	this	publication	shall	be
governed	by	the	terms	established	by	the	vendor	at	the	time	you
acquire	this	publication.

The	scanning,	uploading,	and	distribution	of	this	book	via	the	Internet
or	any	other	means	without	the	permission	of	the	publisher	is	illegal
and	punishable	by	law.	Please	purchase	only	authorized	electronic
editions	and	do	not	participate	in	or	encourage	electronic	piracy	of
copyrighted	materials.	Your	support	of	others’	rights	is	appreciated.

U.S.	Government	License	Rights;	Restricted	Rights:	The	Software
and	its	documentation	is	commercial	computer	software	developed	at
private	expense	and	is	provided	with	RESTRICTED	RIGHTS	to	the
United	States	Government.	Use,	duplication,	or	disclosure	of	the
Software	by	the	United	States	Government	is	subject	to	the	license
terms	of	this	Agreement	pursuant	to,	as	applicable,	FAR	12.212,	DFAR
227.7202-1(a),	DFAR	227.7202-3(a),	and	DFAR	227.7202-4,	and,	to
the	extent	required	under	U.S.	federal	law,	the	minimum	restricted
rights	as	set	out	in	FAR	52.227-19	(DEC	2007).	If	FAR	52.227-19	is
applicable,	this	provision	serves	as	notice	under	clause	(c)	thereof	and



no	other	notice	is	required	to	be	affixed	to	the	Software	or
documentation.	The	Government’s	rights	in	Software	and
documentation	shall	be	only	those	set	forth	in	this	Agreement.

SAS	Institute	Inc.,	SAS	Campus	Drive,	Cary,	NC	27513-2414
December	2018

SAS®	and	all	other	SAS	Institute	Inc.	product	or	service	names	are
registered	trademarks	or	trademarks	of	SAS	Institute	Inc.	in	the	USA
and	other	countries.	®	indicates	USA	registration.

Other	brand	and	product	names	are	trademarks	of	their	respective
companies.

SAS	software	may	be	provided	with	certain	third-party	software,
including	but	not	limited	to	open-source	software,	which	is	licensed
under	its	applicable	third-party	software	license	agreement.	For
license	information	about	third-party	software	distributed	with	SAS
software,	refer	to	http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses


Contents
About	this	Book

Chapter	1:	Statistics	and	Making	Sense	of	Our	World
Introduction

What	Is	Statistics?
Variable	Types	and	SAS	Data	Types

The	Data	Analytics	Process
Getting	Started	with	SAS

Key	Terms
Chapter	2:	Summarizing	Your	Data	with	Descriptive	Statistics

Introduction
Measures	of	Center

Measures	of	Variation
Measures	of	Shape

Other	Descriptive	Measures
The	MEANS	Procedure

Key	Terms
Chapter	Quiz

Chapter	3:	Data	Visualization
Introduction

View	and	Interpret	Categorical	Data
View	and	Interpret	Numeric	Data

Visual	Analyses	Using	the	SGPLOT	Procedure
Key	Terms

Chapter	Quiz
Chapter	4:	The	Normal	Distribution	and	Introduction	to	Inferential	Statistics

Introduction
Continuous	Random	Variables

The	Sampling	Distribution	of	the	Mean
Introduction	to	Hypothesis	Testing

Hypothesis	Testing	for	the	Population	Mean	(σ	Known)
Hypothesis	Testing	for	the	Population	Mean	(σ	Unknown)

Key	Terms
Chapter	Quiz

Chapter	5:	Analysis	of	Categorical	Variables
Introduction



Testing	the	Independence	of	Two	Categorical	Variables

Measuring	the	Strength	of	Association	between	Two	Categorical	Variables
Key	Terms

Chapter	Quiz
Chapter	6:	Two-Sample	t-Test

Introduction
Independent	Samples

Paired	Samples
Key	Terms

Chapter	Quiz
Chapter	7:	Analysis	of	Variance	(ANOVA)

Introduction
One-Factor	Analysis	of	Variance

The	Randomized	Block	Design
Two-Factor	Analysis	of	Variance

Key	Terms
Chapter	Quiz

Chapter	8:	Preparing	the	Input	Variables	for	Prediction
Introduction

Missing	Values
Categorical	Input	Variables

Variable	Clustering
Variable	Screening

Key	Terms
Chapter	Quiz

Chapter	9:	Linear	Regression	Analysis
Introduction

Exploring	the	Relationship	between	Two	Continuous	Variables
Simple	Linear	Regression

Multiple	Linear	Regression
Variable	Selection	Using	the	REG	and	GLMSELECT	Procedures

Assessing	the	Validity	of	Results	Using	Regression	Diagnostics
Concluding	Remarks

Key	Terms
Chapter	Quiz

Chapter	10:	Logistic	Regression	Analysis
Introduction

The	Logistic	Regression	Model



Logistic	Regression	with	a	Categorical	Predictor

The	Multiple	Logistic	Regression	Model
Scoring	New	Data

Key	Terms
Chapter	Quiz

Chapter	11:	Measure	of	Model	Performance
Introduction

Preparation	for	the	Modeling	Phase
Assessing	Classifier	Performance

Adjustment	to	Performance	Estimates	When	Oversampling	Rare	Events
The	Use	of	Decision	Theory	for	Model	Selection

Key	Terms
Chapter	Quiz

References



About	This	Book



What	Does	This	Book	Cover?

The	SAS®	Certification	Prep	Guide:	Statistical	Business	Analysis	Using
SAS®9	is	written	for	both	new	and	experienced	SAS	programmers
intending	to	take	the	SAS®	Certified	Statistical	Business	Analyst
Using	SAS®9:	Regression	and	Modeling	exam.	This	book	covers	the
main	topics	tested	on	the	exam	which	include	analysis	of	variance,
linear	and	logistic	regression,	preparing	inputs	for	predictive
models,	and	measuring	model	performance.

The	authors	assume	the	reader	has	some	experience	creating	a	SAS
program	consisting	of	a	DATA	step	and	PROCEDURE	step,	and
running	that	program	using	any	SAS	platform.	While	knowledge	of
basic	descriptive	and	inferential	statistics	is	helpful,	the	authors
provide	several	introductory	chapters	to	lay	the	foundation	for
understanding	the	advanced	statistical	topics.

Requirements	and	Details

Exam	Objectives
See	the	current	exam	objectives	at
https://www.sas.com/en_us/certification/credentials/advanced-analytics/statistical-
business-analyst.html.	Exam	objectives	are	subject	to	change.

Take	a	Practice	Exam
Practice	exams	are	available	for	purchase	through	SAS	and	Pearson
VUE.	For	more	information	about	practice	exams,	see
https://www.sas.com/en_us/certification/resources/sas-practice-exams.html.

Registering	for	the	Exam
To	register	for	the	official	SAS®	Certified	Statistical	Business
Analyst	Using	SAS®9:	Regression	and	Modeling	exam,	see	the	SAS
Global	Certification	website	at	www.sas.com/certify
(https://www.sas.com/en_us/	certification.html).

https://www.sas.com/en_us/certification/credentials/advanced-analytics/statistical-business-analyst.html
https://www.sas.com/en_us/certification/resources/sas-practice-exams.html
https://www.sas.com/en_us/certification.html
https://www.sas.com/en_us/certification.html


Syntax	Conventions
In	this	book,	SAS	syntax	looks	like	this	example:

DATA	output-SAS-data-set

(DROP=variables(s)	|
KEEP=variables(s));

SET	SAS-data-set	<options>;

BY	variable(s)

RUN;

Here	are	the	conventions	used	in	the	example:

	DATA,	DROP=,	KEEP=,	SET,	BY,	and	RUN	are	in	uppercase
bold	because	they	must	be	spelled	as	shown.

	output-SAS-data-set,	variable(s),	SAS-data-set,	and	options	are
in	italics	because	each	represents	a	value	that	you	supply.

	<options>	is	enclosed	in	angle	brackets	because	it	is
optional	syntax.

	DROP=	and	KEEP=	are	separated	by	a	vertical	bar	(	|	)	to
indicate	that	they	are	mutually	exclusive.

The	example	syntax	shown	in	this	book	includes	only	what	you
need	to	know	in	order	to	prepare	for	the	certification	exam.	For
complete	syntax,	see	the	appropriate	SAS	reference	guide.

	

What	Should	You	Know	about	the	Examples?
This	book	includes	tutorials	for	you	to	follow	to	gain	hands-on
experience	with	SAS.

Software	Used	to	Develop	the	Book’s	Content
To	complete	examples	in	this	book,	you	must	have	access	to	Base
SAS,	SAS	Enterprise	Guide,	or	SAS	Studio.
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Example	Code	and	Data
You	can	access	all	example	code	and	data	sets	for	this	book	by
linking	to	the	author	pages	at	https://support.sas.com/shreve	or
https://support.sas.com/dholland.	There	you	will	also	find	directions	on	how	to	save	the
data	sets	to	your	computer	to	ensure	that	the	example	code	runs	successfully.		The	author
pages	also	include	appendices	which	contain	detailed	descriptions	of	the	two	main	data
sets	used	throughout	this	book:		(1)	the	Diabetic	Care	Management	Case,	and	(2)	the
Ames	Housing	Case.

You	can	also	refer	to	the	section	“Getting	Started	with	SAS”	in	Chapter	1,	“Statistics	and
Making	Sense	of	Our	World,”	for	a	general	description	of	the	two	main	data	sets,	a	list	of
all	data	sets	by	chapter,	and	a	sample	program	which	illustrates	how	to	access	the	data
within	the	SAS	environment.		

	

SAS	University	Edition

	This	book	is	compatible	with	SAS	University	Edition.	In	order
to	download	SAS	University	Edition,	go	to
https://www.sas.com/en_us/software/university-edition.html.		

Where	Are	the	Exercise	Solutions?
Exercise	solutions	and	Appendices	referenced	in	the	book	are
available	on	the	author	pages	at	https://support.sas.com/shreve	or
https://support.sas.com/dholland.

We	Want	to	Hear	from	You
	

	Do	you	have	questions	about	a	SAS	Press	book	that	you	are
reading?	Contact	us	at	saspress@sas.com.

	SAS	Press	books	are	written	by	SAS	Users	for	SAS	Users.	Please
visit	sas.com/books	to	sign	up	to	request	information	on	how	to
become	a	SAS	Press	author.

	We	welcome	your	participation	in	the	development	of	new
books	and	your	feedback	on	SAS	Press	books	that	you	are

https://support.sas.com/shreve
https://support.sas.com/dholland
https://www.sas.com/en_us/software/university-edition.html
https://support.sas.com/shreve
https://support.sas.com/dholland
mailto:saspress@sas.com
http://www.sas.com/books


using.	Please	visit	sas.com/books	to	sign	up	to	review	a	book

	Learn	about	new	books	and	exclusive	discounts.	Sign	up	for
our	new	books	mailing	list	today	at
https://support.sas.com/en/books/subscribe-books.html.

	Learn	more	about	these	authors	by	visiting	their	author	pages,
where	you	can	download	free	book	excerpts,	access	example
code	and	data,	read	the	latest	reviews,	get	updates,	and	more:
https://support.sas.com/shreve
https://support.sas.com/dholland

http://www.sas.com/books
https://support.sas.com/en/books/subscribe-books.html
https://support.sas.com/shreve
https://support.sas.com/dholland
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World
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Key	Terms

Introduction
The	goal	of	this	book	is	to	prepare	future	analysts	for	the	SAS

statistical	business	analysis	certification	exam.
1
	Therefore,	the

book	aims	to	validate	a	strong	working	knowledge	of	complex
statistical	analyses,	including	analysis	of	variance,	linear	and
logistic	regression,	and	measuring	model	performance.	This	chapter
covers	the	basic	and	fundamental	information	needed	to
understand	the	foundations	of	those	more	advanced	analyses.	We
begin	by	explaining	what	statistics	is	and	providing	definitions	of
terms	needed	to	get	started.	

The	chapter	continues	with	a	birds-eye	view	of	the	data	analytics
process	including	defining	the	purpose,	data	preparation,	the
analysis,	conclusions	and	interpretation.	Special	consideration	is
given	to	the	data	preparation	phase—with	such	topics	as	sampling,
missing	data,	data	exploration,	and	outlier	detection—in	an
attempt	to	stress	its	importance	in	the	validity	of	statistical
conclusions.	Where	necessary	we	refer	you	to	additional	sources	for



further	readings.

This	chapter	includes	a	road	map	detailing	the	scope	of	the
statistical	analyses	covered	in	this	book	and	how	the	specific
analyses	relate	to	the	purpose.	Finally,	the	chapter	closes	with	a
description	of	the	data	sets	to	be	used	throughout	the	book	and
provides	you	the	first	opportunity	to	access	the	data	using	sample
SAS	code	before	proceeding	to	subsequent	chapters.

In	this	chapter	you	will	learn	about:

	statistics’	two	branches,	descriptive	statistics	and	inferential
statistics,	data	mining,	and	predictive	analytics

	variable	types	and	how	SAS	distinguishes	between	numeric
and	character	data	types

	the	data	analytics	process,	including	defining	the	purpose,
data	preparation,	analysis,	conclusions	and	interpretation

	exploratory	analysis	versus	confirmatory	analysis

	sampling	and	how	it	relates	to	bias

	selection	bias,	nonresponse	bias,	measurement	error,
confounding	variables

	the	importance	of	data	cleaning

	the	role	of	data	cleaning	to	identify	data	inconsistencies,	to
account	for	missing	data,	and	to	create	new	variables,	dummy
codes,	and	variable	transformations

	terms	such	as	missing	completely	at	random	(MCAR),	missing
at	random	(MAR),	and	not	missing	at	random	(NMAR),	and
conditions	for	imputation

	data	exploration	for	uncovering	interesting	patterns,
detecting	outliers,	and	variable	reduction

	the	roles	of	variables	as	either	response	or	predictors

	the	analytics	road	map	used	for	determining	the	specific
statistical	modeling	approach	based	upon	the	business
question,	the	variable	types,	and	the	variable	roles

	the	statistical	models	to	be		tested	on	the	certification	exam,
including	two-sample	t-tests,	analysis	of	variance	(ANOVA),
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linear	regression	analysis,	and	logistic	regression	analysis

	the	use	of	the	training	data	set	and	the	validation	data	set	to
assess	model	performance

	both	the	Diabetic	Care	Management	Case	and	the	Ames
Housing	Case	to	be	used	throughout	the	book,	their	contents,
and	the	sample	SAS	code	used	the	read	the	data	and	produce
an	output	of	contents.

What	Is	Statistics?
We	see	and	rely	on	statistics	every	day.	Statistics	can	help	us
understand	many	aspects	of	our	lives,	including	the	price	of	homes,
automobiles,	health	and	life	insurance,	interest	rates,	political
perceptions,	to	name	a	few.	Statistics	are	used	across	many	fields	of
study	in	academia,	marketing,	healthcare,	treatment	regimes,
politics,	housing,	government,	private	businesses,	national	security,
sports,	law	enforcement,	and	NGOs.	The	extensive	reliance	on
statistics	is	growing.	Statistics	drive	decisions	to	solve	social
problems,	guide	and	build	businesses,	and	develop	communities.
With	the	wealth	of	information	available	today,	business	persons
need	to	know	how	to	use	statistics	efficiently	and	effectively	for
better	decision	making.	So,	what	is	statistics?

Statistics	is	a	science	that	relies	on	particular	mathematical
formulas	and	software	to	derive	meaningful	patterns	and
extrapolate	actionable	information	from	data	sets.	Statistics
involves	the	use	of	plots,	graphs,	tables,	and	statistical	tests	to
validate	hypotheses,	but	it	is	more	than	just	these.	Statistics	is	a
unique	way	to	use	data	to	make	improvements	and	efficiencies	in
virtually	any	business	or	organization	that	collects	quality	data
about	their	customers,	services,	costs,	and	practices.

The	Two	Branches	of	Statistics
Before	defining	the	two	branches	of	statistics,	it	is	important	to
distinguish	between	a	population	and	a	sample.	The	population	is
the	universe	of	all	observations	for	which	conclusions	are	to	be
made	and	can	consist	of	people	or	objects.	For	example,	a
population	can	be	made	up	of	customers,	patients,	products,
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crimes,	or	bank	transactions.	In	reality,	it	is	very	rare	and
sometimes	impossible	to	collect	data	from	the	entire	population.
Therefore,	it	is	more	practical	to	take	a	sample—that	is,	a	subset	of
the	population.

There	are	two	branches	of	statistics,	namely	descriptive	statistics
and	inferential	statistics.	Descriptive	statistics	includes	the
collection,	cleaning,	and	summarization	of	the	data	set	of	interest
for	the	purposes	of	describing	various	features	of	that	data.	The
features	can	be	in	the	form	of	numeric	summaries	such	as	means,
ranges,	or	proportions,	or	visual	summaries	such	as	histograms,	pie
charts,	or	bar	graphs.	These	summaries	and	many	more	depend
upon	the	types	of	variables	collected	and	will	be	covered	in
Chapter	2,		“Summarizing	Your	Data	with	Descriptive	Statistics”
and	Chapter	3,	“Data	Visualization.”

Inferential	statistics	includes	the	methods	where	sample	data	is
used	to	make	predictions	or	inferences	about	the	characteristics	of
the	population	of	interest.	In	particular,	a	summary	measure
calculated	for	the	sample,	referred	to	as	a	statistic,	is	used	to
estimate	a	population	parameter,	the	unknown	characteristic	of
the	population.	Inferential	methods	depend	upon	both	the	types	of
variables	and	the	specific	questions	to	be	answered	and	will	be
introduced	in	Chapter	4,	“The	Normal	Distribution	and
Introduction	to	Inferential	Statistics”	and	covered	in	detail	in
Chapter	5,	“Analysis	of	Categorical	Variables”	through	Chapter	7,
“Analysis	of	Variance.”	

Another	goal	of	this	book	is	to	extend	the	methods	learned	in
inferential	statistics	to	those	methods	referred	to	as	predictive
modeling.	Predictive	modeling,	sometimes	referred	to	as
predictive	analytics,	is	the	use	of	data,	statistical	algorithms	and
machine	learning	techniques	to	predict,	or	identify,	the	likelihood
of	a	future	outcome,	based	upon	historical	data.	In	short,	predictive
modeling	extends	conclusions	about	what	has	happened	to
predictions	about	what	will	happen	in	the	future.	The	methods
used	for	predictive	modeling	will	be	covered	in	Chapter	8,
“Preparing	the	Input	Variables	for	Prediction”	through	Chapter	11,
“Measure	of	Model	Performance”	and	provide	a	majority	of	the
content	for	successfully	completing	the	certification	exam.

Finally,	all	content	in	this	book	falls	under	the	larger	topic,	referred



to	as	data	mining,	which	is	the	process	of	finding	anomalies,
patterns,	and	correlations	within	large	data	sets	to	predict
outcomes	(SAS	Institute).

Variable	Types	and	SAS	Data	Types
All	structured	data	sets	are	composed	of	rows	and	columns,	where
the	rows	represent	the	observations	to	be	studied	and	the	columns
represent	the	variables	related	to	the	question	or	questions	of
interest.	As	stated	earlier,	in	order	to	conduct	either	descriptive	or
inferential	statistics,	it	is	imperative	that	the	analyst	first	define	the
variable	types.	Here	we	will	also	distinguish	variable	types	from
data	types.

Variable	Types
There	are	two	types	of	variables,	qualitative	and	quantitative
(Anderson,	et	al.,	2014;	Fernandez,	2010).	A	qualitative	variable
is	a	variable	with	outcomes	that	represent	a	group	or	a	category	to
which	the	observation	is	associated,	and	is	sometimes	referred	to	as
a	categorical	variable.	A	quantitative	variable	is	a	variable	with
outcomes	that	represent	a	measurable	quantity	and	are	numeric	in
nature.	Quantitative	variables	can	be	further	distinguished	as	either
discrete	or	continuous.	A	discrete	variable	is	a	numeric	variable
that	results	from	counting;	discrete	variables	can	be	infinite	and	do
not	necessarily	have	to	be	whole	numbers.	A	continuous	variable
is	a	numeric	variable	that	can	theoretically	take	on	infinitely	many
values	within	an	interval	and	is,	therefore,	uncountable.	

Let’s	consider	an	excerpt	from	a	data	set	collected	on	patients
related	to	the	study	of	diabetes,	as	shown	in	Table	1.1	Data	for	the
Study	of	Diabetes.	It	is	evident	that	the	variable,	GENDER,	is
categorical,	having	values	M	and	F,	corresponding	to	males	and
females,	respectively;	major	adverse	event	(AE1)	is	categorical	as
well.	Notice	that	these	variables	are	made	up	of	textual	data.
Table	1.1	Data	for	the	Study	of	Diabetes

Patient_ID Gender Age
Controlled
_Diabetic

Hemoglobin
_A1c BMI

Syst
_BP

Diast
_BP Cholesterol NAES

85348444 F 73 1 4.24 23.12 94.0 69.0 99.57 0



507587021 F 82 0 11.49 24.82 101.2 75.0 211.66 4

561197284 F 76 1 0.16 28.70 69.0 45.0 252.33 0

618214598 M 69 1 0.02 27.95 105.0 89.0 201.21 1

1009556938 M 82 0 7.35 29.28 87.0 63.0 275.56 3

The	clinical	data	including	A1c	(Hemoglobin_A1c),	BMI,	systolic
blood	pressure	(SYST_BP),	diastolic	blood	pressure	(DIAST_BP),	and
cholesterol	has	quantitative,	continuous	values.	The	variable	AGE,
as	measured	in	years,	is	a	continuous	quantitative	variable	because
it	measures	fraction	of	a	year;	although	when	asked	our	age,	we	all
report	it	to	the	nearest	whole	number.	The	number	of	adverse
events	(NAES)	is	quantitative	discrete	because	the	values	are	the
result	of	counting.	Note	that	PATIENT	ID	is	recorded	as	a	number,
but	really	acts	as	a	unique	identifier	and	serves	no	real	analytical
purpose.

Finally,	it	should	be	noted	that	a	patient’s	diabetes	is	controlled	if
his	or	her	A1c	value	is	less	than	7.	Otherwise,	it	is	not	controlled.
For	example,	patient	1	has	an	A1c	value	of	4.24	which	is	less	than
7,	indicating	that	patient	1’s	diabetes	is	controlled
(CONTROLLED_DIABETIC=1);	whereas	patient	2	has	an	A1c	value
of	11.49	which	is	greater	than	or	equal	to	7,	indicating	that	patient
2’s	diabetes	is	not	controlled	(CONTROLLED_DIABETIC=0).	In
short,	CONTROLLED_DIABETIC	is	a	categorical	variable
represented	by	a	numeric	value.

SAS	Data	Types
When	you	are	using	SAS	software,	data	is	distinguished	by	its	data
type,	either	numeric	or	character.	A	variable	is	numeric	if	its	values
are	recorded	as	numbers;	these	values	can	be	positive,	negative,
whole,	integer,	rational,	irrational,	dates,	or	times.	A	character
variable	can	contain	letters,	numbers,	and	special	characters,	such
as	#,	%,	^,	&,	or	*.

The	three	variable	types	previously	discussed	overlap	with	these
two	data	types	utilized	by	SAS.	In	particular,	categorical	variables
may	be	character	or	numeric	data	types;	however,	discrete	and
continuous	quantitative	variables	must	be	numeric	data	types.	So
consider	the	diabetes	data	in	Table	1.1	Data	for	the	Study	of



Diabetes.	The	variable,	CONTROLLED_DIABETIC,	is	categorical
with	a	numeric	data	type.	Although	not	shown	here,	the	three
condition	variables,	HYPERTENSION,	STROKE,	and
RENAL_DISEASE,	also	have	numeric	data	type	to	represent
categorical	variables.	GENDER	is	a	categorical	variable	with
character	data	type.	All	quantitative	variables	discussed	previously
have	numeric	data	type.	While	PATIENT_ID	is	numeric,	it	makes	no
sense	to	perform	arithmetic	operations,	so	it	is	used	solely	for
identifying	unique	patients,	and	could	have	been	easily	formatted
as	a	character	type.

The	Data	Analytics	Process
The	process	of	business	analytics	is	composed	of	several	stages:
Defining	the	Purpose,	Data	Preparation,	Analysis,	Conclusions,	and
Interpretation.

Defining	the	Purpose
All	statistical	analyses	have	a	purpose	and,	as	stated	previously,	the
statistical	methods	depend	upon	that	purpose.	Furthermore,	the
purpose	of	data	analysis	can	be	for	either	exploratory	or
confirmatory	reasons.		In	exploratory	data	analysis,	the	purpose	is
strictly	to	summarize	the	characteristics	of	a	particular	scenario
and	relies	on	the	use	of	descriptive	statistics.	In	confirmatory	data
analysis,	there	is	a	specific	question	to	be	answered	and	relies	on
the	use	of	inferential	statistics.	Table	1.2	Examples	of	Analyses	by
Purpose	for	Various	Industries	gives	some	examples	of	how
statistical	analyses	are	used	to	answer	questions	relative	to	both
exploratory	and	confirmatory	analyses	in	various	industries.
Table	1.2		Examples	of	Analyses	by	Purpose	for	Various	Industries

INDUSTRY PURPOSE

Retail Identify	the	advertising	delivery	method	most	effective	in	attracting	customers

Describe	the	best	selling	products	and	the	customers	buying	those	products

Healthcare Identify	the	factors	associated	with	extended	length	of	stay	for	hospital

encounters



Predict	healthcare	outcomes	based	upon	patient	and	system	characteristics

Telecommunication Identify	customer	characteristics	and	event	triggers	associated	with	customer

churn

Describe	revenues	collected	for	various	products	across	various	geographic	areas

Banking Identify	transactions	most	likely	to	be	fraudulent

Predict	those	customers	most	likely	to	default	on	a	personal	loan

Education Describe	student	enrollment	for	purposes	of	budgeting,	accreditation,	and

resource	planning

Identify	factors	associated	with	student	success

Government Describe	criminal	activity	in	terms	of	nature,	time,	location	for	purposes	of

resource	planning

Predict	tax	revenue	based	upon	the	values	of	commercial	and	residential

properties

Travel	&	Hospitality Predict	room	occupancy	based	upon	historical	industry	occupancy	measures

Describe	customer	needs	and	preferences	by	location	and	seasonality

Manufacturing Predict	demand	for	goods	based	upon	price,	advertising,	merchandising,	and

seasonality

Describe	brand	image	and	customer	sentiment	after	product	launch

	

Data	Preparation
Once	the	purpose	has	been	confirmed,	the	analyst	must	then	obtain
the	data	related	to	the	question	at	hand.		Many	organizations	have
either	a	centralized	data	warehouse	or	data	marts	from	which	to
access	data,	sometimes	requiring	the	analyst	to	merge	various
databases	to	get	the	final	data	set	of	interest.	For	example,	to	study
customer	behavior,	the	analyst	may	need	to	merge	one	data	set
containing	the	customer’s	name,	address,	and	other	demographic
information	with	a	second	data	set	containing	purchase	history,
including	products	purchased,	quantities,	costs,	and	dates	of
purchases.	In	other	cases,	the	analysts	may	have	to	collect	the	data
themselves.	In	any	event,	care	must	be	taken	to	ensure	the	quality
and	the	validity	of	the	data	used.	In	order	to	do	this,	special



consideration	should	be	given	to	such	things	as	sampling,	cleaning
the	data,	and	a	preliminary	exploring	of	the	data	to	check	for
outliers	and	interesting	patterns.

Sampling

Sometimes	it	is	either	impractical	or	impossible	to	collect	all	data
pertinent	to	the	question	of	interest.		That’s	where	sampling	comes
into	play!	As	soon	as	the	analyst	decides	to	take	a	sample,	extreme
care	must	be	given	to	reduce	any	sources	of	bias.	Bias	occurs	when
the	statistics	obtained	from	the	sample	are	not	a	‘good’
representation	of	the	population	parameters.	Obviously,	bias	exists
when	the	sample	is	not	representative	of	the	target	population,
therefore,	giving	results	that	are	not	generalizable	to	the
population.		To	ensure	a	representative	sample,	the	analyst	must
employ	some	kind	of	probability	sampling	scheme.	If	a	probability
sample	is	not	taken,	the	validity	of	the	results	should	be
questioned.	

One	such	example	of	a	probability	sample	is	a	simple	random
sample	in	which	all	observations	in	the	population	have	an	equal
chance	of	being	selected.	The	statistical	methods	used	in	this	book
assume	that	a	simple	random	sample	is	selected.	For	a	more
thorough	discussion	of	other	probability	sampling	methods,	we
suggest	reading	Survey	Methodology,	Second	Edition	(Groves,	R.M.,
et	al.,	2009).

There	are	other	sources	of	bias	and	the	analyst	must	pay	close
attention	to	the	conditions	under	which	the	data	is	collected	to
reduce	the	effects	on	the	validity	of	the	results.		One	source	of	bias
is	selection	bias.		Selection	bias	occurs	when	subgroups	within	the
population	are	underrepresented	in	the	sample.		For	example,
suppose	the	college	administration	is	interested	in	studying
students’	opinions	on	its	advising	procedures	and	it	uses	an	‘old’	list
of	students	from	which	to	select	a	random	sample.		In	this	case,	the
sample	would	include	those	who	have	already	graduated	and	not
include	those	who	are	new	to	the	college.		In	other	words,	the
sample	is	not	a	good	representation	of	the	current	student
population.

Another	type	of	bias	is	nonresponse	bias.	Nonresponse	bias	occurs
when	observations	that	have	data	values	differ	from	those	that	do



not	have	values.	For	example,	suppose	a	telecommunications
company	which	supplies	internet	service	wants	to	study	how	those
customers	who	call	and	complain	differ	from	those	customers	who
do	not	complain.	If	the	analyst	wants	to	study	the	reason	for	the
complaint,	there	is	information	only	for	those	who	complain;
obviously,	no	reason	exists	for	those	who	do	not	call	to	complain.
As	a	result,	an	analysis	of	the	complaints	cannot	be	inferred	to	the
entire	population	of	customers.	See	the	section	on	data	cleaning	for
more	details	on	missing	data.

Variable	values	can	also	be	subjected	to	measurement	error.	This
occurs	when	the	variable	collected	does	not	adequately	represent
the	true	value	of	the	variable	under	investigation.	Suppose	a
national	retailer	provides	an	opportunity	to	earn	a	discount	on	the
next	purchase	in	return	for	completing	an	online	survey.		It	could
be	that	the	customer	is	only	interested	in	completing	the	survey	in
order	to	get	the	discount	code	and	pays	no	attention	to	the	specifics
by	answering	yes	to	all	of	the	questions.	In	this	case,	the	actual
responses	are	not	a	representation	of	the	customer’s	true	feelings.
Therefore,	the	responses	consist	of	measurement	error.

Finally,	the	analyst	should	be	aware	of	confounding.	A
confounding	variable	is	a	variable	external	to	the	analysis	that
can	affect	the	relationship	between	the	variables	under
investigation.	Suppose	a	human	production	manager	wants	to
investigate	the	effects	of	background	music	on	employee
performance	as	measured	by	number	of	units	produced	per	hour
but	does	not	account	for	the	time	of	day.	It	could	be	that	the
performance	of	employees	is	reduced	when	exposed	to	background
music	A	as	opposed	to	B.	However,	background	music	A	is	played
at	the	end	of	the	shift.	In	short,	the	performance	is	related	to	an
extraneous	variable,	time	of	day,	and	time	of	day	affects	the
relationship	between	performance	and	type	of	background	music.

Cleaning	the	Data

Once	the	analyst	has	the	appropriate	data,	the	cleaning	process
begins.	Data	cleaning	is	one	of	the	most	important	and	often	time-
consuming	aspects	of	data	analysis.	The	information	gleaned	from
data	analysis	is	only	as	good	as	the	data	employed.	Furthermore,	it
is	estimated	that	data	cleaning	usually	takes	about	80%	of	a
project’s	time	and	effort.	So	what	is	involved	in	the	data	cleaning



process?		Data	cleaning	involves	various	tasks,	including	checking
for	data	errors	and	inconsistencies,	handling	missing	data,	creating
new	or	transforming	existing	variables,	looking	for	outliers,	and
reducing	the	number	of	potential	predictors.

First,	the	analyst	should	check	for	data	errors	and	inconsistencies.
For	example,	certain	variables	should	fall	within	certain	ranges	and
follow	specific	business	rules—the	quantity	sold	and	costs	for	a
product	should	always	be	positive,	the	number	of	office	visits	to	the
doctor	should	not	exceed	31	in	a	single	month,	and	the	delivery
date	should	not	fall	before	the	date	of	purchase.	

Then	the	question	is	what	to	do	once	you	find	these	data
inconsistencies.	Of	course,	every	effort	should	be	made	to	find	the
sources	of	those	errors	and	correct	them;	however,	what	should	the
analyst	do	if	those	errors	cannot	be	fixed?	Obviously,	values	that
are	in	error	should	not	be	included	in	the	analysis,	so	the	analyst
should	replace	those	values	with	blanks.	In	this	case,	these
variables	are	treated	as	having	missing	values.	So	what	are	missing
values?

A	missing	value,	sometimes	referred	to	as	missing	data,	occurs
when	an	observation	has	no	value	for	a	variable.	SAS	includes	for
analysis	only	observations	for	which	there	is	complete	data.	If	an
observation	does	not	have	complete	data,	SAS	will	eliminate	that
observation	using	either	listwise	or	pairwise	deletion.		In	listwise
deletion,	an	observation	is	deleted	from	the	analysis	if	it	is	missing
data	on	any	one	variable	used	for	that	analysis.	In	pairwise
deletion,	all	observations	are	used	in	analysis;	however,	only	pairs
of	variables	with	missing	values	are	removed	from	analyses.	By
default,	most	SAS	procedures	use	listwise	deletion,	with	the
exception	of	the	correlation	procedure	(PROC	CORR)	which	uses
pairwise	deletion.	It	is	important	that	the	analyst	know	the	sample
size	for	analysis	and	the	deletion	method	used	at	all	times	and	to	be
aware	of	the	effects	of	eliminating	missing	data.

So	what	should	the	analyst	do	when	there	is	missing	data?
Schlomer,	Bauman,	and	Card	(2010)	cite	various	suggestions	on	the
percentage	of	missing	observations	where	the	analyst	could
proceed	with	little	threat	to	bias;	however,	they	further	suggest,
instead,	looking	at	the	‘pattern	of	missingness’	and	why	data	is
missing	so	that	imputation	methods	may	be	employed.



Some	missing	values	occur	because	of	a	failure	to	respond	or	to
provide	data;	others	are	due	to	data	collection	errors	or	mistakes,
as	mentioned	previously.	If	the	observations	are	missing
completely	at	random	(MCAR),	that	is,	if	there	are	no	systematic
reasons	related	to	the	study	for	the	missing	values	to	exist,	then	the
analysis	can	proceed	using	only	the	complete	data	without	any	real
threats	to	bias	(Little	and	Rubin,	2002).	In	short,	it	is	believed	that
the	observations	with	missing	values	make	up	a	random	sample
themselves	and,	if	deleted,	the	remaining	observations	with
complete	data	are	representative	of	the	population.	

While	it	is	possible	for	data	to	be	MCAR,	that	situation	is	very	rare.
It	is	more	likely	the	case	that	data	is	missing	at	random	(MAR);
MAR	occurs	if	the	reason	for	missing	is	not	related	to	the	outcome
variable,	but	instead,	related	to	another	variable	in	the	data	set
(Rubin,	1976).	In	either	case,	MCAR	or	MAR,	there	are	imputation
methods	that	use	the	known	data	to	derive	the	parameter	estimates
of	interest.	When	these	methods	are	employed,	all	data	will	be
retained	for	analyses.	See	Schlomer	et	al.	(2010)	for	a	description
of	non-stochastic	and	stochastic	approaches	to	imputation.

If	neither	MCAR	nor	MAR	exists,	then	the	data	is	not	missing	at
random	(NMAR).	In	this	case,	the	reason	that	data	is	missing	is
precisely	related	to	the	variable	under	study.	When	data	is	NMAR,
imputation	methods	are	not	valid.	In	fact,	when	observations	are
NMAR	and	missing	data	is	omitted	from	analyses,	results	will	be
biased	and	should	not	be	used	for	descriptive	nor	inferential
purposes.

While	there	are	various	ways	to	handle	missingness	in	data,	we
describe	one	method	in	particular.		In	Chapter	8,	“Preparing	the
Input	Variables	for	Prediction”,	we	address	this	problem	by
introducing	a	dummy	variable,	or	missing	value	indicator,	for
each	predictor	where	missing	data	is	of	concern.	The	missing	value
indicator	is	coded	as	‘1’	for	an	observation	if	the	variable	under
investigation	is	missing	for	that	observation,	or	‘0’	otherwise.	You
are	directed	to	Schwartz	and	Zeig-Owens	(2012)	for	further
discussion,	a	list	of	questions	to	facilitate	the	understanding	of
missing	data,	and	the	Missing	Data	SAS	Macro	as	an	aid	in
assessing	the	patterns	of	missingness.

In	any	event,	when	analyses	involving	missing	data,	it	is	critical	to



report	both	(1)	the	extent	and	nature	of	missing	data	and	(2)	the
procedures	used	to	manage	the	missing	data,	including	the
rationale	for	using	the	method	selected	(Schlomer,	Bauman,	and
Card,	2010).

Another	aspect	of	data	cleaning	involves	creating	new	variables
that	are	not	captured	naturally	for	the	proposed	analysis	purpose.
For	example,	suppose	an	analyst	is	investigating	those	factors
associated	with	hospital	encounters	lasting	more	than	the	standard
length	of	time.	One	such	factor	could	be	whether	or	not	the
encounter	is	considered	a	readmission.	The	patient	data	may	not
have	information	specifically	indicating	if	the	encounter	under
investigation	is	a	readmission;	however,	the	hospital	admission
data	could	be	used	to	determine	that.	In	other	words,	the	analyst
could	create	a	new	variable,	called	READMIT,	which	has	a	value	of
YES	if	the	current	encounter	has	occurred	within	30	days	of	the
discharge	date	of	the	previous	hospital	encounter,	or	NO
otherwise.	

In	another	example,	suppose	a	retailer	wants	to	know	how	many
times	a	customer	has	made	a	purchase	in	the	last	quarter.	Retailers
probably	don’t	collect	that	data	at	the	time	of	each	purchase—in
fact,	if	surveyed,	the	customer	may	not	correctly	recall	that	number
anyway.	However,	counting	algorithms	can	be	applied	to
transactional	data	to	count	the	number	of	purchases	for	a	specific
customer	ID	within	a	defined	period	of	time.

Many	times,	the	analyst	will	create	‘dummy’	variables,	which	are
coded	as	‘1’	if	an	attribute	about	the	observation	exists	or	‘0’	if	that
attribute	does	not	exist.	For	example,	a	churn	variable	could	be
coded	as	‘1’	if	the	customer	has	churned	or	‘0’	if	that	customer	has
been	retained.

Next,	the	analyst	may	need	to	transform	data.		As	you	will	see	later
in	this	book,	some	statistical	analyses	require	that	certain
assumptions	about	the	data	are	met.		When	those	assumptions	are
violated,	it	may	require	transforming	variables	to	ensure	the
validity	of	results.		For	example,	the	analyst	may	create	a	new
variable	representing	the	natural	log	of	a	person’s	salary	as	opposed
to	the	salary	value	itself.		Data	transformations	will	be	covered	in
Chapters	8	and	9.	In	Chapter	8,	“Preparing	the	Input	Variables	for
Prediction”,	methods	to	detect	non-linearities	are	discussed	in	the



context	of	logistic	regression.	In	Chapter	9,	“Linear	Regression
Analysis,”	we	illustrate	how	to	transform	predictors	for	purposes	of
improving	measures	of	fit	in	the	context	of	linear	regression
analysis.

Finally,	the	analyst	should	check	for	outliers,	that	is,	observations
that	are	relatively	‘far’	in	distance	from	the	majority	of
observations;	outliers	are	observations	that	deviate	from	what	is
considered	normal.		Sometimes	outliers	are	referred	to	as
influential	observations,	because	they	have	undue	influence	on
descriptive	or	inferential	conclusions.	Like	missing	values,	the
analyst	must	investigate	the	source	of	the	outlier.	Is	it	the	result	of
data	errors	and	how	can	it	be	fixed?	If	the	observation	is	a
legitimate	value,	is	it	influential	and	how	should	it	be	handled?	Is
there	any	justification	for	omitting	the	outlier	or	should	it	be
retained?	Sometimes	outliers	are	detected	during	the	data	cleaning
process,	but	ordinarily	outliers	are	detected	when	specifically
exploring	the	data,	as	discussed	in	the	next	section.	

The	data	analyst	must	understand	that	data	cleaning	is	an	iterative
process	and	must	be	handled	with	extreme	care.	For	more	in-depth
information	on	data	cleaning	see	Cody’s	Data	Cleaning	Techniques	Using	SAS,
Third	Edition.

Exploring	the	Data

Once	the	data	is	cleaned,	the	analyst	should	explore	the	data	to
become	familiar	with	some	basic	data	attributes—in	general,	what
is	the	sample	size,	what	products	are	included	in	data	and	which
products	account	for	a	majority	of	the	purchases,	what	types	of
drugs	are	administered	based	upon	disease	type,	what	geographic
areas	are	represented	by	your	customers,	what	books	are	purchased
across	various	age	groups.	

The	analyst	should	slice	the	data	across	groups	and	provide
summary	statistics	on	the	variable	of	interest	(such	as	the	mean,
median,	range,	minimum,	and	maximum	or	frequencies)	or	data
visualizations	(such	as	the	histogram	or	bar	chart)	for	comparative
purposes,	to	look	for	various	patterns,	and	to	generate	ideas	for
further	investigation	as	it	relates	to	the	ultimate	purpose.	Many	of
these	descriptive	tools	will	be	discussed	in	Chapter	2,
“Summarizing	Your	Data	with	Descriptive	Statistics”	and	Chapter	3,



“Data	Visualization.”	Inferential	analyses	for	confirming
relationships	between	two	variables	will	be	discussed	in	Chapter	5,
“Analysis	of	Categorical	Variables,”	and	Chapter	6,	“Two-Sample	T-
Test,”	and	Chapter	7,	“Analysis	of	Variance	(ANOVA).”

The	analyst	can	provide	scatter	diagrams	for	pairs	of	variables	to
establish	whether	or	not	linear	relationships	exist.	In	situations
where	there	are	hundreds	of	predictors	and	inevitably	correlations
among	those	predictors	exist,	data	reduction	methods	can	be
employed	so	that	a	few	subsets	of	predictors	can	be	omitted
without	sacrificing	predictive	accuracy.	In	Chapter	8,	methods	for
detecting	redundancy	will	be	discussed	for	purposes	of	data,	or
dimension,	reduction.

Finally,	the	analyst	should	explore	the	data	specifically	for
detecting	outliers.	An	observation	can	be	an	outlier	with	respect	to
one	variable;	methods	of	detecting	these	univariate	outliers	will	be
covered	in	both	Chapters	2	and	3.	Or	an	observation	can	be	an
outlier	in	a	multivariate	sense	with	respect	to	two	or	more
variables.	Specifically,	a	scatter	diagram	is	a	first	step	in	detecting
an	outlier	on	a	bivariate	axis.	Methods	of	detecting	multivariate
outliers	will	be	covered	in	Chapter	9,	“Linear	Regression	Analysis.”	

Analyzing	the	Data	and	Roadmap	to	the	Book
Once	the	data	have	been	prepared,	the	goal	of	the	analyst	is	to
make	sense	of	the	data.	The	first	step	is	to	review	the	purpose	and
match	that	purpose	to	the	analysis	approach.	If	the	purpose	is
explanatory,	then	the	analyst	will	employ	descriptive	statistics	for
purposes	of	reporting,	or	describing,	a	particular	scenario.		

For	example,	in	Chapter	2,	“Summarizing	Your	Data	with
Descriptive	Statistics,”	you	will	learn	about	ways	to	describe	your
numeric	data	with	measures	of	center	(mean,	median,	mode),
variation	(range,	variance,	and	standard	deviation),	and	shape
(skewness	and	kurtosis).	In	Chapter	3,”	Data	Visualization,”	you
will	learn	how	to	describe	your	categorical	data	using	frequencies
and	proportions.	Chapter	3	will	illustrate	how	to	employ	data
visualization	techniques	to	get	pie	charts	and	bar	graphs	for
categorical	data	and	histograms,	Q-Q	plots,	and	box	plots	for
numeric	data.	These	data	visualizations	and	numeric	summaries,
when	used	together,	provide	a	powerful	tool	for	understanding



your	data	and	describing	what	is	happening	now.
If	the	purpose	of	the	analysis	is	confirmatory,	then	you	as	analyst
will	employ	inferential	statistics	for	the	purposes	of	using	sample
data	to	make	conclusions	about	proposed	models	in	the	population.
It	is	when	hypotheses	about	organizational	operations—whatever
those	may	be—are	confirmed	that	decision	makers	are	able	to
predict	future	outcomes	or	effect	some	change	for	increased
operational	performance.	This	book	emphasizes	the	specific
statistical	models	needed	to	pass	the	certification	exam,	as	listed	in
Table	1.3	Summary	of	Statistical	Models	for	Business	Analysis
Certification	by	Variable	Role.

	

Table	1.3		Summary	of	Statistical	Models	for	Business	Analysis	Certification	by
Variable	Role

	 TYPE	of	Predictor	Variables

TYPE	of
Response
Variable

CATEGORICAL CONTINUOUS

CONTINUOUS

t-Tests	(Chapter	6)	
or	

Analysis	of	Variance
(Chapter	7)

Linear	Regression
(Chapter	9)

CATEGORICAL Logistic	Regression
(Chapter	10)

Logistic	Regression
(Chapter	10)

As	we	discuss	each	model	throughout	Chapters	5	through	7,	9	and
10,	you	will	begin	to	associate	a	specific	type	of	question	with	a
specific	type	of	statistical	model;	and	with	each	type	of	model,	the
variables	take	on	specific	roles—either	as	response	or	predictor
variables.	A	response	variable	is	the	variable	under	investigation
and	is	sometimes	referred	to	as	the	dependent	variable,	the
outcome	variable,	or	the	target	variable.	A	predictor	variable	is	a
variable	that	is	thought	to	be	related	to	the	response	variable	and
can	be	used	to	predict	the	value	of	the	response	variable.	A
predictor	variable	is	sometimes	referred	to	as	the	independent
variable	or	the	input	variable.



So,	for	example,	when	the	analyst	is	interested	in	determining	if	the
categorical	response	variable—whether	or	not	a	customer	will
churn—is	related	to	the	categorical	predictor	variable—rent	or
own,	the	appropriate	type	of	analysis	is	logistic	regression.	If	the
analyst	wants	to	further	research	churn	and	includes	continuous
predictors	such	as	monthly	credit	card	average	and	mortgage
amount,	then	the	appropriate	analysis	is	logistic	regression	as	well.
These	statistical	methods	will	be	covered	in	Chapter	10,	“Logistic
Regression	Analysis,”	as	illustrated	in	Table	1.3	Summary	of
Statistical	Models	for	Business	Analysis	Certification	by	Variable
Role.

If	the	analyst	is	interested	in	studying	how	crime	rate	is	related	to
both	poverty	rate	and	median	income	(where	the	response	variable,
crime	rate,	is	continuous	and	the	predictors,	poverty	rate	and
median	income,	are	both	continuous),	then	the	appropriate	analysis
in	linear	regression	analysis.	This	statistical	method	will	be	covered
in	Chapter	9,	“Linear	Regression	Analysis.”

Finally,	suppose	a	retailer	was	interested	in	testing	a	promotion
type	(20%	off	of	any	purchase,	buy-one-get-one-half-off,	or	30%	off
for	one-day-only)	and	the	promotion	site	(online	only	purchase	or
in-store	only	purchase).	If	the	analyst	is	interested	in	studying	how
sales	are	related	to	the	promotion	type	and/or	promotion	site,	then
the	appropriate	method	is	analysis	of	variance	(ANOVA)	where	the
response	variable	is	continuous	and	the	predictors	are	categorical.
This	type	of	analysis	will	be	covered	in	Chapter	7,	“Analysis	of
Variance	(ANOVA).”	Note	that	when	the	question	about	a
continuous	response	variable	is	restricted	to	the	investigation	of
one	predictor	composed	of	only	two	groups,	then	the	analyst	would
use	the	t-test,	as	described	in	Chapter	6,	“Two-Sample	T-Test.”

It	is	critical	to	note	that	if	the	purpose	of	data	analysis	is
confirmatory,	the	analyst	must	also	employ	descriptive	statistics	for
exploring	the	data	as	a	way	of	becoming	familiar	with	its	features.
Conducting	confirmatory	analyses	without	exploring	the	data	is	like
driving	to	your	destination	without	a	map.

Finally,	when	the	purpose	of	the	analysis	is	classification,	or
predicting	a	binary	categorical	outcome	using	logistic	regression
analysis,	the	analyst	must	incorporate	an	assessment	component	to
the	modeling.	In	particular,	the	data	is	partitioned	into	two	parts,



the	training	data	set	and	the	validation	data	set.	The	best	predictive
models	are	developed	and	selected	using	the	training	data	set.	The
performance	of	those	models	is	tested	by	applying	those	methods	to
the	validation	data	set.	That	model	which	performs	or	predicts
best	when	applied	to	the	validation	data	is	the	model	selected	for
answering	the	proposed	business	question.	This	and	other	topics
related	to	measures	of	model	performance	will	be	covered	in
Chapter	11,	“Measure	of	Model	Performance.”

Conclusions	and	Interpretation
As	with	the	other	parts	of	the	research	process,	the	conclusion	and
interpretation	are	essential.	You	may	have	heard	that	“the	numbers
speak	for	themselves.”	No,	they	don’t!		All	statistical	numbers	must
be	interpreted.	Your	interpretation	should	always	relate	the
analytic	results	back	to	the	research	question.	If	the	purpose	of	the
analysis	is	descriptive,	report	the	findings	and	use	those	findings	to
describe	the	current	state	of	affairs.	

If	the	purpose	of	the	analysis	is	confirmatory,	or	inferential,	in
nature,	state	the	analytical	conclusions	and	provide	interpretations
in	terms	of	how	an	organization	can	be	proactive	to	effect	some
improvement	in	operations.	Always	consider	whether	there	is	an
alternative	way	to	interpret	the	results.	When	two	or	more	possible
interpretations	of	the	results	exist,	it	is	the	analyst’s	job	to	follow
each	possible	explanation	and	provide	detailed	reasons	for
interpreting	one	outcome	in	a	one	particular	way	or	another	way.
Reliance	on	the	subject	matter	expert	is	imperative	to	ensure
proper	interpretation.

Getting	Started	with	SAS
Throughout	the	book,	we	introduce	various	business	questions	to
illustrate	which	statistical	analyses	are	used	to	generate	the
corresponding	answers.	Specifically,	we	define	the	problem	relative
to	the	chapter	content,	construct	the	necessary	SAS	code	for
generating	output,	and	provide	an	interpretation	of	the	results	for
purposes	of	answering	the	question.

In	order	to	provide	a	context	for	questions,	we	use	various	data	sets
that	accompany	the	book.	The	two	main	data	sets,	and	variants	of



those	data	sets,	are	(1)	the	Diabetic	Care	Management	Case,	and	(2)
the	Ames	Housing	Case.	Those	two	data	sets	are	described	in	this
section.

Diabetic	Care	Management	Case
The	data	file	provided	with	this	book,	DIABETICS,	contains
demographic,	clinical,	and	geo-location	data	for	patients	who	have
been	diagnosed	with	diabetes.	The	observation	under	investigation
is	the	patient,	each	having	variables	that	fall	into	the	following
categories:

1.						Demographic	information,	such	as	patient	ID,	gender,	age,
and	age	range.

2.						Date	of	the	last	doctor’s	visit	and	the	general	state	of	the
patient,	including	height,	weight,	BMI,	systolic	and	diastolic
blood	pressure,	type	of	diabetes,	if	the	diabetes	is	controlled,
medical	risk,	if	the	patient	has	hypertension,	hyperlipidemia,
peripheral	vascular	disease	(PVD),	renal	disease,	and	if	the
patient	has	suffered	a	stroke.

3.						The	results	of	57	laboratory	tests,	including	those	tests	from
the	comprehensive	metabolic	panel	(CMP)	which	are	used	to
evaluate	the	how	the	organs	function	and	to	detect	various
chronic	diseases.

4.						Information	related	to	prescription	medicine,	including	type
of	medication,	dosage	form,	and	the	number	and	nature	of
adverse	events	with	duration	dates.

5.						Geo-location	data	including	the	City	and	State	where	the
patient	resides,	along	with	longitude	and	latitude.

In	some	cases,	a	random	sample	of	200	patients,	in	a	file	called
DIAB200,	is	used	for	analysis.	A	complete	data	dictionary	of	the
full	data	set	with	detailed	descriptions	is	found	in	the	Appendix	B.

Ames	Housing	Case
The	second	major	data	set	used	for	this	book	is	the	Ames	Housing
data,	created	by	Dean	deCock	as	an	alternative	to	the	Boston
housing	data	(deCock,	2011).	The	original	data	was	collected	from
the	Ames	Assessor’s	Office	and	contains	2,920	properties	sold	in



Ames,	IA,	from	2006	through	2010.	The	data	includes	82	variables
on	each	of	the	houses.	

The	observation	under	investigation	is	the	house,	each	having	data
on	the	following	types	of	variables:

1.						Quantitative	measures	of	area	for	various	parts	of	the	house
(above	ground	living	area,	basement,	lot	area,	garage,	deck,
porch,	pool,	etc.).

2.						Counts	of	various	amenities	(number	of	bedrooms,	kitchens,
full	baths	above	ground	and	in	basement,	half	baths	above
ground	and	in	basement,	fireplaces,	number	of	cars	the	garage
will	hold).	

3.						Ratings—from	excellent	to	very	poor—for	various	house
characteristics	(overall	quality,	overall	condition,	along	with
the	quality	and	condition	of	the	exterior,	basement,	kitchen,
heating,	fireplace,	garage,	fence,	etc.).

4.						Descriptive	characteristics,	including	year	built,	type	of	road
access	to	property,	lot	shape	and	contour,	lot	configuration,
land	slope,	neighborhood,	roof	style,	roof	material,	type	of
exterior,	type	of	foundation,	basement	exposure,	type	of
heating	and	air,	type	of	electrical	system,	garage	type,
whether	or	not	driveway	is	paved,	etc.		Go	to
http://ww2.amstat.org/publications/jse/v19n3/Decock/DataDocumentation.txt
to	see	the	original	documentation.

For	this	book,	we	consider	a	specific	group	of	properties;	in
particular,	the	population	of	interest	is	defined	as	all	single-family
detached,	residential-only	houses,	with	sale	conditions	equal	to
‘family’	or	‘normal.’		The	sale	condition	allows	for	excluding	houses
that	were	sold	as	a	result	of	a	foreclosure,	short	sale,	or	other
conditions	that	may	bias	the	sale	price.	

As	a	result,	the	data	set	used	in	this	book,	called	AMESHOUSING,
contains	1,984	houses.	After	extensive	exploration	and	purposes
related	to	topics	in	this	book,	we	created	additional	variables,
resulting	in	a	total	of	103	variables,	as	defined	in	Appendix	A.	For
the	chapters	covering	topics	related	to	predictive	modeling,	twenty-
nine	(29)	total	numeric	and	binary	input	variables	are	considered
in	the	modeling	process.		The	book	does	reference	variations	of	the
Ames	housing	data,	along	with	other	data	sets,	as	listed	in	Table

http://ww2.amstat.org/publications/jse/v19n3/Decock/DataDocumentation.txt


1.4	List	of	Data	Sets	Used	in	the	Book	by	Chapter.	
Table	1.4		List	of	Data	Sets	Used	in	the	Book	by	Chapter

Chapter Data	Set	Name Chapter Data	Set	Name

1 ameshousing,	diabetics 7 cas

2 all,	diab200 8 ames300miss,	ames70

3 diabetics,	diab200,	sunglasses 9 amesreg300,	revenue

4 diabetics,	diab25f 10 ames300,	ames70,	amesnew

5 ames300 11 ameshousing,	 ames70,

ames30

6 ames300,	alt40

	

Accessing	the	Data	in	the	SAS	Environment
As	stated	earlier,	we	are	assuming	that	you	have	a	basic
understanding	of	the	SAS	environment	and	the	components	of	the
SAS	program,	namely	the	DATA	step	and	the	procedure	or	PROC
step.		Recall	that	in	order	to	access	a	SAS	data	set	using	the	DATA
step,	the	analyst	must	first	use	a	LIBNAME	statement	pointing	to
where	the	data	set	is	located.	In	this	book,	all	SAS	code	references
data	sets	located	in	the	SASBA	folder	on	the	C	drive.

Each	data	set	is	saved	in	its	own	subfolder	within	the	SASBA	parent
folder.	So,	for	example,	the	Ames	housing	data	set	is	saved	in	the
AMES	subfolder,	and	the	LIBNAME	statement	used	to	point	to	the
data	location	has	the	form:
libname	SASBA	‘c:\sasba\ames’;

The	diabetes	data	used	in	the	Diabetic	Care	Management	Case	is
saved	in	the	HC	subfolder	and	is	accessed	using	the	following
LIBNAME	statement:
libname	SASBA	‘c:\sasba\hc’;

In	order	to	ensure	that	all	readers	are	able	to	run	the	code	found	in
subsequent	chapters,	we	start	with	a	very	simple	SAS	program	so
that	you	can	both	access	the	data	for	the	Diabetes	Care



Management	Case	and	run	a	basic	CONTENTS	procedure	for
purposes	of	reviewing	the	specific	details	of	the	data	set.		Consider
the	Program	1.1	PROC	CONTENTS	of	the	Diabetes	Care
Management	Case	Data	Set.
Program	1.1	PROC	CONTENTS	of	the	Diabetes	Care	Management	Case	Data	Set

libname	SASBA	‘c:\sasba\hc’;

data	patient;

set	sasba.diabetics;

run;

	

proc	contents	data=patient;

run;

First,	you	can	see	from	Program	1.1	that	the	LIBNAME	statement
defines	a	library	called	SASBA	which	points	to	the	C:\SASBA\HC
directory	for	accessing	data.	The	permanent	data	set,	DIABETICS
located	in	the	SASBA	library,	is	placed	into	the	temporary	data	set,
PATIENT,	and	PROC	CONTENTS	is	then	applied	to	the	data	set,
PATIENT.	When	the	SAS	code	is	run,	the	analyst	should	get	the	SAS
LOG	1.1	PROC	CONTENTS	of	the	Diabetes	Care	Management	Case
Data	Set.
SAS	Log	1.1	PROC	CONTENTS	of	the	Diabetes	Care	Management	Case	Data	Set

1		libname	SASBA	‘c:\sasba\hc’;

NOTE:	Libref	SASBA	was	successfully	assigned	as	follows:

Engine:								V9

Physical	Name:	c:\sasba\hc

2		data	patient;

3					set	sasba.diabetics;

	

NOTE:	There	were	200	observations	read	from	the	data	set
SASBA.DIABETICS.

NOTE:	The	data	set	WORK.PATIENT	has	200	observations	and	125
variables.

NOTE:	DATA	statement	used	(Total	process	time):

real	time											0.01	seconds

cpu	time												0.01	seconds

	

	



4		proc	contents	data=patient;

5		run;

	

NOTE:	PROCEDURE	CONTENTS	used	(Total	process	time):

real	time											0.07	seconds

cpu	time												0.06	seconds

Remember	that	the	LOG	file	documents	everything	you	do	when
running	a	SAS	session.	The	lines	in	the	LOG	beginning	with
numbers	are	the	original	SAS	statements	in	your	program.	The
remaining	lines	begin	with	a	SAS	message—either	NOTE,	INFO,
WARNING,	ERROR,	or	an	error	number—and	provide	the	analyst
with	valuable	information	as	to	the	accuracy	of	the	output.

From	the	LOG	file,	you	can	see	that	the	library	reference	was
successfully	assigned.	You	can	then	see	that	63,108	observations
were	read	from	the	permanent	SAS	data	set,	DIABETICS,	and	then
read	into	the	temporary	data	set,	PATIENT,	having	125	variables,
followed	by	the	CONTENTS	procedure.		Included	in	the	LOG	is
total	process	time	as	well.

It	should	be	noted	that	it	is	very	important	to	review	the	LOG	file
after	every	program	execution	for	errors	and	warnings.	Keep	in
mind	that	executing	a	SAS	program	and	getting	output	does	not
necessarily	mean	that	the	results	are	correct.	While	there	may	be
no	run-time	errors,	there	may	be	logical	errors,	many	of	which	can
be	detected	by	checking	the	LOG	file	for	what	the	analyst	thinks	is
reasonable	given	the	task	at	hand.

Once	the	analyst	has	checked	the	LOG	file	and	has	reasonable
certainty	that	the	program	has	run	successfully,	he	or	she	can
review	the	output	as	illustrated	in	Output	1.1	PROC	CONTENTS	of
the	Diabetes	Care	Management	Case	Data	Set.
Output	1.1	PROC	CONTENTS	of	the	Diabetes	Care	Management	Case	Data	Set

Data	Set	Name WORK.PATIENT Observations 63108

Member	Type DATA Variables 125

Engine V9 Indexes 0

Created 2018/09/03	11:25:37 Observation
Length

1056



Last	Modified 2018/09/03	11:25:37 Deleted
Observations

0

Protection 	 Compressed NO

Data	Set	Type 	 Sorted NO

	

Alphabetic	List	of	Variables	and	Attributes

# Variable Type Len Format Informat

105 ABDOMINAL_PAIN Num 8 BEST12. BEST12.

37 AE1 Char 14 $CHAR14. $CHAR14.

38 AE2 Char 14 $CHAR14. $CHAR14.

39 AE3 Char 14 $CHAR14. $CHAR14.

14 AE_DURATION Num 8 BEST12. BEST12.

12 AE_STARTDT Num 8 DATE9. DATE9.

13 AE_STOPDT Num 8 DATE9. DATE9.

3 AGE Num 8 BEST12. BEST12.

4 AGE_RANGE Char 12 $CHAR12. $CHAR12.

40 Acetoacetate Num 8 F12.2 BEST12.

… … … … … …

90 White_Blood_Cell_Count Num 8 F12.2 BEST12.

91 Zinc_B_Zn Num 8 F12.2 BEST12.

From	the	output,	you	can	see	that	the	first	table	summarizes
information	about	the	data	set.		Specifically,	you	can	see	that	the
temporary	data	set,	PATIENT,	has	63,108	observations	with	125
variables,	along	with	the	creation	data.	The	second	table,
representing	an	excerpt	of	the	output,	summarizes	information
about	each	individual	variable;	namely,	the	number	(#)	indicating
the	column	location	in	the	data	set,	the	variable	name,	the	variable
type	(numeric	or	character),	the	storage	size	in	bytes	(Len),	the
format	for	printing	purposes,	and	the	informat	for	input.	If	the
variables	had	labels,	those	were	included	as	well.



Key	Terms
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1	Officially,	the	name	is	the	SAS	Statistical	Business	Analysis	Using
SAS®9	Regression	and	Modeling	exam.
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Handling	Missing	Data	with	the	MISSING	Option

Key	Terms
Chapter	Quiz

Introduction
In	this	chapter,	we	will	focus	on	measures	of	center,	spread,	and
shape	for	summarizing	numeric	data	and	how	to	produce	these
measures	across	various	groups	of	interest.	These	types	of	data
descriptions	are	critical	for	understanding	data	and	provide	the
foundations	for	both	data	visualization	(Chapter	3,	“Data
Visualization”)	and	inferential	statistics	(Chapters	4	through	11).

As	stated	in	Chapter	1,	“Statistics	and	Making	Sense	of	Our	World,”
defining	the	variable	type	must	precede	all	data	analyses.	There	are
two	types	of	variables	and	each	variable	type	warrants	a	specific
path	for	analysis.	Recall	that	a	categorical	variable	is	one	which	has



outcomes	in	the	form	of	a	name	or	a	label	and	helps	to	distinguish
between	various	characteristics	in	the	data	(for	example,	gender	or
academic	classification).	A	numeric	variable	measures	a	quantity
and	can	be	either	discrete	or	continuous.	A	discrete	numeric
variable	is	one	which	takes	on	a	finite,	countable	number	of	values.
An	example	would	be	the	number	of	smart	devices	a	person	owns
having	outcomes,	say,	1,	2,	3,	4,	or	5.	A	numeric	continuous
variable	is	one	which	has	an	uncountable	number	of	outcomes	and
is	usually	in	the	form	of	a	decimal.	An	example	is	the	amount	of
money	spent	on	online	purchases.		

This	chapter	will	focus	on	describing	summary	measures	for
numeric	data,	and	therefore,	these	fall	under	the	category	of
descriptive	statistics.	For	example,	when	describing	the	amount	a
customer	spends	on	a	single	visit	to	an	online	retail	site,	the	sales
manager	may	report	the	mean,	which	is	a	single	number	that
represents	the	typical	amount	purchased	on	any	one	visit.	Or,
suppose	you	manage	a	local	supermarket	and	observe	the
variability	in	the	customer	traffic	at	various	times	of	the	day	to
determine	the	number	of	workers	needed	to	maintain	excellent
customer	service.	Yet	another	example	includes	summarizing	sales
data	across	different	departments	and	geographic	locations.	In	any
of	these	situations,	there	exist	mounds	of	data	of	which	to	make
sense,	and	summary	information	is	critical.

In	this	chapter,	you	will	learn	about:

	the	measures	of	center	–	mean,	median,	and	mode

	the	measures	of	variation	–	range,	variance,	and	standard
deviation

	the	measures	of	shape	–	skewness	and	kurtosis

	other	descriptive	measures,	including	percentiles,	the	five-
number	summary,	and	the	interquartile	range

	the	MEANS	procedure	for	generating	specified	descriptive
statistics	and	how	to	customize	output

	ways	to	generate	statistics	for	comparing	groups	using	the
CLASS	and	BY	statements

	customizing	output	across	multiple	classes	using	the	WAYS
and	TYPES	statements

●					

●					

●					

●					

●					

●					

●					



	saving	the	results	of	the	MEANS	procedure	using	the
OUTPUT	statement

	how	missing	data	is	handled	in	the	MEANS	procedure

	

Measures	of	Center
Suppose	you	teach	an	introductory	statistics	class	and	walk	into	the
classroom	on	the	first	day;	suppose	also	that	a	student	asks	you
about	how	students	performed	last	semester.	Would	you	answer	the
question	by	reciting	a	list	of	the	final	course	grades	earned	by	each
student	from	last	semester?	Probably	not!	However,	you	may
answer	by	reporting	the	average,	that	is,	a	single	number	that
represents	the	class-wide	performance.		Or	you	may	even	report	the
mode,	the	grade	that	occurred	most	often.	In	short,	the	typical
response	is	to	report	a	summary	number	without	including	the
agonizing	details.	Frankly,	students	would	have	a	hard	time
interpreting	a	list	of	grades.	However,	they	have	an	innate
understanding	of,	say,	the	mean	or	the	mode.		So,	in	order	to
describe	the	typical,	or	representative,	value,	the	business	analyst
will	report	what’s	called	measures	of	center.	The	measures	of
center	are	the	mean,	the	median,	and	the	mode.

Mean
The	mean	is	calculated	by	adding	all	values	and	dividing	by	the
total	number	of	observations	in	the	data	set.	If	our	data	makes	up
the	entire	population	of	observations	in	which	we	are	interested,
then	we	would	represent	the	population	mean	with	the	Greek
symbol,	μ,	which	is	calculated	using	the	formula:

	

where	Xi	represents	the	ith	observation	in	the	data	set	and	N
represents	the	population	size.	If	the	data	is	made	up	of	a	sample	of
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observations	selected	from	a	population,	then	we	would	represent
the	sample	mean	with	the	symbol,	 ,	and	calculate	it	using	the
formula:

	

where	n	represents	the	sample	size.	Let’s	illustrate	the	calculation
of	the	mean	through	an	example.		Suppose	you	are	the	warehouse
manager	for	an	online	retail	site	and	recognize	that	the	key	to	fast
delivery	to	your	customer	is	in	the	processing	of	the	order;	that	is,
your	goal	is	to	fill	the	order	and	have	it	available	for	delivery
pickup	as	quickly	as	possible.	You	take	a	random	sample	of	orders
and	record	the	time	taken	to	process	each	order	and	have	it	ready
for	delivery.	The	process	times	(in	hours)	are	listed	in	the	Figure
2.1	Time	to	Process	Online	Orders	(in	Hours):
Figure	2.1	Time	to	Process	Online	Orders	(in	Hours)

Because	the	data	represents	the	sample,	we	would	calculate	the
sample	mean	as	follows:

	

In	conclusion,	the	average	process	time	for	our	sample	is	7	hours.
As	we	will	see	in	Chapter	4,	“The	Normal	Distribution	and
Introduction	to	Inferential	Statistics,”	when	we	do	statistical
inference,	we	will	use	the	sample	mean	to	estimate	the	population
mean.	For	example,	we	could	say	that,	based	upon	our	sample,	we
have	evidence	and,	therefore,	expect	the	average	processing	time	of
all	orders	to	be	7	hours.	Note	that	had	we	collected	the	processing
times	for	all	orders,	we	would	have	used	the	Greek	symbol,	μ,	to
denote	the	population	mean.

While	the	mean	is	commonly	used	as	a	measure	of	center,	the
business	analyst	must	exercise	caution	in	its	use	when	the	data



includes	outliers,	that	is,	very	large	or	very	small	values.	When
outliers	exist,	the	mean	is	‘pulled’	in	one	direction	or	the	other.
Consider	the	current	example	dealing	with	order	processing	time
and	suppose	the	tenth	order	had	been	mishandled	and	had,	instead,
taken	36	hours	to	process.	The	sample	mean	process	time	would
now	be	9	hours.	In	this	case,	the	mean	of	9	is	now	greater	than	8	of
the	10	observations	in	the	data	set	and	may	not	be	the	best
measure	of	‘center.’	In	the	case	of	outliers,	the	median	may	be	a
better	measure	of	center.

Median
Consider	a	set	of	numeric	data	in	the	form	of	an	ordered	array,
that	is,	an	ordered	series	of	numbers.	The	median	is	defined	as	the
midpoint	of	the	ordered	array.	Basically,	the	median	‘cuts’	the	data
in	half	such	that	half	of	the	values	are	above	the	median	and	half	of
the	values	are	below.	Therefore,	the	median	is	defined	to	be	the
50th	percentile	as	well.	In	the	case	where	the	data	set	size	is	even,
where	there	is	no	midpoint,	the	median	is	typically	defined	as	the
average	of	the	two	middle	values,	but	other	definitions	do	exist.

Consider,	again,	the	process	times	(in	hours)	for	a	random	sample
of	online	orders,	found	in	Figure	2.1	Time	to	Process	Online	Orders
(in	Hours).	With	10	observations,	there	is	no	middle	value;
specifically,	there	are	5	observations	in	the	first	half	and	5
observations	in	the	last	half.	So,	the	median	is	the	average	of	the
two	middle	values,	7	and	7,	which	is	7.	In	other	words,	7	hours	is
the	process	time	where	half	of	the	observations	fall	below	and	half
fall	above.	Keep	in	mind	that	if	the	data	set	size	is	odd,	the	median
is	the	single	middle	value,	found	in	the	(n+1)/2	position	of	the
ordered	array.

Note	also	that	if	the	last	order	had	taken	36	hours	to	process
instead	of	the	9	hours,	the	median	would	still	be	7.	In	short,	the
median	is	not	influenced	by	the	extreme	value	of	36	hours.	It
should	also	be	noted	that	the	mean	is	calculated	using	all
observations	in	the	data	set,	so,	it	is	influenced	by	a	change	in	any
one	observation;	however,	the	median	is	determined	by	the	middle
value	or	two	middle	values	only,	so	it	is	not	necessarily	influenced
when	observation	values	change.



Mode
The	mode	of	a	data	set	is	the	observation	value	that	occurs	most
often.	So,	in	our	random	sample	of	online	orders,	note	that	the	two
processing	times,	6	hours	and	7	hours,	each	occur	three	times,
while	9	occurs	twice,	and	5	and	8	occur	only	once.	Because	both	6
and	7	occur	the	most	number	of	times,	the	mode	is	6	and	7.	In	this
case,	our	data	is	called	bimodal.	In	some	situations,	a	data	set	has
one	mode	(called	unimodal)	or	even	multiple	modes	(called
multimodal);	in	data	sets	where	each	observation	value	occurs	only
once,	the	data	set	has	no	mode.		

The	mode	is	also	insensitive	to	either	very	large	or	very	small
numbers.	Finally,	unlike	the	mean	and	the	median,	the	mode	can
be	used	to	describe	categorical	data.	For	example,	according	to	the
National	Center	for	Health	Statistics	(2016),	there	were
approximately	2.6	million	deaths	in	the	United	States	in	2014.	You
can	see	from	Table	2.1	Number	of	Deaths	for	Top	Ten	Causes	–
2014	United	States,	that	the	leading	cause	of	death	is	heart	disease
because	it	had	the	highest	number	of	deaths	at	614,348.	In	other
words,	the	mode	for	the	primary	cause	of	death	is	disease	of	the
heart.
Table	2.1	Number	of	Deaths	for	Top	Ten	Causes	–	2014	United	States

All	Causes 2,626,418

Diseases	of	heart 614,348

Cancer 591,699

Chronic	lower	respiratory	diseases 147,101

Unintentional	injuries 136,053

Cerebrovascular	diseases 133,103

Alzheimer’s	disease 93,541

Diabetes	mellitus 76,488

Influenza	and	pneumonia 55,227

Nephritis,	nephrotic	syndrome, 48,146



and	nephrosis

Suicide 42,773

Total	Top	10	Causes 1,938,479

	

	

Measures	of	Variation
When	describing	numeric	data,	it	is	not	enough	to	know	only	the
measures	of	center.	In	many	situations,	it	is	equally	important	to
describe	how	observations	differ	from	each	other.	Numeric
summaries	that	describe	these	differences	are	called	measures	of
variation	and	include	the	range,	variance,	and	standard
deviation.	

Range
The	most	basic	measure	of	variation	is	the	range	and	measures	the
distance	between	the	smallest	value	and	the	largest	value	in	a	data
set.	The	range	is	defined	as	follows:

Range	=	Maximum	Value	–	Minimum	Value

Let’s	consider	the	following	example.	Suppose	you	want	to	compare
the	performance	of	two	online	retailers	in	terms	of	the	numeric
variable,	the	time	it	takes	to	process	an	order	and	get	ready	for
delivery.		Consider	the	first	online	retailer,	discussed	in	the
previous	section,	and	a	second	online	retailer,	where	data	is
collected	on	10	randomly	selected	orders	for	each	retailer,	as	found
in	Table	2.2	Time	to	Process	Orders	(in	Hours)	by	Retailer.
Table	2.2	Time	to	Process	Orders	(in	Hours)	by	Retailer

Online	Retailer	1 Online	Retailer	2

5 7 1 8

6 7 5 8



6 8 6 8

6 9 7 9

7 9 7 11

	

Consider	the	histogram	for	each	data	set	in	Figure	2.2	Time	to
Process	Orders	(in	Hours)	which	illustrates	that	the	time	to	process
an	order	is	more	variable	for	online	retailer	2	when	compared	to
online	retailer	1.	In	particular,	the	histogram	is	wider	for	online
retailer	2,	indicating	more	variation,	with	a	minimum	of	1,	a
maximum	of	11,	and	range	of	10;	whereas	the	histogram	for	online
retailer	1	is	more	narrow,	with	a	minimum	of	5,	a	maximum	of	9,
and	a	range	of	4.	In	short,	the	range	simply	tells	us	the	width	of	the
data	or	histogram.
Figure	2.2	Time	to	Process	Orders	(in	Hours)

From	the	retail	example,	it	is	evident	that	the	range	is	influenced
by	outliers.	In	fact,	the	value	of	the	range	is	a	function	of	both	the
minimum	and	maximum	values	and,	by	its	very	nature,	is	very
vulnerable	to	both	very	small	and	very	large	values.	The	range
depends	only	upon	two	values	from	the	data	set	and	ignores	all
other	values	and	their	variation	or	concentration.	



Variance
All	of	us	have	a	very	good,	intuitive	understanding	of	the	range;
however,	many	struggle	to	understand	the	meaning	of	both
variance	and	standard	deviation.	Suffice	it	to	say	that	all	three	of
these	measures	of	variation	have	the	same	basic	interpretation,	but
are	measured	on	different	scales.	It	will	help	to	recognize,	at	first
glance,	that	if	a	data	set	has	all	observations	with	equal	values,
then	there	is	no	variation;	that	is,	the	range,	variance,	and	standard
deviation	are	all	equal	to	zero.	If	values	in	a	data	set	are	highly
varied	and	relatively	far	apart,	then	all	measures	of	variation
(range,	variance,	and	standard	deviation)	are	relatively	large	to
reflect	a	larger	spread.	If	values	are	very	similar	and	relatively
close,	then	all	measures	of	variation	are	relatively	small	to	reflect	a
smaller	spread.

Before	getting	into	the	details	of	variance	and	standard	deviation,
let’s	consider	the	descriptive	statistics	on	time	to	process	orders	for
online	retailers	1	and	2,	as	provided	in	Table	2.3	Descriptive
Statistics	for	Time	to	Process	Orders.	While	we	have	not	yet
discussed	variance	nor	standard	deviation,	you	can	see	that	those
measures	of	variation,	like	the	range,	are	ways	to	represent	the
width	of	the	histograms.	Specifically,	notice	that	the	variance	for
retailer	2	is	7.111,	whereas	the	variance	for	retailer	1	is	1.778,
indicating	that	the	data	for	retailer	2	is	more	dispersed	than	that
for	retailer	1	because	the	variance	for	retailer	2	is	larger.	Notice
also	that	the	standard	deviation	of	time	for	retailer	2	is	2.667,
whereas	the	standard	deviation	for	retailer	1	is	1.333,	similarly
indicating	that	the	data	for	retailer	2	is	more	dispersed	than	that
for	retailer	1.
Table	2.3	Descriptive	Statistics	for	Time	to	Process	Orders

Time	(in	Hours) Online	Retailer	1

Online	Retailer

2

Mean 7 7

Variance 1.778 7.111

Standard	Deviation 1.333 2.667

Range 4 10



Minimum 5 1

Maximum 9 11

So	how	is	variance	derived?	As	mentioned	previously,	the	range
depends	upon	only	two	values	from	the	data	set	and	ignores	all
other	values.	So,	we	would	like	to	consider	a	measure	of	variation
that	utilizes	all	observations	in	the	data	set.	One	such	measure	is
the	variance	which	is	an	index	that	reflects	how	each	value	in	a
data	set	deviates	from	the	mean.	If	the	data	represents	the
population,	the	variance	is	denoted	with	the	symbol	σ2;	if	the	data
represents	a	sample	taken	from	the	population,	the	variance	is
denoted	with	the	symbol	s2.	The	formulae	for	variance	are	as
follows:

								

	

Let’s	assume,	for	the	moment,	that	the	time	to	process	an	order	for
online	retailer	1	represents	the	population	of	orders,	where	the
average	time	to	process	an	order	is	7	as	illustrated	in	Table	2.4
Calculations	for	Variance	as	Average	Squared	Deviations.	Note,	the
information	in	column	II	measures	how	each	observation	deviates
from	the	mean.	So	for	example,	observation	1	has	a	value	of	5
hours	which	is	2	hours	below	the	mean	of	7,	so	the	deviation	is	-2;
while	for	observation	10,	with	a	value	of	9	hours,	the	deviation	is
+2.	Finally,	note	that	the	average	of	the	deviations	from	the	mean
is	equal	to	zero.	In	fact,	this	is	true	for	all	data	sets,	regardless	of
the	variation	in	values,	because	the	positives	and	negatives	always
cancel	out.	In	short,	the	average	deviation	would	be	useless	as	a
measure	of	variation.
Table	2.4	Calculations	for	Variance	as	Average	Squared	Deviations

	 I II III

Observation TIME	(X) (X-MEAN) (X-MEAN)	2

1 5 -2 4



2 6 -1 1

3 6 -1 1

4 6 -1 1

5 7 0 0

6 7 0 0

7 7 0 0

8 8 1 1

9 9 2 4

10 9 2 4

Average 7 0 1.6

In	order	to	eliminate	the	negatives,	a	common	practice	is	to	square
the	deviations	as	shown	in	column	III.		So,	while	the	unit	of
measure	is	now	squared	hours,	the	values	are	still	reflective	of	the
distance	from	the	mean.	So	a	squared	deviation	of	4	(for
observations	1,	9,	and	10)	means	that	the	observation’s	value	is
farther	from	the	mean	than,	say,	observation	4	with	a	squared
deviation	of	1.	By	definition,	the	population	variance	is	the	average
of	the	squared	deviations,	that	is,	the	average	of	the	values	in
column	III,	as	follows:

	=	1.6

In	reality,	the	data	for	retailer	1	is	a	sample,	so	the	sample
variance,	as	shown	in	Table	2.3	Descriptive	Statistics	for	Time	to
Process	Orders,	is

	=	1.778

Now,	why	does	the	formula	for	sample	variance	contain	(n-1)	in
the	denominator,	whereas	the	population	variance	has	simply	(N)
in		the	denominator?	Remember,	that	when	we	take	a	sample	and
calculate	the	variance	of	that	sample,	we	ultimately	want	to	use



that	sample	variance	as	an	estimate	of	the	population	variance.	In
fact,	in	the	long	run,	if	we	took	repeated	random	samples	from	the
population,	and	calculated	the	sample	variances,	we	would	want
the	average,	or	the	expected	value,	of	those	sample	variances	to
equal	the	population	variance.	This	is	true	for	the	sample	variance
only	when	dividing	by	(n-1);	therefore,	we	refer	to	s2	as	unbiased
estimate	of	σ2.

Standard	Deviation
The	variance	is	calculated	using	squared	deviations	and	is,
therefore,	measured	in	squared	units.	In	order	to	describe	variation
using	the	original	unit	of	measure,	we	must	simply	use	the	square
root	of	the	variance.	By	definition,	the	standard	deviation	is	the
square	root	of	the	variance.	When	we	are	describing	the
population,	we	use	the	symbol	σ;	when	we	are	describing	the
sample,	we	use	the	letter,	s.	The	formulae	are	as	follows:

	

So,	let’s	go	back	to	the	comparison	of	process	times	for	both	online
retailer	1	and	online	retailer	2.	The	sample	standard	deviation	of
the	process	times	for	retailer	1	is	 ,	or	1.333	hours;
and	the	sample	standard	deviation	for	retailer	2	is	 ,	or
2.667	hours.	As	we	will	see	in	Chapter	4,	“The	Normal	Distribution
and	Introduction	to	Inferential	Statistics”	and	beyond,	the	standard
deviation	has	many	properties	that	are	very	useful	in	both
descriptive	and	inferential	statistics.

Before	continuing	with	other	data	descriptions,	consider	so	far	the
summary	information	on	process	times	for	both	retailers	1	and	2,
from	Table	2.3	Descriptive	Statistics	for	Time	to	Process	Orders.	It
is	evident	that,	if	the	customer	could	obtain	the	same	products
from	either	online	retailer,	that	the	customer	would	choose	retailer
1.	So,	while	the	average	process	times	for	both	retailers	is	7	hours,
the	variation	is	smaller	for	retailer	1	as	reflected	in	the	lower
range,	variance,	and	standard	deviation,	indicating	that	retailer	1	is
somewhat	more	consistent	in	its	process	time.	While	this	is	a	simple
example	of	how	statistics	are	used	to	describe	and	compare	across



different	groups,	it	is	a	great	illustration	of	the	power	of	data
descriptions	for	making	decisions.	The	remaining	part	of	this
chapter	provides	more	tools	for	making	those	decisions.

Measures	of	Shape
In	addition	to	measures	of	center	and	shape,	distributions	can	be
described	and	differentiated	in	terms	of	their	shapes.	Specifically,
the	shape	of	data	can	be	characterized	by	measures	of	skewness
and	kurtosis.

Skewness
Skewness	is	the	tendency	of	observations	to	deviate	from	the	mean
in	one	direction	or	the	other	(SAS	Institute	Inc.,	2011).	In	other
words,	skewness	gives	an	indication	of	whether	more	data	is
concentrated	at	lower	values	or	higher	values.	This	imbalance	in
the	spread	of	the	observations	around	the	mean	is	referred	to	as
asymmetry.	If	the	observations	are	spread	evenly	on	each	side	of
the	mean,	the	data	is	considered	symmetric	and	the	skewness
measure	is	zero.	An	example	would	be	the	heights	of	adult	males
which	are	represented	by	a	bell-shaped	curve;	here	the	shape	of	the
curve	above	the	mean	is	identical	to	that	of	the	curve	below	the
mean,	as	illustrated	in	the	middle	panel	of	Figure	2.3	Examples	of
Symmetric	and	Asymmetric	Distributions.	Note	also	that	a
distribution	does	not	necessarily	have	to	be	bell-shaped	to	be
symmetric;	the	bell-shaped	histogram	is	a	special	example	of
symmetry.

If	observations	with	high	values	tend	to	be	farther	from	the	mean,
then	the	data	is	considered	positively	or	right-skewed,	as	illustrated
in	the	left	panel	of	Figure	2.3;	if	observations	with	low	values	tend
to	be	farther	from	the	mean,	then	the	data	is	negatively	or	left-
skewed,	as	illustrated	by	the	right	panel	of	Figure	2.3.	An	example
of	right-skewed	data	would	be	the	incomes	of	American	adults;	in
particular,	there	are	more	American	workers	making	below	the
mean	than	above	the	mean.	In	fact,	in	2015,	the	top	5%	of
individuals	had	incomes	exceeding	$100,000,	(U.S.	Census	Bureau,
Current	Population	Survey.	2007)	which	means	95%	of	Americans
made	$100,000	or	less.	



Figure	2.3		Examples	of	Symmetric	and	Asymmetric	Distributions

The	formula	for	skewness	is:

	

Consider,	for	example,	the	time	to	process	orders	(X)	for	online
retailer	1	as	provided	in	Table	2.5	Sum	of	Z3	Values	for	Calculating
Skewness.	First,	note	column	II	which	measures,	for	each
observation,	the	distance	between	X	and	the	sample	mean	 	in
standard	deviation	units.	For	example,	the	first	order,	observation
1,	took	5	hours	to	be	processed,	and	is	1.50	standard	deviations
below	the	mean,	whereas	observation	10	which	took	9	hours	to	be
processed	is	1.50	standard	deviations	above	the	mean.	These	values
are	referred	to	as	standardized	Z-scores	and	will	be	covered	in	more
detail	in	Chapter	4,	“The	Normal	Distribution	and	Introduction	to
Inferential	Statistics.”	

Table	2.5	Sum	of	Z3	Values	for	Calculating	Skewness

	 I II III

Observation TIME	(X) Z	=	(X-Mean)/S Z3

1 5 -1.50 -3.37500

2 6 -0.75 -0.42188

3 6 -0.75 -0.42188

4 6 -0.75 -0.42188



5 7 0 0

6 7 0 0

7 7 0 0

8 8 0.75 0.42188

9 9 1.50 3.37500

10 9 1.50 3.37500

Sum 	 0.00 2.53125

In	order	to	measure	overall	spread	from	the	mean	for	all
observations	simultaneously	and	also	take	into	account	direction,
the	measure	of	skewness	utilizes	Z3	so	that	the	signs	(+	or	-)	are
retained.	Specifically,	skewness	is	obtained	by	taking	the	sum	of
the	Z3	values	found	in	column	III	and	multiplying	that	number	by	a
sample	size	correction	factor.	

Based	upon	the	formula,	we	can	see	that	if	the	number	of
observations	falling	relatively	far	below	the	mean	exceeds	the
number	of	observations	falling	relatively	far	above	the	mean,	then
the	skewness	is	negative;	however,	if	the	number	of	observations
falling	relatively	far	above	the	mean	exceeds	those	below,	then	the
skewness	is	positive.	If	the	sum	of	the	Z3	values	is	zero,	resulting	in
a	skewness	value	equal	to	zero,	there	is	an	indication	that	the	data
is	symmetric	where	the	observations	values	both	above	and	below
the	mean	balance	out.	It	should	be	noted	that	skewness	values
range	from	-3	to	+3.

	

For	our	example,	skewness	is

	

indicating	that	(X)	the	time	to	process	online	orders	for	retailer	1	is
slightly	positively	skewed.	In	fact,	from	Table	2.5	Sum	of	Z3	Values
for	Calculating	Skewness,	we	can	see	that	the	two	relatively	large



values	above	the	mean	(observations	9	and	10)	outweigh	the	one
relatively	small	value	(observation	1)	below	the	mean.	Skewness
will	be	revisited	in	Chapter	3,	“Data	Visualization”	when
visualizing	data	in	the	form	of	graphs	and	charts.

Kurtosis
Kurtosis	measures	the	heaviness	of	the	tails	of	a	data	distribution
(SAS	Institute	Inc.b	2011.)	In	essence,	this	index	determines
whether	a	distribution	is	flat	or	peaked	as	compared	to	a	bell-
shaped,	or	normal,	distribution.	So,	for	example,	when	reviewing
Figure	2.4	Examples	of	Kurtosis	as	Compared	to	the	Normal
Distribution,	you	can	see	the	flattest	distribution	has	fewer
observations	concentrated	around	the	mean	as	compared	to	the
normal	distribution,	and	instead	has	more	observations
concentrated	in	the	tails.	Therefore,	resulting	in	heavier	tails.	The
more	peaked	distribution	has	more	observations	concentrated
around	the	mean	as	compared	to	the	normal	distribution,	resulting
is	relatively	flat	tails.	The	formula	for	kurtosis	is:

	

Data	that	has	a	bell-shaped	curve	will	have	a	kurtosis	value	of	zero.
If	a	distribution	has	heavy	tails,	the	kurtosis	is	positive;	if	a
distribution	has	relatively	flat	tails,	the	kurtosis	is	negative.	
Figure	2.4		Examples	of	Kurtosis	as	Compared	to	the	Normal	Distribution

Again,	consider	the	time	to	process	orders	(X)	for	online	retailer	1
as	provided	in	Table	2.6	Sum	of	Z4	Values	for	Calculating	Kurtosis,
where	column	III	illustrates	the	values	of	Z4.	For	our	example,



kurtosis	is

	

indicating	that	(X),	the	time	to	process	online	orders	for	retailer	1,
has	relatively	flat	tails.

While	the	average	time	to	process	is	7	hours	for	both	online
retailers	1	and	2,	the	kurtosis	for	retailer	2	is	+2.51,	indicating
heavier	tails	than	that	for	retailer	1;	in	other	words,	for	online
retailer	2,	there	are	more	observations	which	have	relatively	large
deviations	from	the	mean.		A	review	of	Figure	2.2	Time	to	Process
Orders	(in	Hours)	illustrates	exactly	that	fact,	where	online	retailer
2	has	extreme	values	in	both	tails.

Table	2.6	Sum	of	Z4	Values	for	Calculating	Kurtosis

	 I II III

Observation TIME	(X) Z=(X-Mean)/S Z4

1 5 -1.50 5.06250

2 6 -0.75 0.31641

3 6 -0.75 0.31641

4 6 -0.75 0.31641

5 7 0 0.00000

6 7 0 0.00000

7 7 0 0.00000

8 8 0.75 0.31641

6 9 1.50 5.06250

10 9 1.50 5.06250



Sum 	 0.00 16.45313

Other	Descriptive	Measures
When	exploring	numeric	data,	there	are	additional	measures	which
can	provide	more	granular	descriptions	of	the	data	and	can	aid	in
comparing	numeric	variables	across	various	groups.	These
measures	are	sometimes	referred	to	as	order	statistics,	that	is,
numbers	that	imply	the	location	of	an	observation	in	an	order
array.

Percentiles,	the	Five-Number-Summary,	and	the
Interquartile	Range	(IQR)
Specifically,	this	section	will	describe	various	order	statistics,
including	percentiles	and	the	five-number-summary	and	the
Interquartile	Range	(IQR).

Percentiles

In	the	early	section	on	measures	of	center,	we	discussed	the
median,	which	is	the	value	where	half	the	values	are	below	and
half	of	the	values	are	above.	By	definition,	the	median	is	defined	as
the	50th	percentile.		In	general,	the	ith	percentile	is	the	value
where	i	percent	of	the	observations	are	at	or	below.	

When	finding	the	ith	percentile,	the	analyst	basically	wants	to	cut
the	data	set	into	two	parts.	The	lower	part	consists	of	those	values
less	than	or	equal	to	the	ith	percentile,	and	the	upper	part	consists
of	those	values	greater	than	or	equal	to	the	ith	percentile.	To	find
the	ith	percentile,	the	analyst	must	first	start	with	an	ordered	array,
and	then	find	the	position	of	the	percentile	in	that	order	array.	The
SAS	procedure	illustrated	in	this	chapter	allows	the	analyst	to
employ	various	ways	for	finding	the	position	of	the	percentile;	here
we	will	illustrate	the	default	method	(SAS	Institute,	n.d.),	referred
to	as	definition	5,	using	the	following	formula:

	



where	j	=	the	integer	part	of	the	position	and	g	=	the	decimal	part
of	the	position.	If	the	decimal	value	of	the	position	is	non-zero
(g>0),	then	the	percentile	is	in	the	(j+1)th	position.	If	the	decimal
value	of	the	position	is	zero	(g=0),	then	the	percentile	is	the
average	of	the	two	observations	in	the	jth	and	(j+1)th	position,
respectively.				

Consider	the	example	of	finding	the	25th	percentile	of	process	time
for	online	retailer	2.	The	position	in	the	ordered	array	is	calculated
as:

	

Because	the	position	value	is	2.50,	with	j=2	and	g=.5	(g>0),	the
25th	percentile	is	in	the	j+1=2+1,	or	3rd	position.	Consequently,
the	25th	percentile	is	6;	that	is,	25	percent	of	the	process	times	is
less	than		or	equal	to	6	hours.	Consider	now	the	75th	percentile.
The	position	is	as	follows:

	

The	position	value	is	7.5,	with	j=7	and	g=.5	(g>0),	so	the	75th

percentile	is	in	the	j+1=7+1,	or	8th	position.		In	short,	the	75th
percentile	is	8,	meaning	that	75	percent	of	the	process	times	is	less
than	or	equal	to	8	hours.	

Finally,	let’s	consider	both	the	10th	and	90th	percentiles,	using	the
following	formula:

	

Because	the	decimal	values	are	zero,	the	10th	percentile	is	the
average	of	the	1st	and	2nd	observations	(1	hour	and	5	hours),	which



is	3	hours.	The	90th	percentile	is	the	average	of	the	9th	and	10th
observations	(9	hours	and	11	hours),	which	is	10	hours.	In
conclusion,	10	percent	of	the	data	is	at	or	below	3	hours,	and	90
percent	of	the	data	is	at	or	below	10	hours.

The	Five-Number-Summary	and	the	Interquartile	Range	(IQR)

The	five-number-summary	for	a	data	set	is	defined	to	be	the
minimum,	the	first	quartile	(Q1),	the	median	(Q2),	the	third

quartile	(Q3),	and	the	maximum.	Note	that	the	25th	percentile	is

equivalent	to	the	1st	quartile	(Q1),	the	median	is	the	second

quartile	(Q2),	and	the	75th	percentile	is	the	3rd	quartile	(Q3).

This	summary	helps	to	describe	various	characteristics	of	the	data;
in	particular,	the	median	measures	the	center,	while	the	range
(maximum	–	minimum)	measures	the	spread	or	variation.	In
addition,	the	interquartile	range	(IQR)	is	defined	as	the	difference
between	the	third	and	first	quartile	(Q3	–	Q1)	and	is	used	to
measure	the	variation	in	the	middle	50	percent	of	the	data.	Finally,
it	may	be	noted	that	the	five-number-summary	cuts	the	data	set
into	four	parts.	

Consider	online	retailer	2	and	the	time	to	process	order.		The	five-
number	summary	is	1,	6,	7.5,	8,	and	11,	and	represents	four	parts
of	the	data,	as	illustrated	in	Figure	2.5	Time	to	Process	Online
Orders	(in	Hours)	for	Retailer	2.	In	particular,	the	first	quarter	of
the	data	starts	at	the	minimum	of	1	hour	and	continues	to	6	hours;
the	second	quarter	starts	at	6	hours	and	continues	to	7.5	hours;	the
third	quarter	starts	at	7.5	hours	and	continues	to	8	hours;	and
finally,	the	last	quarter	starts	at	8	hours	and	continues	to	the
maximum	of	11	hours.	The	interquartile	range	(IQR)	is	2	hours,
indicating	that	the	middle	50	percent	of	the	data	differs	by	no	more
than	2	hours;	whereas	the	range	is	10	hours.
Figure	2.5	Time	to	Process	Online	Orders	(in	Hours)	for	Retailer	2

Outliers
In	general,	an	observation	is	considered	an	outlier	if	it	is	‘far’	in



distance	from	other	observations.			Depending	on	the	situation,
there	are	various	ways	to	define	that	distance.	When	exploring	a
single	variable,	an	observation	is	considered	an	outlier	if	its
distance	from	the	middle	50	percent	of	the	observations	is	more
than	1.5	times	the	interquartile	range	(IQR).	Specifically,	an
observation	is	considered	an	outlier	if	its	value	falls	outside	of	the
lower	and	upper	limits	defined	as	follows:
Upper	Limit	=	Q3	+	1.5IQR

Lower	Limit	=	Q1	–	1.5IQR

Consider	once	again	online	retailer	2.	In	order	to	check	for	outliers,
we	must	calculate	the	upper	and	lower	limits	as	follows:

Upper	Limit	=	Q3	+	1.5IQR	=	8	+	1.5(8-6)	=	8	+	3	=	11

Lower	Limit	=	Q1	–	1.5IQR	=	6	–	1.5(8-6)	=	6	–	3	=	3

When	reviewing	the	process	times	for	the	10	observations,	we	see
that	observation	1	is	the	only	observation	with	a	value	outside	of	3
hours	and	11	hours,	with	a	value	of	1	hour.	As	a	result,	observation
1	is	considered	an	outlier.	For	a	visual	representation	of	the	five-
number-summary	and	detecting	outliers,	go	to	Chapter	3,	“Data
Visualization”	for	a	discussion	of	the	box-and-whisker	plot.

The	MEANS	Procedure
The	MEANS	procedure	is	employed	for	reporting	summary
measures,	or	descriptive	statistics,	for	numeric	data.		In	particular,
the	means	procedure	produces	measures	of	center,	variation,	and
shape,	in	addition	to	quantiles	and	confidence	limits	for	the	mean.
The	procedure	can	also	be	used	for	identifying	extreme	values	and
performing	t-tests.	The	procedure	allows	for	separating	the	analyses
on	various	grouping	variables	for	comparison	purposes.	Finally,	the
means	procedure	also	provides	the	option	to	save	the	descriptive
statistics	to	a	separate	SAS	data	set	for	future	reference.

	

Procedure	Syntax	for	PROC	MEANS



PROC	MEANS	has	the	general	form:

PROC	MEANS	DATA=SAS-data-set	<options><statistic-
keyword(s)>;

BY	<DESCENDING>	variable-1	…	<DESCENDING>…variable-n;
VAR	variables;

CLASS	variable(s)	</option(s)>;

OUTPUT	<OUT=SAS-data-set><output-statistic-specification(s)>	</
option(s)>	;

TYPES	request(s);

WAYS	list;

	RUN;

To	illustrate	the	MEANS	procedure,	consider	the	process	time
example	for	our	online	retailer.	Of	course,	this	is	a	small	data	set,
but	suppose	we	want	to	provide	a	very	detailed	description	of	how
the	online	retailer	performs	in	terms	of	the	numeric	variable,	time
(in	hours)	to	process	an	order	(X),	including	the	amount	spent	on
each	order.	To	generate	the	descriptive	statistics,	the	analyst	would
use	Program	2.1	PROC	MEANS	of	Process	Time	and	Amount	Spent
for	Retailer	1.
Program	2.1	PROC	MEANS	of	Process	Time	and	Amount	Spent	for	Retailer	1

data	retailer1;

input	time	amount	@@;

datalines;

5	50.97

6	54.17

6	51.31

6	57.56

7	69.01

7	60.17

7	54.12

8	58.50

9	53.58

9	55.85

;

run;



	

proc	means	data=retailer1;

TITLE	‘Description	Of	Process	Time	and	Amount	Spent’;

run;

First,	you	can	see	from	Program	2.1	PROC	MEANS	of	Process	Time
and	Amount	Spent	for	Retailer1	that	the	temporary	data	set,
RETAILER1,	is	created	and	the	data	for	both	variables,	TIME	and
AMOUNT,	is	read	into	that	data	set	using	the	INPUT	statement.
PROC	MEANS	is	then	applied	to	the	data	set	using	the	DATA=
option,	and	the	output	is	generated	as	seen	in	Output	2.1	PROC
MEANS	of	Process	Time	and	Amount	Spent	for	Retailer	1.
Output	2.1	PROC	MEANS	of	Process	Time	and	Amount	Spent	for	Retailer	1

Description	Of	Process	Time	and	Amount	Spent

	

The	MEANS	Procedure

	

Variable N Mean Std	Dev Minimum Maximum

time
amount

10
10

7.0000000
56.5240000

1.3333333
5.2982811

5.0000000
50.9700000

9.0000000
69.0100000

Note	that,	in	the	absence	of	any	other	statements,	descriptive
statistics	are	provided	for	all	variables	in	the	data	set,	namely,
TIME	and	AMOUNT.	Also	note	that	when	no	options	are	given,	by
default,	five	statistics	are	reported;	namely,	the	sample	size,	mean,
standard	deviation,	minimum	and	maximum	values.	So	for	10
online	orders	for	online	retailer	1,	the	average	time	to	process	an
order	is	7.0	minutes,	with	a	standard	deviation	of	1.3333333
minutes,	minimum	of	5	minutes	and	maximum	of	9	minutes.	Those
same	10	orders	averaged	$56.52,	with	a	standard	deviation	of
$5.2982811,	minimum	of	$50.97,	and	maximum	of	$69.01.

Customizing	Output	with	the	VAR	statement	and
Statistics	Keywords
Suppose	you	want	to	concentrate	on	describing	only	one	variable



and	include	additional	statistics	for	a	more	thorough	description.	In
order	to	customize	your	output,	you	would	use	the	VAR	statement
and	may	want	to	include	a	list	of	keywords	for	the	desired
statistics.	In	particular,	the	analyst	could	use	Program	2.2	PROC
MEANS	with	Additional	Descriptive	Statistics	of	Process	Time	for
Retailer	1.
Program	2.2	PROC	MEANS	with	Additional	Descriptive	Statistics	of	Process	Time	for
Retailer	1

data	retailer1;

input	time	amount	@@;

datalines;

5	50.97

6	54.17

6	51.31

6	57.56

7	69.01

7	60.17

7	54.12

8	58.50

9	53.58

9	55.85

;

run;

	

proc	means	data=retailer1

n	mean	max	min	range	q1	mode	median	q3	qrange

std	n	nmiss	skew	kurtosis	clm	t	maxdec=2;

var	time;

TITLE	‘Description	Of	Process	Time’;

run;

As	described	previously,	the	variables	TIME	and	AMOUNT	are	read
and	saved	in	the	temporary	data	file,	RETAILER1.	The	VAR
statement	is	now	added	to	the	MEANS	procedure	to	indicate	that
descriptive	statistics	are	to	be	generated	only	for	the	variable,
TIME.	With	the	inclusion	of	various	keywords	in	the	MEANS
procedure,	additional	statistics	will	be	provided	as	well,	as	seen	in
Output	2.2		PROC	MEANS	with	Additional	Descriptive	Statistics	of



Process	Time	for	Retailer	1.
Output	2.2		PROC	MEANS	with	Additional	Descriptive	Statistics	of	Process	Time	for
Retailer	1

Description	Of	Process	Time

The	MEANS	Procedure

	

Analysis	Variable	:	time

N Mean Maximum Minimum Range
Lower
Quartile Mode Median

Upper
Quartile

Quartile
Range

10 7.00 9.00 5.00 4.00 6.00 6.00 7.00 8.00 2.00

	

Analysis	Variable	:	time

Std	Dev N	Miss Skewness Kurtosis
Lower	95%
CL	for	Mean

Upper	95%
CL	for	Mean t	Value

1.33	 0 0.35 -0.75 6.05 7.95 16.60

First,	note	that	using	the	MAXDEC=	option	requests	that	statistics
be	reported	to	two	decimals	and	provides	a	little	more	clarity	when
reviewing	the	output.	Note	also	that	including	the	keywords
provides	additional	statistics	not	reported	when	the	default	is	used.
In	particular,	you	now	can	see	that	the	median	is	7	hours,
indicating	that	that	half	the	orders	took	less	than	or	equal	to	7
hours	and	half	took	more	than	or	equal	to	7	hours.	You	can	also	see
that	25%	of	the	orders	took	less	than	or	equal	to	6	hours,	whereas
75%	of	the	orders	took	less	than	or	equal	to	8	hours;	these	differ	by
2	hours	which	is	represented	by	the	inter-quartile	range	(IQR).	As
seen	in	the	previous	example,	we	can	see	the	minimum	and
maximum	times	to	process	an	order,	but	as	requested	here,	we	can
now	see	that	the	range	in	processing	times	is	4	hours	(maximum	–
minimum).	Finally,	we	can	see	that	the	data	is	slightly	positively
skewed	(skew	=	+0.35)	and	tails	are	slightly	flat	as	measured	by
the	negative	kurtosis	(kurtosis	=	-0.75).	Finally,	you	can	see	that
the	output	provides	the	upper	and	lower	class	limits	for	the	95%
confidence	interval	for	the	mean	and	the	t-value	used	for



hypothesis	testing,	all	of	which	will	be	covered	in	detail	in	Chapter
4,	“The	Normal	Distribution	and	Introduction	to	Inferential
Statistics.”	Finally,	the	order	in	which	the	statistics	are	reported	is
determined	by	the	order	in	which	the	keywords	appear	in	the
MEANS	procedure.	

Key	Words	for	Generating	Desired	Statistics

When	you	are	customizing	your	output,	note	that	the	statistics
available	for	reporting	fall	into	three	categories,	(1)	descriptive
statistics,	(2)	quantile	statistics,	and	(3)	statistics	for	hypothesis
testing	(SAS	Institute,	n.d.)	as	listed	in	Table	2.7	Keywords	for
Requesting	Statistics	in	the	MEANS	Procedure.	Most	of	these
statistics	have	been	described	in	detail	in	this	chapter.	However,
see	Chapter	4,	“The	Normal	Distribution	and	Introduction	to
Inferential	Statistics”	for	additional	coverage	of	the	remaining
statistics.
Table	2.7		Keywords	for	Requesting	Statistics	in	the	MEANS	Procedure

Descriptive
Statistics Keywords Statistics Keywords Statistics

	 CLM Confidence	Limit	for
the	Mean

NMISS Number	of	Missing
Observations

	 CSS Corrected	Sums	of
Squares

RANGE Range

	 CV Coefficient	of
Variation

SKEW Skewness

	 KURT Kurtosis STD Standard	Deviation

	 LCLM Lower	Class	Limit
for	Mean

STDERR Standard	Error

	 MAX Maximum SUM Sum

	 MEAN Mean SUMWGT Sum	of	the	Weights

	 MIN Minimum UCLM Upper	Class	Limit
for	Mean

	 MODE Mode USS Uncorrected	Sums
of	Squares

	 N Sample	Size VAR Variance



Quantile
Statistics

Median	|	P50 Median,	50th
Percentile

Q3|	P75 Third	Quartile,	75th
Percentile

	 P1 First	Percentile P90 90th	Percentile

	 P5 Fifth	Percentile P95 95th	Percentile

	 P10 Tenth	Percentile P99 99th	Percentile

	 Q1	|	P25 First	Quartile,	25th
Percentile

QRANGE Interquartile	Range

Hypothesis
Testing

PROBT	|	PRT P-Value	for	the	T-
Test	Statistic

T T-Test	Statistic

Comparing	Groups	Using	the	CLASS	Statement	or	the
BY	Statement
Many	times,	in	practice,	there	are	situations	where	you	want	to
compare	various	groups	on	a	particular	numeric	variable	of
interest.	For	example,	you	may	want	to	compare	the	grades	of
students	who	take	an	online	class	versus	a	traditional	classroom
environment;	or	consider	investigating	the	average	sales	of	a	chain
of	women’s	clothes	when	advertising	using	email	versus	direct-mail
advertising.	In	these	cases,	you	basically	want	to	ask	SAS	to
separate	your	data	into	the	distinct	groups	and	produce	statistics
for	the	groups	separately	for	comparative	purposes.	This	can	be
done	by	including	either	the	CLASS	statement	or	the	BY	statement.

PROC	MEANS	Using	the	CLASS	Statement

Consider	our	example,	where	data	is	collected	on	the	numeric
variable,	(X),	time	to	process	an	order	for	both	online	retailers	1
and	2.	In	order	to	compare	the	two	retailers	on	their	process	time,
the	analyst	would	use	Program	2.3	PROC	MEANS	of	Process	Time
for	Retailers	1	and	2	Using	the	CLASS	Statement.
Program	2.3	PROC	MEANS	of	Process	Time	for	Retailers	1	and	2	Using	the	CLASS
Statement

libname	sasba	‘c:\sasba\data’;

data	all;

set	sasba.all;

run;

	



proc	means	data=all

n	mean	max	min	range	q1	mode	median	q3	qrange

std	nmiss	skew	kurtosis	maxdec=2;

var	time;

class	retailer;

title	‘Description	Of	Process	Time	By	Retailer’;

run;

The	variables	RETAILER,	TIME,	and	AMOUNT	are	read	and	saved
in	the	temporary	data	file,	ALL.	As	in	the	previous	example,	the
VAR	statement	indicates	that	the	MEANS	procedure	will	be	applied
to	the	variable	TIME,	and	the	keywords	define	the	specific	statistics
to	be	produced.	Finally,	the	CLASS	statement	indicates	that	the
statistics	will	be	calculated	separately	for	each	of	the	two	levels	of
the	variable	RETAILER,	namely	retailers	1	and	2,	as	seen	in	Output
2.3	PROC	MEANS	of	Process	Time	for	Retailers	1	and	2	Using	the
CLASS	Statement.
Output	2.3	PROC	MEANS	of	Process	Time	for	Retailers	1	and	2	Using	the	CLASS
Statement

Description	Of	Process	Time	By	Retailer

	

The	MEANS	Procedure

	

Analysis	Variable	:	TIME 	

RETAILER
N
Obs N Mean Maximum Minimum Range

Lower
Quartile Mode Median 	

1 10 10 7.00 9.00 5.00 4.00 6.00 6.00 7.00 	

2 10 10 7.00 11.00 1.00 10.00 6.00 8.00 7.50 	

	

Analysis	Variable	:	TIME

Upper
Quartile

Quartile
Range Std	Dev N	Miss RETAILER

N
Obs Skewness Kurtosis



8.00 2.00 1.33 0 1 10 0.35 -0.75

8.00 2.00 2.67 0 2 10 -1.10 2.51

From	the	output,	you	can	see	that	both	retailers	have	10
observations,	and	average	7	hours	of	processing	times,	with	very
similar	medians	and	7.00	and	7.50	hours,	respectively.	Both
retailers	also	have	similar	characteristics	in	the	middle	50%	of	the
distribution;	in	particular,	each	has	the	middle	50%	of	the	data
ranging	from	6	hours	to	8	hours	with	an	interquartile	range	of	2
hours.	

There	are	some	clear	differences	as	well.	You	can	see	that	retailer	2
has	a	wider	variation	in	processing	time	as	measured	by	the	range
of	10	hours	with	a	minimum	of	1	hour	and	a	maximum	of	11
hours,	and	a	standard	deviation	of	2.67	hours;	whereas	retailer	1
has	a	range	of	4	hours,	with	a	minimum	of	5	hours	and	a	maximum
of	9	hours,	and	a	standard	deviation	of	1.33	hours.	Furthermore,
retailer	1	takes	6	hours	most	of	the	time	as	measured	by	the	mode,
whereas	retailer	2	takes	8	hours.	Finally,	as	mentioned	earlier,	the
processing	time	for	retailer	2	is	negatively	skewed	with	heavy	tails,
as	measured	by	skewness	and	kurtosis,	respectively;	whereas	the
processing	time	for	retailer	1	is	close	to	symmetric	with	relatively
flat	tails.

So	given	this	information,	if	both	retailers	had	the	same	products
available	for	you	to	purchase,	the	consumer	would	more	than	likely
purchase	from	retailer	1	as	opposed	to	retailer	2.	While	the	average
processing	times	are	the	same	at	7	hours,	the	measures	of	variation,
skewness,	and	kurtosis	indicate	that	the	processing	time	for	retailer
1	is	much	more	reliable	and	consistent.	

It	should	be	noted	that	NOBS	(the	number	of	observations)	is
automatically	included	in	the	output,	by	default,	when	the	CLASS
statement	is	used;	therefore,	it	is	not	necessary	to	include	the
keyword,	N,	which	gives	the	same	information.

PROC	MEANS	Using	the	BY	Statement

The	previous	example	illustrated	how	the	analyst	could	produce
summary	information	for	a	numeric	variable	across	multiple	groups
using	the	CLASS	statement.	When	using	the	MEANS	procedure,	the
analyst	could	instead	use	the	BY	statement	to	define	the	unique



groups	on	which	to	analyze	the	numeric	variable.	Suppose	again
that	we	wanted	to	compare	the	two	online	retailers	on	the	numeric
variable,	(X),	time	to	process	an	order.	The	analyst	would	use
Program	2.4	PROC	MEANS	of	Process	Time	for	Retailers	1	and	2
Using	the	BY	Statement.
Program	2.4	PROC	MEANS	of	Process	Time	for	Retailers	1	and	2	Using	the	BY
Statement

libname	sasba	‘c:\sasba\data’;

data	all;

set	sasba.all;

run;

	

	

proc	sort	data=all;

by	retailer;

run;

	

proc	means	data=all

n	mean	max	min	range	q1	mode	median	q3	qrange

std	n	nmiss	skew	kurtosis	maxdec=2;

var	time	;

by	retailer;

title	‘Description	Of	Process	Time	By	Retailer’;

run;

The	variables	RETAILER,	TIME,	and	AMOUNT	are	read	and	saved
in	the	temporary	data	file,	ALL.	As	in	the	previous	example,	the
VAR	statement	indicates	that	the	MEANS	procedure	will	be	applied
to	the	variable	TIME,	and	the	keywords	define	the	specific	statistics
to	be	produced.	Finally,	the	BY	statement	indicates	that	the
statistics	will	be	calculated	separately	for	each	of	the	two	levels	of
the	variable	RETAILER,	namely	retailers	1	and	2,	as	seen	in	Output
2.4	PROC	MEANS	of	Process	Time	for	Retailers	1	and	2	Using	the
BY	Statement.	Note	that	before	using	the	BY	statement	with	any
procedure	(in	this	case,	the	MEANS	procedure),	the	analyst	must
first	include	a	SORT	procedure	with	a	BY	statement	corresponding
to	the	categorical	grouping	variable.	In	other	words,	if	the	analyst
is	running	a	MEANS	procedure	BY	RETAILER,	then	it	must	follow	a



SORT	procedure	BY	RETAILER	as	well.
Output	2.4	PROC	MEANS	of	Process	Time	for	Retailers	1	and	2	Using	the	BY
Statement

Description	Of	Process	Time	By	Retailer

	

The	MEANS	Procedure

	
RETAILER=1

	

Analysis	Variable	:	TIME

N Mean Maximum Minimum Range
Lower
Quartile Mode Median

10 7.00 9.00 5.00 4.00 6.00 6.00 7.00

	

Analysis	Variable	:	TIME

Upper
Quartile

Quartile
Range

Std
Dev

N
Miss Skewness Kurtosis

8.00 2.00 1.33 0 0.35 -0.75

	
RETAILER=2

	

Analysis	Variable	:	TIME

N Mean Maximum Minimum Range
Lower
Quartile Mode Median 	

10 7.00 11.00 1.00 10.00 6.00 8.00 7.50 	

	

	

Analysis	Variable	:	TIME



Upper
Quartile

Quartile
Range

Std
Dev

N
Miss Skewness Kurtosis

8.00 2.00 2.67 0 -1.10 2.51

From	Output	2.4	PROC	MEANS	of	Process	Time	for	Retailers	1	and
2	Using	the	BY	Statement,	you	can	see	that	the	same	information	is
provided	as	that	obtained	using	the	CLASS	statement	by	RETAILER;
however,	the	format	of	the	output	is	slightly	different.	Here	you
can	see	that	the	information	is	provided	in	two	separate	tables,
labeled	as	Retailer	1	and	Retailer	2,	respectively.	Also	notice	that
the	NOBS	is	not	included	because	it	is	the	default	for	the	CLASS
statement,	but	not	for	the	BY	statement.	Again,	this	information
can	be	used	to	decide	which	online	retailer	performed	best	and
more	consistently.

The	analyst	can	further	customize	the	output	if	the	order	of	the
class	is	important	by	including	the	DESCENDING	option	in	the	BY
statement,	as	seen	in	the	partial	program,	Program	2.5	Analysis	of
Process	Time	for	Retailers	1	and	2	Using	BY	DESCENDING.
Program	2.5	Analysis	of	Process	Time	for	Retailers	1	and	2	Using	BY	DESCENDING

by	descending	retailer;

In	this	case,	the	summary	statistics	are	printed	by	retailer,	starting
with	the	largest	value,	descending	in	order	until	all	classes	are
printed,	as	illustrated	in	Output	2.5	Analysis	of	Process	Time	for
Retailers	1	and	2	Using	BY	DESCENDING.
Output	2.5	Analysis	of	Process	Time	For	Retailers	1	and	2	Using	BY	DESCENDING

Description	Of	Process	Time	By	Retailer

	

The	MEANS	Procedure

	
RETAILER=2

	

Analysis	Variable	:	TIME

N Mean Maximum Minimum Range
Lower
Quartile Mode Median



10 7.00 11.00 1.00 10.00 6.00 8.00 7.50

	

	

Analysis	Variable	:	TIME

Upper
Quartile

Quartile
Range

Std
Dev

N
Miss Skewness Kurtosis

8.00 2.00 2.67 0 -1.10 2.51

	

	
RETAILER=1

	

Analysis	Variable	:	TIME

N Mean Maximum Minimum Range
Lower
Quartile Mode Median

10 7.00 9.00 5.00 4.00 6.00 6.00 7.00

	

	

Analysis	Variable	:	TIME

Upper
Quartile

Quartile
Range

Std
Dev

N
Miss Skewness Kurtosis

8.00 2.00 1.33 0 0.35 -0.75

	

Multiple	Classes	and	Customizing	Output	Using	the
WAYS	and	TYPES	Statements
There	may	be	times	when	the	analyst	wants	to	investigate	a
numeric	variable	across	more	than	one	group	and	subsequent
subgroups.	For	example,	you	may	want	to	compare	the	appraised
home	values	across	cities	or	whether	home	values	differ	between
new	construction	and	existing	dwellings,	or	a	combination	of	the



two	groups	or	classes;	for	example,	you	may	be	interested	in	how
values	of	new	homes	in	one	city	compare	to	values	of	existing
homes	in	another	city.	In	fact,	there	may	be	certain	combinations
of	groups,	sometimes	referred	to	as	interactions,	that	are	of	more
interest	and	the	analyst	may	want	to	restrict	reports	to	include	only
that	pertinent	information.	This	section	will	cover	ways	to
investigate	differences	in	means	across	various	combinations,	or
interactions,	of	groups.

Using	Multiple	Classes	in	the	CLASS	Statement

To	illustrate,	consider	the	Diabetic	Care	Management	Case
introduced	in	Chapter	1,	“Statistics	and	Making	Sense	of	Our
World,”	and	specifically	the	numeric	variable	KETONES.	Ordinarily
the	body	gets	energy	from	carbohydrates;	however,	when	the	body
is	unable	to	use	glucose	properly,	it	must	instead	burn	fat	for
energy	and	in	the	process	produces	ketones	as	well.	So	elevated
ketones	may	be	associated	with	diabetes,	especially	when	a
person’s	diabetes	is	uncontrolled,	and	is,	in	fact,	more	common	for
those	with	Type	I	diabetes.	Suppose	the	analyst	is	interested	in
seeing	how	ketones	differ	when	comparing	those	patients	with
controlled	diabetes	to	those	with	uncontrolled	diabetes
(CONTROLLED_DIABETIC),	by	gender	(GENDER),	and	by	whether
or	not	the	patient	has	renal	disease	(RENAL_DISEASE),	or	any
interaction	to	see	what	factors	may	be	associated	with	elevated
ketones.	The	analyst	would	use	Program	2.6	Three-Way	Analysis	of
Ketones	by	Diabetes	Status,	Renal	Disease,	and	Gender.
Program	2.6	Three-Way	Analysis	of	Ketones	by	Diabetes	Status,	Renal	Disease,	and
Gender

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	means	data=patient



mean	std	max	min	median	nmiss	maxdec=2;

var	ketones;

class	controlled_diabetic	renal_disease	gender;

format	renal_disease	controlled_diabetic	yesno.;

title	‘Ketones	By	Gender,	Renal	Disease,	and	Diabetes	Status’;

run;

The	code	provided	here	is	identical	to	previous	examples	with	the
exception	of	having	multiple	variables	referenced	in	the	CLASS
statement	so	that	the	numeric	variable,	KETONES,	can	be	analyzed
across	multiple	groups.	Data	is	read	from	the	permanent	data	set,
DIAB200	and	placed	in	the	temporary	data	set,	PATIENT.	The
MEANS	procedure	with	the	VAR	statement	and	options	requests
specific	statistics	on	the	numeric	variable,	KETONES.

By	default,	all	variables	in	the	CLASS	statement	are	used	for
subgrouping	the	data,	so	with	three	class	variables,	we	have	what
is	referred	to	as	a	3-way	analysis.	In	our	example,	with	2	levels	of
each	variable,	there	are	8	possible	groups	on	which	to	compare
ketones	(2	CONTROLLED_DIABETIC	groups	crossed	with	2
RENAL_DISEASE	groups	crossed	with	2	GENDERs).	Notice	that	the
order	of	the	class	variables	determines	the	order	of	the	columns	in
the	output,	namely,	CONTROLLED_DIABETIC	first	followed	by
RENAL_DISEASE	and	GENDER.

From	the	output	in	Output	2.6	Three-Way	Analysis	of	Ketones	by
Diabetes	Status,	Renal	Disease,	and	Gender,	you	can	see	that	the
200	patients	have	been	placed	into	seven	subgroups,	defined	by
membership	based	upon	the	interaction	of	the	three	class	variables.
Remember	that	with	three	class	variables,	we	expected	eight
groups;	however,	we	only	see	seven	because	there	were	no	female
(GENDER=F)	patients	with	controlled	diabetes
(CONTROLLED_DIABETIC=Yes)	and	renal	disease
(RENAL_DISEASE=Yes).

	

Output	2.6	Three-Way	Analysis	of	Ketones	by	Diabetes	Status,	Renal	Disease,	and
Gender

Ketones	By	Gender,	Renal	Disease,	and	Diabetes	Status

	



The	MEANS	Procedure

	

Analysis	Variable	:	Ketones

CONTROLLED_DIABETIC RENAL_DISEASE GENDER
N
Obs Mean

Std
Dev Maximum Minimum

No No F 52 15.19 9.24 49.65

M 66 15.34 11.96 61.64

Yes F 9 22.83 14.36 48.36

M 9 11.19 4.97 17.94

Yes No F 30 5.01 8.27 26.37

M 32 6.45 10.73 35.36

Yes M 2 12.35 17.38 24.64

From	Output	2.6	Three-Way	Analysis	of	Ketones	by	Diabetes	Status,
Renal	Disease,	and	Gender,	generally	speaking,	those	with
uncontrolled	diabetes	(found	in	the	first	four	lines	of	the	output)
have	higher	ketones,	with	the	exception	of	those	nine	males	with
renal	disease,	having	a	mean	ketone	value	of	11.19	than	those	with
controlled	diabetes	(the	last	three	lines	of	output).	Most	of	the
patients	have	uncontrolled	diabetes	and	no	renal	disease	(the	first
two	lines	of	output)	and	are	almost	equally	represented	by	both
males	and	females.	The	largest	mean	value	for	ketones	is	22.83	and
represents	the	subgroup	of	nine	female	patients	with	uncontrolled
diabetes	and	renal	disease;	whereas	the	lowest	mean	ketone	value
of	5.01	is	for	the	30	female	patients	with	controlled	diabetes	and
no	renal	disease.	In	fact,	because	males	with	controlled	diabetes,	no
renal	disease,	and	a	mean	ketone	value	of	6.45	are	very	similar	to
those	same	females,	it	may	be	useful	to	ignore	gender	for	that
subgroup.	However,	gender	is	important	when	comparing	ketones
of	all	who	have	uncontrolled	diabetes	and	renal	disease,	where
females	have	a	mean	ketone	value	of	22.83,	twice	that	of	males
with	a	mean	ketone	value	of	11.19.

The	WAYS	Statement	for	Multiple	Classes

Now	suppose	that	the	analyst	in	interested	in	differences	in	ketones
using	only	2-way	interactions,	or	analyses.	In	other	words,	you
would	like	to	create	subgroups	by	crossing	just	two	class	variables.



In	order	to	do	that,	the	analysts	would	use	the	WAYS	statement
within	the	MEANS	procedures	to	define	the	n-way	analyses.	For
example,	Program	2.7	Two-Way	Analysis	of	Ketones	by	Diabetes
Status,	Renal	Disease,	and	Gender	simply	adds	the	WAYS	statement
to	the	previous	code	to	restrict	the	number	of	subgroups.
Program	2.7	Two-Way	Analysis	of	Ketones	by	Diabetes	Status,	Renal	Disease,	and
Gender

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	means	data=patient

mean	std	max	min	median	nmiss	maxdec=2;

var	ketones;

class	controlled_diabetic	renal_disease	gender;

ways	2;

format	renal_disease	controlled_diabetic	yesno.;

title	‘Ketones	For	2-Way	Combinations	Of	Groups’;

run;

In	general,	the	WAYS	statement	includes	a	list	of	numbers	which
refer	to	the	requested	‘ways’	in	which	the	groups	are	to	be	crossed.
So	Program	2.7	Two-Way	Analysis	of	Ketones	by	Diabetes	Status,
Renal	Disease,	and	Gender	above	requests	that	the	numeric
variable,	KETONES,	be	analyzed	using	all	possible	unique	2-way
interactions	of	the	variables	referenced	in	the	CLASS	statement.
Output	2.7	Two-Way	Analysis	of	Ketones	by	Diabetes	Status,	Renal	Disease,	and
Gender

Ketones	For	2-Way	Combinations	Of	Groups

	

The	MEANS	Procedure



	

Analysis	Variable	:	Ketones

RENAL_DISEASE GENDER
N
Obs Mean Std	Dev Maximum Minimum Median

N
Miss

No F 82 11.47 10.13 49.65 0.01 11.10 0

M 98 12.44 12.26 61.64 0.00 12.44 0

Yes F 9 22.83 14.36 48.36 8.73 18.63 0

M 11 11.40 7.09 24.64 0.04 11.88 0

	

Analysis	Variable	:	Ketones

CONTROLLED_DIABETIC GENDER
N
Obs Mean

Std
Dev Maximum Minimum Median

N
Miss

No F 61 16.32 10.37 49.65 0.01 14.20

M 75 14.85 11.41 61.64 0.02 13.95

Yes F 30 5.01 8.27 26.37 0.01 0.25

M 34 6.80 10.92 35.36 0.00 0.22

	

Analysis	Variable	:	Ketones

CONTROLLED_DIABETIC RENAL_DISEASE
N
Obs Mean

Std
Dev Maximum Minimum Median

No No 118 15.28 10.80 61.64 0.01

Yes 18 17.01 12.03 48.36 0.04

Yes No 62 5.76 9.57 35.36 0.00

Yes 2 12.35 17.38 24.64 0.06

In	Output	2.7	Two-Way	Analysis	of	Ketones	by	Diabetes	Status,
Renal	Disease,	and	Gender,	notice	that	the	first	two-way	interaction
to	be	provided	in	the	output	is	RENAL	DISEASE	by	GENDER,	which
is	specifically	determined	by	the	order	in	which	the	CLASS
variables	are	listed,	namely	the	second-to-last	CLASS	variable	and
the	right-most	CLASS	variable.	The	next	set	of	interactions	is
determined	by	the	third-to-last	CLASS	variable,



CONTROLLED_DIABETIC,	and	the	right-most	class	variable,
GENDER.		Finally,	the	last	set	of	interactions	is	determined	by	two
left-most	CLASS	variables,	namely,		CONTROLLED_DIABETIC	and
RENAL_DISEASE.
In	terms	of	the	order	of	the	tables,	for	the	general	CLASS	statement,
with	the	following	WAYS	statement,	we	have
class	a	b	c;

ways	2;

The	order	in	which	the	tables	are	printed	will	be	B*C,	A*C,	and
A*B.

Finally,	the	WAYS	statement	may	have	a	list	of	numbers	as	follows:
proc	means	data=patient

mean	std	max	min	median	nmiss	maxdec=2;

var	ketones;

class	controlled_diabetic	renal_disease	gender;

ways	2	3;

	

In	this	case,	the	output	would	include	all	two-way	interactions	and
the	one	three-way	interaction	as	well.		This	single	WAYS	statement
would	give	the	analyst	the	output	found	in	both	Output	2.6	Three-
Way	Analysis	of	Ketones	by	Diabetes	Status,	Renal	Disease,	and
Gender	and	Output	2.7	Two-Way	Analysis	of	Ketones	by	Diabetes
Status,	Renal	Disease,	and	Gender	(the	two	previous	outputs)
combined.

The	TYPES	Statement	for	Multiple	Classes

When	using	a	MEANS	procedure	and	defining	n	classes,	the	default
limits	the	output	to	the	largest	n-way	analysis,	as	seen	in	Output
2.6	Three-Way	Analysis	of	Ketones	by	Diabetes	Status,	Renal
Disease,	and	Gender.	Recall	also	that	the	WAYS	statement	provides
a	way	to	define	all	desired	n-way	analyses.	It	may	be,	however,
that	the	analyst	prefers	one	or	more	specific	types.	In	order	to	do
that,	the	TYPES	statement	can	be	used,	as	seen	in	Program	2.8	One-
and	Two-Way	Analyses	of	Ketones	by	Diabetes	Status,	Renal
Disease,	and	Gender.
Program	2.8	One-	and	Two-Way	Analyses	of	Ketones	by	Diabetes	Status,	Renal



Disease,	and	Gender

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	means	data=patient

mean	std	max	min	median	nmiss	maxdec=2;

var	ketones;

class	gender	renal_disease	controlled_diabetic;

types	controlled_diabetic	controlled_diabetic*(gender
renal_disease);

format	renal_disease	controlled_diabetic	yesno.;

title	‘Ketones	For	Diabetes	Status	And	With	Gender	Or	Renal
Disease’;

run;

From	the	TYPES	statement,	the	analyst	is	requesting	that	summary
statistics	be	supplied	for	the	numeric	variable,	KETONES,	first	by
CONTROLLED_DIABETIC,	because	it	appears	in	the	statement
first.		The	asterisk	(*)	and	parentheses	both	indicate	that	summary
statistics	will	be	provided	for	CONTROLLED_DIABETIC	by
RENAL_DISEASE,	and	then	CONTROLLED_DIABETIC	by	GENDER,
as	illustrated	in	Output	2.8	One-	and	Two-Way	Analyses	of	Ketones
by	Diabetes	Status,	Renal	Disease,	and	Gender.
Output	2.8	One-	and	Two-Way	Analyses	of	Ketones	by	Diabetes	Status,	Renal
Disease,	and	Gender

Ketones	For	Diabetes	Status	And	With	Gender	Or	Renal	Disease

	

The	MEANS	Procedure

	



Analysis	Variable	:	Ketones

CONTROLLED_DIABETIC
N
Obs Mean Std	Dev Maximum Minimum Median

N
Miss

No 136 15.51 10.94 61.64 0.01 14.07 0

Yes 64 5.96 9.74 35.36 0.00 0.24 0

	

Analysis	Variable	:	Ketones

RENAL_DISEASE CONTROLLED_DIABETIC
N
Obs Mean

Std
Dev Maximum Minimum Median

No No 118 15.28 10.80 61.64 0.01 14.21

Yes 62 5.76 9.57 35.36 0.00

Yes No 18 17.01 12.03 48.36 0.04 13.22

Yes 2 12.35 17.38 24.64 0.06 12.35

	

Analysis	Variable	:	Ketones

GENDER CONTROLLED_DIABETIC
N
Obs Mean

Std
Dev Maximum Minimum Median

N
Miss

F No 61 16.32 10.37 49.65 0.01 14.20

Yes 30 5.01 8.27 26.37 0.01 0.25

M No 75 14.85 11.41 61.64 0.02 13.95

Yes 34 6.80 10.92 35.36 0.00 0.22

	

Saving	Your	Results	Using	the	OUTPUT	Statement
So	far,	the	results	of	the	MEANS	procedure	have	been	displayed	in
the	output	window	by	default.	However,	there	are	some	situations
where	the	analyst	may	want	to	save	the	results	of	the	analyses	to	a
new	temporary	or	permanent	data	set	for	future	use.	In	this	case,
the	analyst	would	add	the	OUTPUT	statement	to	the	MEANS
procedure.	Let’s	consider	the	simplest	example	where	the	analyst	is
interested	in	the	descriptive	statistics	on	the	variable,	KETONES,
for	all	200	patients	in	the	Diabetic	Care	Management	Case,
Program	2.9	Ketones	for	the	Diabetic	Care	Management	Case.



Program	2.9	Ketones	for	the	Diabetic	Care	Management	Case

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	means	data=patient	noprint;

var	ketones;

output	out=sasba.ketonesummary	mean=average_ketone
std=std_ketone

min=min_ketone	max=max_ketone;

run;

	

proc	print	data=sasba.ketonesummary;

title	‘Average	Ketones	For	The	Diabetic	Care	Management	Case’;

run;

First,	it	should	be	noted	that,	as	in	previous	examples,	the	code
requests	that	SAS	summarize	the	variable,	KETONES.	In	order	to
save	the	results,	the	OUTPUT	OUT=	statement	is	included,	along
with	keywords	which	define	the	specific	statistics	to	be	saved,
namely,	MEAN,	STD,	MIN,	and	MAX.	Also	note	that	the	statistics
are	saved	in	the	permanent	SAS	data	set	called	KETONESUMMARY
in	the	directory,	C:\SASBA\HC.	Finally,	the	analyst	may	want	to
see	the	contents	of	the	final	data	set	by	using	the	accompanying
PRINT	procedure,	and	accordingly,	the	NOPRINT	option	is	included
in	the	MEANS	procedure	so	that	the	output	is	not	duplicated,	as
illustrated	in	Output	2.9	Ketones	for	the	Diabetic	Care	Management
Case.
Output	2.9	Ketones	for	the	Diabetic	Care	Management	Case

Average	Ketones	For	The	Diabetic	Care	Management	Case

Obs _TYPE_ _FREQ_ average_ketone std_ketone min_ketone max_ketone

1 0 200 12.45 11.45 0.00 61.64

From	the	output,	we	can	see	that	the	200	patients	have	an	average
ketone	value	of	12.45,	with	a	standard	deviation	of	11.45,	a
minimum	of	0.00,	and	a	maximum	of	61.64.	It	should	be	noted	that
SAS	creates	two	new	variables,	_TYPE_	and	_FREQ_.		The	_TYPE_



variable	has	a	value	of	‘0’	when	the	statistics	provided	are	for	the
entire	data	set;	the	FREQ	variable	indicates	the	sample	size
associated	with	the	output	as	well.

The	CLASS	Statement	and	the	_TYPE_	and	_FREQ_	Variables

As	stated	previously,	the	analyst	will	more	than	likely	be	interested
in	describing	how	a	numeric	variable	varies	across	various	groups,
or	classes.	When	the	results	of	this	analysis	are	saved	to	an	external
data	set,	whether	temporary	or	permanent,	it	is	imperative	that	the
analyst	understand	the	meaning	of	both	the	TYPE_and
FREQ_variables	when	interpreting	the	results.	Let’s	consider	an
analysis	of	KETONES	across	the	class,	CONTROLLED_DIABETIC.
The

	

following	code	is	identical	to	the	previous	code	with	the	exception
of	the	CLASS	statement	and	the	syntax	for	creating	a	FORMAT	for
the	class	variable:
Program	2.10	Ketones	by	the	Class	Controlled_Diabetic

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	means	data=patient	noprint;

var	ketones;

class	controlled_diabetic;

output	out=sasba.ketonesummary	mean=average_ketone
std=std_ketone

min=min_ketone	max=max_ketone;

run;

	

proc	print	data=sasba.ketonesummary;

format	controlled_diabetic	yesno.;



title	‘Ketones	By	Diabetes	Status’;

run;

From	Output	2.10	Ketones	by	the	Class	Controlled_Diabetic,	you
can	see	that	the	MEANS	procedure	produces	two	summaries,
namely,	an	analysis	of	all	observations	as	indicated	by	_TYPE_=0
and	an	analysis	of	the	observations	by	class	as	indicated	by
_TYPE_=1.	As	indicated	earlier,	the	line	associated	with	TYPE=0	is
associated	with	statistics	for	all	200	patients;	the	two	lines	with
_TYPE_=1	provided	summary	statistics	for	the	two	levels	of	the
class	variable	CONTROLLED_DIABETIC.	In	particular,	there	are	136
patients	with	uncontrolled	diabetes,	as	defined	by	FREQ,	having	a
mean	ketone	value	of	15.51,	with	a	standard	deviation	of	10.94,	a
minimum	of	0.01,	and	a	maximum	of	61.64,	as	compared	to	64
patients	with	controlled	diabetes	having	a	mean	ketone	value	of
5.96,	with	a	standard	deviation	of	9.74,	a	minimum	of	0.00,	and	a
maximum	of	36.36.	Finally,	it	should	be	noted	that	the	_FREQ_
values	for	fixed	_TYPE_	should	always	add	up	to	the	total	size.	For
example,	for	_TYPE_=1,	the	two	frequencies,	136	and	64,	add	up	to
a	total	of	200,	representing	the	total	sample	size.
Output	2.10	Ketones	by	the	Class	Controlled_Diabetic

Ketones	By	Diabetes	Status

	

Obs CONTROLLED_DIABETIC _TYPE_ _FREQ_ average_ketone std_ketone

1 . 0 200 12.45 11.45

2 No 1 136 15.51 10.94

3 Yes 1 64 5.96 9.74

	

	

Obs CONTROLLED_DIABETIC min_ketone max_ketone

1 . 0.00 61.64

2 No 0.01 61.64

3 Yes 0.00 35.36

Now	suppose	we	want	to	explore	ketones	across	a	combination	of



two	classes	by	adding	a	second	class,	RENAL_DISEASE.	The	analyst
would	simply	add	the	variable,	RENAL_DISEASE,	to	variable	list	of
the	CLASS	statement	to	the	previous	code	to	get	the	following:
Program	2.11	Ketones	by	the	Classes	Controlled_Diabetic	and	Renal_Disease

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	means	data=patient	noprint;

var	ketones;

class	controlled_diabetic	renal_disease;

output	out=sasba.ketonesummary	mean=average_ketone
std=std_ketone

min=min_ketone	max=max_ketone;

run;

	

proc	print	data=sasba.ketonesummary;

format	controlled_diabetic	renal_disease	yesno.;

title	‘Ketones	By	Diabetes	Status	And	Renal	Disease’;

run;

In	Output	2.11	Ketones	by	the	Classes	Controlled_Diabetic	and
Renal_Disease,	you	can	see	that	the	MEANS	procedure	now
produces	four	summaries,	namely,	an	analysis	of	all	observations	as
indicated	by	_TYPE_=0,	an	analysis	of	the	observations	by	the
second	class	(RENAL_DISEASE)	as	indicated	by	TYPE_=1,	an
analysis	of	the	observations	by	the	first	class
(CONTROLLED_DIABETIC)	as	indicated	by	_TYPE_=2,	and	the
interaction	of	both	classes	as	indicated	by	_TYPE_=3.	Again,	note
that	the	_FREQ_	values	for	a	fixed	_TYPE_	should	add	up	to	the	total
sample	size;	for	example,	for	_TYPE_	=	3,	the	frequencies	(118,	19,
62,	and	2)	add	up	to	200,	the	total	number	of	patients	in	the	data
set.



Output	2.11	Ketones	by	the	Classes	Controlled_Diabetic	and	Renal_Disease

Ketones	By	Diabetes	Status	And	Renal	Disease

	

Obs CONTROLLED_DIABETIC RENAL_DISEASE _TYPE_ _FREQ_ average_ketone

1 . . 0 200 12.45

2 . No 1 180 12.00

3 . Yes 1 20 16.54

4 No . 2 136 15.51

5 Yes . 2 64 5.96

6 No No 3 118 15.28

7 No Yes 3 18 17.01

8 Yes No 3 62 5.76

9 Yes Yes 3 2 12.35

	

Obs std_ketone min_ketone max_ketone

1 11.45 0.00 61.64

2 11.32 0.00 61.64

3 12.14 0.04 48.36

4 10.94 0.01 61.64

5 9.74 0.00 35.36

6 10.80 0.01 61.64

7 12.03 0.04 48.36

8 9.57 0.00 35.36

9 17.38 0.06 24.64

	

In	fact,	when	two	classes,	A	and	B,	are	used	in	the	CLASS
statement,	the	number	of	observations	created	in	the	permanent
data	set,	SASBA.KETONESUMMARY,	is	equal	to

1+a+b+a*b

where	a	=	the	number	of	levels	of	class	A	and	b	=	the	number	of



levels	of	class	B.	So	for	example,	where	CONTROLLED_DIABETIC
has	2	levels	(a=2)	and	RENAL_DISEASE	has	2	levels	(b=2),	then
the	number	of	observations	is	equal	to	1	+	2	+	2	+	2*2	=	9,	as
indicated	in	the	log	file	found	in	SAS	Log	2.1	Ketone	Analysis	by
Two	Classes.
SAS	Log	2.1	Ketone	Analysis	by	Two	Classes

NOTE:	SAS	initialization	used:

real	time											1.81	seconds

cpu	time												1.54	seconds

	

1				libname	sasba	‘c:\sasba\hc’;

NOTE:	Libref	SASBA	was	successfully	assigned	as	follows:

Engine:								V9

Physical	Name:	c:\sasba\hc

2				data	patient;

3							set	sasba.diab200;

4				run;

	

NOTE:	There	were	200	observations	read	from	the	data	set
SASBA.DIAB200.

NOTE:	The	data	set	WORK.PATIENT	has	200	observations	and	125
variables.

NOTE:	DATA	statement	used	(Total	process	time):

real	time											0.02	seconds

cpu	time												0.00	seconds

	

5

6				proc	format;

7							value	yesno	0=No	1=Yes;

NOTE:	Format	YESNO	has	been	output.

8				run;

	

NOTE:	PROCEDURE	FORMAT	used	(Total	process	time):

real	time											0.02	seconds

cpu	time												0.01	seconds

	

9



10			proc	means	data=patient	noprint;

11						var	ketones;

12						class	controlled_diabetic	renal_disease;

13						output	out=sasba.ketonesummary	mean=average_ketone
std=std_ketone

14																	min=min_ketone	max=max_ketone;

15			run;

	

NOTE:	There	were	200	observations	read	from	the	data	set
WORK.PATIENT.

NOTE:	The	data	set	SASBA.KETONESUMMARY	has	9	observations	and	8
variables.

NOTE:	PROCEDURE	MEANS	used	(Total	process	time):

real	time											0.03	seconds

cpu	time												0.04	seconds

	

16

17			proc	print	data=sasba.ketonesummary;

NOTE:	Writing	HTML	Body	file:	sashtml.htm

18						format	controlled_diabetic	renal_disease	yesno.;

19						title	‘Ketones	By	Diabetes	Status	And	Renal	Disease’;

20			run;

	

NOTE:	There	were	9	observations	read	from	the	data	set
SASBA.KETONESUMMARY.

NOTE:	PROCEDURE	PRINT	used	(Total	process	time):

real	time											0.44	seconds

cpu	time												0.31	seconds

Finally,	let’s	assume	the	analyst	is	interested	in	describing	the
numeric	variable,	KETONES,	across	three	classes,	CONTROLLED
DIABETIC,	RENAL_DISEASE,	and	GENDER,	by	adding	the	third
class	variable,	GENDER,	to	the	previous	code	to	get	Program	2.12
Ketones	by	the	Classes	Controlled_Diabetic,	Renal_Disease,	and
Gender.
Program	2.12	Ketones	by	the	Classes	Controlled_Diabetic,	Renal_Disease,	and
Gender

libname	sasba	‘c:\sasba\hc’;

data	patient;



set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	means	data=patient	noprint;

var	ketones;

class	controlled_diabetic	renal_disease	gender;

output	out=sasba.ketonesummary	mean=	std=	min=	max=	/
autoname;

run;

	

proc	print	data=sasba.ketonesummary;

format	controlled_diabetic	renal_disease	yesno.;

title	‘Ketones	By	Diabetes	Status,	Renal	Disease,	And	Gender’;

run;

Further	inspection	of	the	code	illustrates	an	alternative	to	defining
the	statistics	of	interest.		In	particular	the	statistics	keywords	are
included	with	the	AUTONAME	option.	As	seen	in	Output	2.12
Ketones	by	the	Classes	Controlled_Diabetic,	Renal_Disease,	and
Gender,	each	of	the	desired	statistics	names	are	defined	using
‘Ketones_’	as	the	prefix.
Output	2.12	Ketones	by	the	Classes	Controlled_Diabetic,	Renal_Disease,	and	Gender

Ketones	By	Diabetes	Status,	Renal	Disease,	And	Gender

Obs CONTROLLED_DIABETIC RENAL_DISEASE GENDER _TYPE_ _FREQ_ Ketones_Mean

1 . . 	 0 200 12.45

2 . . F 1 91 12.59

3 . . M 1 109 12.34

4 . No 	 2 180 12.00

5 . Yes 	 2 20 16.54

6 . No F 3 82 11.47

7 . No M 3 98 12.44

8 . Yes F 3 9 22.83

9 . Yes M 3 11 11.40



10 No . 	 4 136 15.51

11 Yes . 	 4 64

12 No . F 5 61 16.32

13 No . M 5 75 14.85

14 Yes . F 5 30

15 Yes . M 5 34

16 No No 	 6 118 15.28

17 No Yes 	 6 18 17.01

18 Yes No 	 6 62

19 Yes Yes 	 6 2 12.35

20 No No F 7 52 15.19

21 No No M 7 66 15.34

22 No Yes F 7 9 22.83

23 No Yes M 7 9 11.19

24 Yes No F 7 30

25 Yes No M 7 32

26 Yes Yes M 7 2 12.35

	

Obs Ketones_StdDev Ketones_Min Ketones_Max

1 11.45 0.00 61.64

2 11.06 0.01 49.65

3 11.82 0.00 61.64

4 11.32 0.00 61.64

5 12.14 0.04 48.36

6 10.13 0.01 49.65

7 12.26 0.00 61.64

8 14.36 8.73 48.36

9 7.09 0.04 24.64

10 10.94 0.01 61.64

11 9.74 0.00 35.36

12 10.37 0.01 49.65

13 11.41 0.02 61.64



14 8.27 0.01 26.37

15 10.92 0.00 35.36

16 10.80 0.01 61.64

17 12.03 0.04 48.36

18 9.57 0.00 35.36

19 17.38 0.06 24.64

20 9.24 0.01 49.65

21 11.96 0.02 61.64

22 14.36 8.73 48.36

23 4.97 0.04 17.94

24 8.27 0.01 26.37

25 10.73 0.00 35.36

26 17.38 0.06 24.64

From	the	output,	you	can	also	see	that	the	MEANS	procedure	now
produces	eight	summaries,	as	described	in	Table	2.8	TYPE	Values
and	the	Subgroups	Produced	by	Three-Way	Analyses.
Table	2.8	TYPE	Values	and	the	Subgroups	Produced	by	Three-Way	Analyses

_TYPE_ Patients	are	Summarized	by:

0 across	all	groups

1 GENDER

2 RENAL_DISEASE

3 RENAL_DISEASE	and	GENDER

4 CONTROLLED_DIABETIC

5 CONTROLLED_DIABETIC	and	GENDER

6 CONTROLLED_DIABETIC	and	RENAL_DISEASE

7 CONTROLLED_DIABETIC,	RENAL_DISEASE,	and	GENDER

In	general,	when	‘c’	class	variables	are	used	in	the	CLASS
statement,	2c	different	summaries	are	generated	by	the	MEANS
procedure.	Recall	when	no	CLASS	statement	is	used,	there	is	20		=



1	summary	as	found	in	Output	2.9	Ketones	for	the	Diabetic	Care
Management	Case;	when	one	class	variable,
CONTROLLED_DIABETIC,	is	used,	21		=	2	summaries	are	provided
as	found	in	Output	2.10	Ketones	by	the	Class	Controlled_Diabetic;
when	two	class	variables,	CONTROLLED_DIABETIC	and
RENAL_DISEASE,	are	used,	22	=	4	summaries	are	provided	as
found	in	Output	2.11	Ketones	by	the	Classes	Controlled_Diabetic
and	Renal_Disease;	when	three	class	variables	are	used,	23	=	8
summaries	are	provided	as	found	in	Output	2.12	Ketones	by	the
Classes	Controlled_Diabetic,	Renal_Disease,	and	Gender.
Consequently,	if	the	analyst	had	used	four	class	variables,	24	=16
summaries	would	have	been	generated.	

Finally,	it	should	be	noted	that	_TYPE_	=	2c	represents	all	one-way
analysis	results;	in	other	words,	for	c	=	0,	1,	and	2,	the	respective
TYPES	1,	2,	and	4,	provide	summary	statistics	for	the	one-way
analyses,	GENDER,	RENAL_DISEASE,	and	CONTROLLED_DIABETIC,
respectively.

Now,	when	three	classes,	A,	B,	and	C	are	used	in	the	CLASS
statement,	the	number	of	observations	created	in	the	permanent
data	set,	SASBA.KETONESUMMARY,	is	equal	to

1	+	a	+	b	+	a*b	+	c	+	a*c	+	b*c	+	a*b*c

where	a	=	the	number	of	levels	of	class	A,	and	b	=	the	number	of
levels	of	class	B.	So	for	example,	where	CONTROLLED_DIABETIC
has	2	levels	(a=2),	RENAL_DISEASE	has	2	levels	(b=2),	and
GENDER	has	2	levels	(c=2)	then	the	number	of	observations	is
equal	to	1	+	2	+	2	+	2*2	+	2	+	2*2	+	2*2	+	2*2*2	=
27.		However,	both	Output	2.12	Ketones	by	the	Classes
Controlled_Diabetic,	Renal_Disease,	and	Gender	and	SAS	Log	2.2
Ketone	Analysis	by	the	Classes	Controlled_Diabetic,	Renal_Disease,
and	Gender	indicate	instead	that	there	are	only	26	observations;
remember	for	our	data	set	there	are	no	observations	that	fall	into
the	three-way	analysis	(females,	having	controlled	diabetes	and
having	renal	disease).
SAS	Log	2.2	Ketone	Analysis	by	the	Classes	Controlled_Diabetic,	Renal_Disease,	and
Gender

NOTE:	SAS	initialization	used:



real	time											1.98	seconds

cpu	time												1.79	seconds

	

1				libname	sasba	‘c:\sasba\hc’;

NOTE:	Libref	SASBA	was	successfully	assigned	as	follows:

Engine:								V9

Physical	Name:	c:\sasba\hc

2				data	patient;

3							set	sasba.diab200;

4				run;

	

NOTE:	There	were	200	observations	read	from	the	data	set
SASBA.DIAB200.

NOTE:	The	data	set	WORK.PATIENT	has	200	observations	and	125
variables.

NOTE:	DATA	statement	used	(Total	process	time):

real	time											0.02	seconds

cpu	time												0.01	seconds

	

5

6				proc	format;

7							value	yesno	0=No	1=Yes;

NOTE:	Format	YESNO	has	been	output.

8				run;

	

NOTE:	PROCEDURE	FORMAT	used	(Total	process	time):

real	time											0.02	seconds

cpu	time												0.00	seconds

	

9

10			proc	means	data=patient	noprint;

11						var	ketones;

12						class	controlled_diabetic	renal_disease	gender;

13						output	out=sasba.ketonesummary	mean=	std=	min=	max=	/
autoname;

14			run;

	

NOTE:	There	were	200	observations	read	from	the	data	set
WORK.PATIENT.



NOTE:	The	data	set	SASBA.KETONESUMMARY	has	26	observations	and	9
variables.

NOTE:	PROCEDURE	MEANS	used	(Total	process	time):

real	time											0.03	seconds

cpu	time												0.01	seconds

	

15

16			proc	print	data=sasba.ketonesummary;

NOTE:	Writing	HTML	Body	file:	sashtml.htm

17						format	controlled_diabetic	renal_disease	yesno.;

18						title	‘Ketones	By	Diabetes	Status,	Renal	Disease,	And
Gender’;

19			run;

	

NOTE:	There	were	26	observations	read	from	the	data	set
SASBA.KETONESUMMARY.

NOTE:	PROCEDURE	PRINT	used	(Total	process	time):

real	time											0.48	seconds

cpu	time												0.34	seconds

	

Table	2.9	TYPE,	WAYS,	Subgroups,	and	Number	of	Observations
for	One-,	Two-,	and	Three-Way	Analyses	(SAS	Institute	Inc.,	2011)
illustrates	the	values	of	the	WAY	and	TYPE	variables	when	the
MEANS	procedure	is	applied	to	an	analysis	variable	using	three
CLASS	variables,	A,	B,	and	C.	The	figure	also	includes	a	description
of	the	subgroups	generated	for	n-way	analysis,	along	with	the
number	of	observations	by	_TYPE_,		_WAY_,	and	in	the	overall
analysis.
Table	2.9	TYPE,	WAYS,	Subgroups,	and	Number	of	Observations	for	One-,	Two-,	and
Three-Way	Analyses



The	CLASS	Statement	and	Filtering	the	Output	Data	Set

Suppose	now	that	the	analyst	was	interested	in	looking	at
KETONES	across	four	class	variables	but	wanted	to	see	summary
results	for	the	one-way	analyses	only.	The	analyst	would	include
the	CLASS	statement	below	which	defines	the	four	classes,	TYPE_2,
CONTROLLED_DIABETIC,	RENAL	DISEASE,	and	GENDER.	This
would	create	24	=	16	possible	types,	where	the	one-way	analyses
are	represented	by	_TYPES_	=	2c,	for	c	=	0,	1,	2,	and	3,	or	_TYPES_
equal	to	1,	2,	4,	and	8.	So,	while	the	MEANS	procedure	in	Program
2.13	Ketone	Analysis	by	Four	Classes	creates	a	new	data	set,
KETONESUMMARY,	containing	76	observations,	or	rows	of
summary	statistics	as	indicated	in	SAS	Log	2.3	Ketone	Analysis	by
Four	Classes,	the	PRINT	procedure	only	prints	the	one-way
analyses,	shown	in	Output	2.13	Filter	of	Output	File	for	Only	One-
Way	Analyses	(_TYPE_	=	1,	2,	4,	8),	by	using	the	WHERE
statement	in	Program	2.13	Ketone	Analysis	by	Four	Classes.
Program	2.13	Ketone	Analysis	by	Four	Classes

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;



run;

	

proc	means	data=patient	noprint;

var	ketones;

class	type_2	controlled_diabetic	renal_disease	gender;

output	out=sasba.ketonesummary	mean=	std=	min=	max=	/
autoname;

run;

	

proc	print	data=sasba.ketonesummary;

where	_type_	in	(1,2,4,8);

format	type_2	controlled_diabetic	renal_disease	yesno.;

title	‘Ketones	By	Diabetes	Type,	Diabetes	Status,	Renal
Disease,And	Gender’;

run;

SAS	Log	2.3	Ketone	Analysis	by	Four	Classes

NOTE:	SAS	initialization	used:

real	time											1.93	seconds

cpu	time												1.71	seconds

	

1				libname	sasba	‘c:\sasba\hc’;

NOTE:	Libref	SASBA	was	successfully	assigned	as	follows:

Engine:								V9

Physical	Name:	c:\sasba\hc

2				data	patient;

3							set	sasba.diab200;

4				run;

	

NOTE:	There	were	200	observations	read	from	the	data	set
SASBA.DIAB200.

NOTE:	The	data	set	WORK.PATIENT	has	200	observations	and	125
variables.

NOTE:	DATA	statement	used	(Total	process	time):

real	time											0.03	seconds

cpu	time												0.03	seconds

	

5

6				proc	format;



7							value	yesno	0=No	1=Yes;

NOTE:	Format	YESNO	has	been	output.

8				run;

	

NOTE:	PROCEDURE	FORMAT	used	(Total	process	time):

real	time											0.03	seconds

cpu	time												0.01	seconds

	

9

10			proc	means	data=patient	noprint;

11						var	ketones;

12						class	type_2	controlled_diabetic	renal_disease	gender;

13						output	out=sasba.ketonesummary	mean=	std=	min=	max=	/
autoname;

14			run;

	

NOTE:	There	were	200	observations	read	from	the	data	set
WORK.PATIENT.

NOTE:	The	data	set	SASBA.KETONESUMMARY	has	76	observations	and
10	variables.

NOTE:	PROCEDURE	MEANS	used	(Total	process	time):

real	time											0.04	seconds

cpu	time												0.01	seconds

	

15

16			proc	print	data=sasba.ketonesummary;

NOTE:	Writing	HTML	Body	file:	sashtml.htm

17						where	_type_	in	(1,2,4,8);

18						format	type_2	controlled_diabetic	renal_disease	yesno.;

19						title	‘Ketones	By	Diabetes	Type,	Diabetes	Status,	Renal
Disease,And	Gender’;

20			run;

	

NOTE:	There	were	8	observations	read	from	the	data	set
SASBA.KETONESUMMARY.

WHERE	_type_	in	(1,	2,	4,	8);

NOTE:	PROCEDURE	PRINT	used	(Total	process	time):

real	time											0.52	seconds

cpu	time												0.35	seconds



From	Output	2.13	Filter	of	Output	File	for	Only	One-Way	Analyses
(_TYPE_	=	1,	2,	4,	8),	we	can	now	see	that	those	132	patients	with
Type	2	diabetes	differ	tremendously	on	ketones,	when	compared	to
those	68	patients	that	do	not	have	Type	2	diabetes.	In	particular,
those	with	Type	2	diabetes	have	an	average	ketone	value	of	18.33
with	a	standard	deviation	of	9.25,	a	minimum	of	8.67,	and	a
maximum	of	61.64;	whereas	those	without	Type	2	diabetes	have	an
average	ketone	value	just	a	fraction	of	that	for	those	with	Type	2
diabetes.	The	standard	deviation	and	maximum	ketone	values	for
those	without	Type	2	diabetes	are	approximately	half	those	for
those	who	do	–	very	clear	differences.
Output	2.13	Filter	of	Output	File	for	Only	One-Way	Analyses	(_TYPE_	=	1,	2,	4,	8)

Ketones	By	Diabetes	Type,	Diabetes	Status,	Renal	Disease,	And	Gender

	

Obs Type_2 CONTROLLED_DIABETIC RENAL_DISEASE GENDER _TYPE_ _FREQ_

2 . . . F 1 91

3 . . . M 1 109

4 . . No 	 2 180

5 . . Yes 	 2 20

10 . No . 	 4 136

11 . Yes . 	 4 64

27 No . . 	 8 68

28 Yes . . 	 8 132

	

Obs Ketones_Mean Ketones_StdDev Ketones_Min Ketones_Max

2 12.59 11.06 0.01 49.65

3 12.34 11.82 0.00 61.64

4 12.00 11.32 0.00 61.64

5 16.54 12.14 0.04 48.36

10 15.51 10.94 0.01 61.64

11 5.96 9.74 0.00 35.36

27 1.04 4.65 0.00 35.36



28 18.33 9.25 8.67 61.64

Finally,	it	should	be	noted	that	the	same	output	found	in	Output
2.13	Filter	of	Output	File	for	Only	One-Way	Analyses	(_TYPE_	=	1,
2,	4,	8)	could	be	generated	by	replacing	the	WHERE	statement	with
the	WAYS	statement,	specifically	WAYS	1,	thereby	producing	only
one-way	analysis	results.

The	NWAY	Option	and	Comparisons	to	the	WAYS	and	TYPES
Statements

When	considering	multiple	classes,	be	aware	that	the	NWAY	option
will	restrict	the	results	of	the	MEANS	procedure	to	include	only
those	statistics	for	the	largest	n-way	combination.	So	if	two
variables	are	included	in	the	CLASS	statement,	the	results	are
generated	only	for	the	two-way	interactions;	if	the	CLASS	statement
contains	three	class	variables,	then	statistics	are	generated	only	for
the	three-way	interactions.	In	other	words,	including	the	NWAY
option	limits	the	output	statistics	to	those	observations	with	the
highest	value	of	_TYPE_.

Consider	Program	2.14	Three-Way	Analysis	of	Ketones	Using	the
NWAY	Option	where	the	analyst	is	interested	in	the	differences	in
ketones	across	three	possible	classes,	or	groups.	However,	note	that
the	NWAY	option	is	now	included	in	the	MEANS	procedure.
Program	2.14	Three-Way	Analysis	of	Ketones	Using	the	NWAY	Option

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	means	data=patient	noprint	nway;

var	ketones;

class	controlled_diabetic	renal_disease	gender;

output	out=sasba.ketonesummary	mean=	std=	min=	max=	/
autoname;

run;

	



proc	print	data=sasba.ketonesummary;

format	controlled_diabetic	renal_disease	yesno.;

title	‘Ketones	By	Diabetes	Status,	Renal	Disease,	And	Gender’;

run;

Note	that	the	largest	value	of	_TYPE_	is	7	for	all	three-way
interactions,	so	that	only	those	statistics	are	provided	as	illustrated
in	Output	2.14	Three-Way	Analysis	of	Ketones	Using	the	NWAY
Option.		Note	also	that	in	general	there	are	eight	three-way
interactions	for	classes	having	two	levels;	again,	remember	that	one
of	the	three-way	interactions	has	no	observations,	so	in	the	log	file,
the	analyst	would	see	that	only	seven	observations	are	saved	in	the
permanent	data	set,	KETONESUMMARY.
Output	2.14	Three-Way	Analysis	of	Ketones	Using	the	NWAY	Option

Ketones	By	Diabetes	Status,	Renal	Disease,	And	Gender

	

	 Obs CONTROLLED_DIABETIC RENAL_DISEASE GENDER _TYPE_ _FREQ_ Ketones_Mean

	 1 No No F 7 52

	 2 No No M 7 66

	 3 No Yes F 7 9

	 4 No Yes M 7 9

	 5 Yes No F 7 30

	 6 Yes No M 7 32

	 7 Yes Yes M 7 2

	

Obs Ketones_StdDev Ketones_Min Ketones_Max

1 9.24 0.01 49.65

2 11.96 0.02 61.64

3 14.36 8.73 48.36

4 4.97 0.04 17.94

5 8.27 0.01 26.37



6 10.73 0.00 35.36

7 17.38 0.06 24.64

	

	

Based	upon	the	information	covered	in	previous	sections,	the
analyst	should	recognize	that	there	are	several	ways	to	get	the
same	output	as	just	obtained	using	NWAY	and	illustrated	in	Output
2.14	Three-Way	Analysis	of	Ketones	Using	the	NWAY	Option.
Consider	Program	2.15	Alternative	1	for	Three-Way	Analysis	of
Ketones	Using	the	NWAY	Option.
Program	2.15	Alternative	1	for	Three-Way	Analysis	of	Ketones	Using	the	NWAY
Option

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	means	data=patient	noprint;

var	ketones;

class	controlled_diabetic	renal_disease	gender;

ways	3;

output	out=sasba.ketonesummary	mean=	std=	min=	max=	/
autoname;

run;

	

proc	print	data=sasba.ketonesummary;

format	controlled_diabetic	renal_disease	yesno.;

title	‘Ketones	By	Diabetes	Status,	Renal	Disease,	And	Gender’;

run;

The	analyst	is	requesting	that	KETONES	is	summarized	using	the
three	class	variables,	CONTROLLED_DIABETIC,	RENAL_DISEASE,
and	GENDER,	but	provides	only	three-way	interactions	as	defined



by	the	WAYS	3	statement.	In	short,	this	approach	also	gives	the
results	as	illustrated	in	Output	2.14	Three-Way	Analysis	of	Ketones
Using	the	NWAY	Option.

Finally,	the	last	two	sets	of	programming	code	that	both	generate
results	for	only	three-way	interactions	are	identical	in	results	to
Program	2.16	Three	Class	Variables	Connected	by	the	Asterisk	(*)
in	the	TYPES	Statement.
Program	2.16	Three	Class	Variables	Connected	by	the	Asterisk	(*)	in	the	TYPES
Statement

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	means	data=patient	noprint;

var	ketones;

class	controlled_diabetic	renal_disease	gender;

types	controlled_diabetic*renal_disease*gender;

output	out=sasba.ketonesummary	mean=	std=	min=	max=	/
autoname;

run;

proc	print	data=sasba.ketonesummary;

format	controlled_diabetic	renal_disease	yesno.;

title	‘Ketones	By	Diabetes	Status,	Renal	Disease,	And	Gender’;

run;

The	BY	Statement	and	the	_TYPE_	and	_FREQ_	Variables

When	using	the	BY	statement	within	the	MEANS	procedure,	it	is
important	the	analyst	understand	how	the	variables	_TYPE_	and
_FREQ_	are	defined,	especially	if	used	in	conjunction	with	the
CLASS	statement.

For	example,	suppose	the	analyst	is	interested	in	generating
statistics	for	the	variable,	KETONES,	in	terms	of	the	patients



CONTROLLED_DIABETIC	status;	however,	instead	of	using	a	CLASS
statement,	the	analyst	uses	a	BY	statement,	as	illustrated	in
Program	2.17	Ketones	by	Controlled_Diabetic.

	

Program	2.17	Ketones	by	Controlled_Diabetic

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	sort;

by	controlled_diabetic;

run;

	

proc	means	data=patient	noprint;

by	controlled_diabetic;

var	ketones;

output	out=sasba.ketonesummary	mean=	std=	min=	max=	/
autoname;

run;

	

proc	print	data=sasba.ketonesummary;

format	controlled_diabetic	yesno.;

title	‘Ketones	By	Diabetes	Status’;

run;

In	essence,	the	analyst	is	requesting	that	the	data	set	PATIENT	be
separated	into	two	different	data	sets,	one	containing	those	patients
with	controlled	diabetes	and	the	other	containing	those	patients
with	uncontrolled	diabetes.	In	doing	so,	it	is	required	that	the
analyst	first	use	the	SORT	procedure,	in	order	to	sort	the	data	by
CONTROLLED_DIABETIC	as	defined	by	the	BY	statement.	In	fact,	it
is	required	that	a	BY	statement	within	the	SORT	procedure	be	used
first	before	including	a	BY	statement	within	any	other	procedure.



As	a	result,	the	MEANS	procedure	is	applied	to	each	set	of	data
separately	and	the	overall	statistics	are	generated	for	each	group	so
that	the	_TYPE_	variable	for	each	is	0,	as	illustrated	in	Output	2.15
Ketones	by	Controlled_Diabetic.	Note	also	that	the	_FREQ_	variable
pertains	to	each	group,	such	that	there	are	136	in	the	NO	group
and	64	in	the	YES	group.	After	careful	inspection,	the	analyst	can
see	that	the	information	provided	in	Output	2.15	Ketones	by
	Controlled_Diabetic	is	identical	to	that	in	Output	2.10	Ketones	by
the	Class	Controlled_Diabetic,	with	the	exception	of	the	_TYPE_
variable	values.
Output	2.15	Ketones	by	Controlled_Diabetic

Ketones	By	Diabetes	Status

Obs CONTROLLED_DIABETIC _TYPE_ _FREQ_ Ketones_Mean Ketones_StdDev Ketones_Min

1 No 0 136 15.51 10.94

2 Yes 0 64 5.96 9.74

To	further	illustrate	the	difference	between	the		BY	statement	and
the	CLASS	statement	when	used	within	the	MEANS	procedure,
consider	Program	2.18	Ketones	by	Controlled_Diabetic	for	Two
Classes.
Program	2.18	Ketones	by	Controlled_Diabetic	for	Two	Classes

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	sort;

by	controlled_diabetic;

run;

	

	



proc	means	data=patient	noprint;

by	controlled_diabetic;

var	ketones;

class	renal_disease	gender;

output	out=sasba.ketonesummary	mean=	std=	min=	max=	/
autoname;

run;

	

proc	print	data=sasba.ketonesummary;

format	controlled_diabetic	renal_disease	yesno.;

title	‘Ketones	By	Diabetes	Status,	Renal	Disease,	And
Gender’;						

run

Note	that	the	MEANS	procedure	is	requesting	an	analysis	of	the
KETONES	variable,	as	defined	in	the	VAR	statement,	in	terms	of	the
CLASS	variables	RENAL_DISEASE	and	GENDER.	Note	also	that	the
analysis	is	requested	for	each	level	of	CONTROLLED_DIABETIC	as
defined	by	the	BY	statement;	therefore,	the	data	must	first	be
sorted	by	CONTROLLED_DIABETIC	using	the	SORT	procedure.

Again	the	data	set	is	separated	into	two	parts,	namely,	one
containing	those	patients	with	controlled	diabetes	and	the	other
containing	those	patients	with	uncontrolled	diabetes.	Each	is
analyzed	using	the	two	class	variables	as	illustrated	in	Output	2.16
Ketones	by	Controlled_Diabetic	for	Two	Classes.
Output	2.16	Ketones	by	Controlled_Diabetic	for	Two	Classes

Ketones	By	Diabetes	Status,	Renal	Disease,	And	Gender

	 Obs CONTROLLED_DIABETIC RENAL_DISEASE GENDER _TYPE_ _FREQ_ Ketones_Mean

	 1 No . 	 0 136

	 2 No . F 1 61

	 3 No . M 1 75

	 4 No No 	 2 118

	 5 No Yes 	 2 18

	 6 No No F 3 52

7 No No M 3 66



	

	 8 No Yes F 3 9

	 9 No Yes M 3 9

	 10 Yes . 	 0 64

	 11 Yes . F 1 30

	 12 Yes . M 1 34

	 13 Yes No 	 2 62

	 14 Yes Yes 	 2 2

	 15 Yes No F 3 30

	 16 Yes No M 3 32

	 17 Yes Yes M 3 2

	

Obs Ketones_StdDev Ketones_Min Ketones_Max

1 10.94 0.01 61.64

2 10.37 0.01 49.65

3 11.41 0.02 61.64

4 10.80 0.01 61.64

5 12.03 0.04 48.36

6 9.24 0.01 49.65

7 11.96 0.02 61.64

8 14.36 8.73 48.36

9 4.97 0.04 17.94

10 9.74 0.00 35.36

11 8.27 0.01 26.37

12 10.92 0.00 35.36

13 9.57 0.00 35.36

14 17.38 0.06 24.64

15 8.27 0.01 26.37



16 10.73 0.00 35.36

17 17.38 0.06 24.64

From	the	output,	you	can	see	that	the	data	set	is	sorted	by
CONTROLLED_DIABETIC,	where	observations	1	through	9
represent	those	patients	with	uncontrolled	diabetes	and
observations	10	through	17	represent	those	patients	with	controlled
diabetes.

For	those	with	uncontrolled	diabetes,	the	analysis	of	ketones	is
performed	using	the	two	classes,	RENAL_DISEASE	and	GENDER.
Therefore	the	_TYPE_	variable	has	values	0	through	3,	as	is	always
the	case	for	two	classes.	The	same	values	of	the	_TYPE_	variable
apply	also	to	the	patients	with	controlled	diabetes.	In	fact,	the
statistics	in	Output	2.16	Ketones	by	Controlled_Diabetic	for	Two
Classes	are	the	reduced	set	of	statistics	found	in	lines	10	to	26	in
Output	2.12	Ketones	by	the	Classes	Controlled_Diabetic,
Renal_Disease,	and	Gender,	and	with	different	_TYPE_	values.	

Handling	Missing	Data	with	the	MISSING	Option
The	examples	so	far	have	included	data	sets	with	no	missing	values
on	the	variables	used,	but,	in	reality,	missing	data	is	very	probable.
As	a	result,	the	analyst	must	take	missing	data	into	account	when
conducting	analyses.

If	patients	in	the	previous	examples	had	missing	values	on	ketones,
those	observations	would	have	been	excluded	from	the	statistics
calculations.	In	fact,	if	those	patients	had	missing	data	on	any	of
the	class	variables	under	consideration,	those	patients	would	have
been	excluded	as	well.	Because	all	analyses	accounted	for	all	200
patients,	we	can	assume	that	no	observations	had	missing	data.

To	illustrate	how	to	handle	missing	data,	consider	again	the
Diabetic	Care	Management	Case.	Depending	upon	diabetes	type,
patients	are	given	drugs	to	treat	the	effects	of	diabetes,	and
obviously	these	drugs	have	some	adverse	events,	like	abdominal
pain,	dizziness,	headaches,	and	vomiting,	to	name	a	few.	Data
included	in	the	data	set	is	the	number	of	days	that	a	patient
experiences	the	adverse	event,	represented	by	the	variable,
AE_DURATION.	Sometimes	patients	have	no	adverse	events.
Therefore,	the	duration	would	be	missing	in	the	data	set.



Suppose	the	analyst	would	like	to	see	the	average	glucose	levels	as
related	to	the	duration	of	adverse	events.	In	this	case,	the	analyst
would	use	Program	2.19	The	MEANS	Procedure	of	Glucose	by
AE_DURATION	Including	Missing	Values.
Program	2.19	The	MEANS	Procedure	of	Glucose	by	AE_DURATION	Including	Missing
Values

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	means	data=patient	maxdec=2	missing;

var	glucose;

class	ae_duration;

title	‘Glucose	By	Duration	Of	Adverse	Event	Duration’;

output	out=sasba.glucosesummary	mean=	std=	min=	max=	/
autoname;

run;

	

proc	print	data=sasba.glucosesummary;

title	‘Glucose	By	Duration	Of	Adverse	Event	Duration’;

run;

The	MEANS	procedure	is	requesting	an	analysis	of	the	variable,
GLUCOSE,	as	defined	by	the	VAR	statement,	by	the	CLASS	variable
AE_DURATION.		Note	also	that	the	MEANS	procedure	includes	the
MISSING	option	as	well,	which	requests	that	observations	with
missing	values	on	the	CLASS	variable	be	included	in	its	separate
group	as	indicated	in	Output	2.17a	The	MEANS	Procedure	of
Glucose	by	AE_DURATION	Including	Missing	Values.	From	the
output,	we	can	see	that	29	observations	had	no	value	for
AE_DURATION,	possibly	indicating		that	the	patient	had	no	adverse
events,	and	may	not	have	had	any	drug	treatment	at	all.	In	fact,	it
is	interesting	to	note	that	those	with	missing	AE_DURATION	had
the	smallest	average	glucose	possible	indicating	the	group	with	the
best	glucose	values.
Output	2.17a	The	MEANS	Procedure	of	Glucose	by	AE_DURATION	Including	Missing
Values



Glucose	By	Duration	Of	Adverse	Event	Duration

	

Analysis	Variable	:	Glucose

AE_DURATION
N
Obs N Mean Std	Dev Minimum Maximum

. 29 29 137.85 90.57 3.84 352.40

1 14 14 201.61 93.62 28.94 375.17

2 18 18 189.32 118.24 12.88 448.89

3 20 20 169.77 90.94 0.87 351.35

4 19 19 166.25 92.44 16.34 332.95

5 13 13 172.00 70.24 34.19 265.86

6 16 16 163.15 123.10 30.18 410.91

7 17 17 161.93 88.94 30.11 357.44

8 15 15 191.26 92.71 13.64 375.49

9 22 22 163.48 75.05 9.45 341.81

10 17 17 169.67 72.73 68.69 329.78

The	code	also	requests	that	the	results	be	saved	in	the	permanent
data	set,	GLUCOSESUMMARY,	and	printed	as	illustrated	in	Output
2.17b	Glucose	by	AE_DURATION	Including	Missing	Values.	Note
that	the	line	pertaining	to	_TYPE_=0	refers	to	all	patients	having
an	average	glucose	value	of	168.66,	with	a	standard	deviation	of
92.12,	minimum	of	0.87,	and	maximum	of	448.89.	Note	that	the
remaining	lines	pertaining	to	_TYPE_=1	contain	statistics	for	each
of	the	levels	as	defined	by	the	CLASS	variable,	AE_DURATION,	and
can	be	compared	to	the	overall	mean	(_TYPE_=0)	for	interpretation
purposes.	Note	that	had	the	missing	option	been	omitted,	any
output	having	AE_DURATION	=	missing	would	have	been	omitted
from	the	output.

	

Output	2.17b	Glucose	by	AE_DURATION	Including	Missing	Values

Glucose	By	Duration	Of	Adverse	Event	Duration

	



Obs AE_DURATION _TYPE_ _FREQ_ Glucose_Mean Glucose_StdDev Glucose_Min Glucose_Max

1 . 0 200 168.66 92.12 0.87

2 . 1 29 137.85 90.57 3.84

3 1 1 14 201.61 93.62 28.94

4 2 1 18 189.32 118.24 12.88

5 3 1 20 169.77 90.94 0.87

6 4 1 19 166.25 92.44 16.34

7 5 1 13 172.00 70.24 34.19

8 6 1 16 163.15 123.10 30.18

9 7 1 17 161.93 88.94 30.11

10 8 1 15 191.26 92.71 13.64

11 9 1 22 163.48 75.05 9.45

12 10 1 17 169.67 72.73 68.69

Every	analysis	which	provides	summary	statistics	should	also	be
accompanied	by	a	picture	of	the	data	as	well.	Please	refer	to
Chapter	3,	“Data	Visualization”	which	provides	a	visual	description
of	data.	Specifically,	it	covers	the	UNIVARIATE	procedure	for
numeric	data	which	provides	histograms	and	box	plots,	and	the
FREQ	procedure	which	provides	bar	charts	for	character	data.

As	stated	in	the	beginning	of	this	chapter,	the	focus	here	has	been
on	producing	statistical	measures	for	describing	numeric	data
through	the	use	of	the	MEANS	procedure.	These	data	descriptions
include	measures	of	center,	variation,	shape,	and	relative	location,
which	can	also	be	summarized	across	various	groups	and
subgroups.	There	are	other	procedures	which	provide	summary
measures	for	numeric	data,	including	the	SUMMARY,
UNIVARIATE,	and	TABULATE	procedures,	as	well	as	the	FREQ
procedure	for	character	data.	

Key	Terms
box-and-whisker	plot

deviation

first	quartile	(Q1)



five-number-summary

five-number-summary.

interquartile	range	(IQR)

Kurtosis

maximum

median

minimum

mode

order	statistics

ordered	array

outlier

percentiles

population	mean

range

sample	mean

Skewness

third	quartile	(Q3)

variance

	



Chapter	Quiz
Select	the	best	answer	for	each	of	the	following	questions:

1.						Suppose	you	take	a	random	sample	of	students	from	a
statistics	class	and	their	grades	on	the	final	exam	are	63,	75,
77,	77,	81,	85,	85,	and	91.		Which	of	the	following	statements
is	true?

a.						the	average	is	79.0

b.						the	median	is	79.0

c.						the	mode	is	97.0

d.						none	of	the	above

e.						all	of	the	above

2.						2.				Suppose	you	take	a	random	sample	of	students	from	a
statistics	class	and	their	grades	on	the	final	exam	are	63,	75,
77,	77,	81,	85,	85,	and	91.		Which	of	the	following	statements
is	true?

a.						the	data	is	symmetric

b.						the	25th	percentile	is	77

c.						the	interquartile	range	(IQR)	is	9

d.						a	grade	of	63	is	considered	an	outlier

e.						all	of	the	above

3.						Suppose	you	take	a	random	sample	of	students	from	a
statistics	class	and	their	grades	on	the	final	exam	are	63,	75,
77,	77,	81,	85,	85,	and	91.		What	is	the	standard	deviation?

a.						8.45

b.						7.90

c.						71.36

d.						62.44

e.						none	of	the	above

4.						Which	of	the	following	descriptive	measures	is	influenced	by



extreme	values?
a.						mean

b.						range

c.						standard	deviation

d.						all	of	the	above

e.						only	a	and	c

5.						Which	of	the	following	can	be	used	for	investigating
skewness?

a.						histogram

b.						box	plot

c.						descriptive	statistics

d.						all	of	the	above

e.						none	of	the	above

6.						The	default	statistics	when	using	the	MEANS	procedure
include	the	following:

a.						mean,	median,	mode,	standard	deviation,	and	range

b.						sample	size,	mean,	standard	deviation,	minimum	and
maximum	values

c.						sample	size,	mean,	median,	mode,	and	range

d.						mean,	median,	standard	deviation,	minimum	and
maximum	values

	

7.						Which	PROC	MEANS	generates	the	following	output:

a.						proc	means	data=patient

mean	std	max	min	median	nmiss	maxdec=2;



var	ketones;

class	controlled_diabetic;

run;

b.						proc	means	data=patient

mean	std	max	min	median	nmiss	maxdec=2;

var	ketones;

by	controlled_diabetic;

run;

c.						proc	means	data=patient													

var	ketones;

class	controlled_diabetic;

run;

d.						proc	means	data=patient

stat=mean	std	max	min	median	nmiss	maxdec=2;

var	ketones;

class	controlled_diabetic;

run;

	

8.						Which	PROC	MEANS	generates	the	following	output:

Analysis	Variable	:	Glucose

CONTROLLED_DIABETIC RENAL_DISEASE GENDER
N
Obs Mean

Std
Dev Maximum Minimum

No No F 52 210.33 82.25 448.89

M 66 171.21 78.31 357.44

Yes F 9 184.29 98.80 410.91

M 9 187.70 105.50 404.96

Yes No F 30 104.80 85.26 329.78

M 32 143.55 101.56 375.49

Yes M 2 204.17 78.75 259.85



	

a.						proc	means	data=patient

mean	std	max	min	median	nmiss	maxdec=2;

var	glucose;

class	controlled_diabetic*renal_disease*gender;

run;

b.						proc	means	data=patient

mean	std	max	min	median	nmiss	maxdec=2;

var	glucose;

class	controlled_diabetic	renal_disease	gender;

type	3;

run;

c.						proc	means	data=patient

mean	std	max	min	median	nmiss	maxdec=2;

var	glucose;

class	controlled_diabetic	renal_disease	gender;

run;

d.						All	of	the	above

9.						How	many	sets	of	means	are	generated	from	the	following
PROC	MEANS?

proc	means	data=patient

mean	std	max	min	median	nmiss	maxdec=2;

var	ketones;

class	controlled_diabetic	renal_disease	gender;

ways	1	2	3;

run;

a.						3

b.						6

c.						7

d.						8



10.			What	is	the	value	of	_TYPE_	for	the	main	effects	of
RENAL_DISEASE	when	printing	the	KETONESUMMARY	data
set?

proc	means	data=patient	noprint;

var	ketones;

class	controlled_diabetic	renal_	disease;

output	out=sasba.ketonesummary

mean=average_ketone	std=std_ketone	min=min_ketone

max=max_ketone;

proc	print	data=sasba.ketonesummary;

run;

a.						8

b.						7

c.						3

d.						1



Chapter	3:	Data	Visualization
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Chapter	Quiz

Introduction			
Have	you	ever	wondered	where	the	term	‘bit’	originated?	Very	few
know	that	the	term,	along	with	many	other	statistical	terms,	was
first	conceived	in	the	late	1940s	by	the	renowned	statistician,	John
W.	Tukey,	while	at	Bell	Labs	developing	many	of	the	statistical
methods	we	apply	today.	For	many	statisticians,	Tukey	(1977)	is
best	known	for	his	seminal	introduction	of	Exploratory	Data
Analysis	(EDA).	Exploratory	data	analysis	is	a	philosophy	that
emphasizes	the	use	of	tools	for	summarizing	data	through	both
numeric	and	visual	representations.	In	his	1977	book,	Tukey
emphasized	that	exploring	your	data	is	just	as	important	as
confirming	your	hypotheses	and	that,	‘The	greatest	value	of	a
picture	is	when	it	forces	us	to	notice	what	we	never	expected	to
see.’	In	fact,	Church	(1979),	in	his	review	of	Tukey’s	book,	quite
eloquently	reiterates	that	‘it	is	necessary	to	discover	facts	before
they	can	be	confirmed.’

In	this	era	of	Big	Data,	where	data	sources	comprise	millions	of
rows	and	hundreds	-	or	even	thousands	-	of	columns,	it	is
impossible	to	visualize	or	make	any	summary	statements	about	the
data.	Therefore,	the	data	analyst	must	employ	exploratory	data
analyses	as	a	way	of	reducing	mounds	of	data	into	manageable
numeric	summaries	and	pictures	which	are	much	more	easily
interpreted.	Tukey’s	emphasis	was	on	the	visual	aspects	of	data



summaries,	topics	which	are	the	center	of	discussion	in	this
chapter.

Remember,	defining	the	variable	type	must	precede	all	data
analyses.	There	are	two	types	of	variables	and	each	variable	type
warrants	a	specific	path	for	analysis.	Recall	that	a	categorical
variable	is	one	which	has	outcomes	in	the	form	of	a	name	or	a	label
and	helps	to	distinguish	between	various	characteristics	in	the	data,
for	example,	gender	or	academic	classification.	A	numeric	variable
measures	a	quantity	and	can	be	either	discrete	or	continuous.	A
discrete	numeric	variable	is	one	which	takes	on	a	finite,	countable
number	of	values.	An	example	would	be	the	number	of	smart
devices	a	person	owns	having	outcomes	of,	say,	1,	2,	3,	4,	or	5.	A
numeric	continuous	variable	is	one	which	has	an	uncountable
number	of	outcomes	and	is	usually	in	the	form	of	a	decimal.	An
example	would	be	the	amount	of	money	spent	on	online	purchases.

So,	if	the	variable	to	be	analyzed	is	categorical,	the	analyst	will
summarize	the	data	by	way	of	a	summary	table,	crosstab,	bar	chart,
pie	chart,	all	accompanied	by	descriptive	statistics	such	as
frequency	counts	and	proportions.	If	the	variable	is	a	numeric,	the
analyst	will	create	summaries	by	way	of	a	frequency	table,
histogram	(sometimes	bar	charts),	box-and-whisker	plot,	and	Q-Q
plots,	accompanied	by	the	mean,	median,	mode,	range,	variance,
standard	deviation,	and	skewness,	to	name	a	few.	Also,	there	are
methods	to	display	relationships	between	two	variables,	whether
the	relationship	is	between	two	categorical	variables,	a	numeric
variable	and	a	categorical	variable,	or	two	numeric	variables;	in
particular,	the	relationship	between	two	numeric	variables	can	be
displayed	using	a	bivariate	scatter	plot.

In	this	chapter,	you	will	learn	about:

	the	procedures	used	to	visualize	numeric	continuous	and
categorical	data

	the	FREQ	procedure	and	the	TABLES	statement	and	how	to
produce	and	interpret	frequency	tables	and	crosstabulation
tables

	the	use	of	the	crosstabulations	to	explain	the	association
between	two	categorical	variables

	the	PLOTS	option	within	the	TABLES	statement	for	producing
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bar	charts

	the	MISSING	option	within	the	TABLES	statement	for
detecting	the	number	of	missing	observations

	the	UNIVARIATE	procedure	and	how	to	produce	descriptive
statistics	for	numeric	variables

	the	HISTOGRAM	statement	within	the	UNIVARIATE
procedure	and	how	to	define	the	class	limits	of	a	histogram,
the	scale	of	the	vertical	axis,	overlay	the	histogram	with	a
normal	curve

	the	QQPLOT	statement	within	the	UNIVARIATE	procedure
for	producing	Q-Q	plots	for	exploring	normality

	the	PLOTS	option	of	the	UNIVARIATE	procedure	for
producing	a	box	plot,	and	how	to	calculate	and	interpret	the
five-number	summary

	the	criteria	for	detecting	outliers	and	how	to	identify	outliers
using	the	box	plot

	the	CLASS	statement	within	the	UNIVARIATE	procedure	for
exploring	the	differences	on	a	numeric	variable	across	groups

	exploring	bivariate	relationships	between	numeric	continuous
variables	using	the	SCATTER	and	REG	statements	within	the
SGPLOT	procedure

	fitting	regression	line	and	quadratic	(curve)	using	the
DEGREE	option	within	the	REG	statement

	the	DATALABEL	option	within	the	SCATTER	statement	to
label	points	by	group

	the	GROUP=	option	within	the	REG	statement	to	fit	a
separate	line	for	each	group

	the	VBAR	statement,	along	with	various	options,	within	the
SGPLOT	procedure	for	producing	vertical	bar	charts	for
categorical	data

View	and	Interpret	Categorical	Data
When	analyzing	a	variable,	consider	that	the	variable	values	are

●					

●					

●					

●					

●					

●					

●					

●					

●					

●					

●					

●					



found	in	a	single	column	within	the	data	set	where	each	row
corresponds	to	an	observation.	Unless	the	sample	size	is	very	small,
it	is	virtually	impossible	for	the	analyst	to	peruse	the	data	and	get	a
sense	of	the	data	without	summarizing	or	condensing	that	variable
into	a	form	more	easily	interpreted.	The	problem	is	compounded
when	looking	at	relationships	across	two	or	more	categorical
variables.	In	this	section,	we	will	cover	approaches	for	summarizing
categorical	data	and,	later,	representing	it	visually	in	order	to
describe	the	sample	or	population	of	interest.

Frequency	and	Crosstabulation	Tables	Using	the	FREQ
Procedure
Recall	that	categorical	variables	are	those	variables	where	the
values	are	used	to	determine	group	membership,	including	those
measured	at	the	nominal	or	ordinal	level.	A	natural	question	to	ask
is:	‘How	many	observations	make	up	each	of	the	unique	groups?’
Or	the	analyst	may	want	to	know:	‘What	unique	groups	exist	in	my
data	when	looking	at	a	variable	of	interest?’	and	‘Which	group	is
largest?’	Those	questions	are	aimed	at	analyzing	a	single
categorical	variable	and	can	be	summarized	using	a	Frequency
Table,	or	Frequency	Distribution.	The	analyst	can	also	ask
questions	dealing	with	bivariate	relationships	between	two
categorical	variables	by	representing	the	frequencies	in	a
Crosstabulation	Table;	in	particular,	the	analyst	may	wonder	if	an
observation’s	membership	in	one	group	on	one	variable	is
associated	with	being	in	a	particular	group	on	a	second	variable.
For	example,	the	analyst	may	wonder	if	more	females	(one	group	of
gender)	have	controlled	diabetes	(one	group	of	a	variable
representing	diabetes	status)	as	opposed	to	having	uncontrolled
diabetes	when	compared	to	males.	In	order	to	answer	these	types	of
univariate	and	bivariate	questions,	the	analyst	can	employ	the
FREQ	procedure.

Procedure	Syntax	for	PROC	FREQ

PROC	FREQ	is	a	procedure	used	to	create	one-way	and	n-way
tabular	summaries	and	has	the	general	form:

PROC	FREQ	DATA=SAS-data-set;

TABLES	variable(s)	</options>;



RUN;

	

To	illustrate	the	FREQ	procedure,	consider	the	Diabetic	Care
Management	Case	introduced	in	Chapter	1,	“Statistics	and	Making
Sense	of	Our	World.”	Note,	in	the	excerpt	of	data	shown	in	Figure
3.1	Diabetic	Care	Management	Case	Data	that	the	categorical
variable,	GENDER,	has	200	rows	with	outcomes	defined	as	M	or	F,
representing	Males	and	Females,	respectively.	Even	with	two
possible	outcomes,	it	is	impossible	to	get	a	sense	of	the	gender
breakdown	for	this	sample	under	investigation.	This	is	especially
true	for	the	original	data	set	consisting	of	all	63,108	observations.
In	short,	here	we	want	to	reduce	the	200	rows	to	just	a	few	rows
for	purposes	of	interpretation.	
Figure	3.1	Diabetic	Care	Management	Case	Data

Obs Patient_ID GENDER AGE WEIGHT BMI Hemoglobin_A1c CONTROLLED_DIABETIC

1 1390961026 M 67 70.42 28.28 11.03

2 8908127888 F 66 55.21 23.74 7.76

3 25897154892 F 82 53.07 23.49 10.56

4 12999229817 M 66 82.75 36.46 11.58

5 3330961567 F 76 68.70 31.67 9.56

… … … … … … …

196 20286015512 M 74 60.04 22.97 6.74

197 23386238487 M 73 74.04 31.66 0.91

198 2950079397 F 79 54.16 23.40 6.52

199 15845973157 F 74 60.82 27.79 3.57

200 14837662381 F 70 66.31 31.01 1.03

In	essence,	when	the	FREQ	procedure	is	run,	SAS	identifies	each
unique	outcome,	M	and	F,	counts	the	number	of	times	each	of
those	outcomes	occurs	in	the	data	set,	and	provides	the	summary	in
a	tabular	format.	To	generate	the	frequency	table	for	GENDER,	the
analyst	would	use	Program	3.1	Frequency	Tables	of	GENDER,
AGE_RANGE,	and	CONTROLLED_DIABETIC.
Program	3.1	Frequency	Tables	of	GENDER,	AGE_RANGE,	and
CONTROLLED_DIABETIC



libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	freq	data=patient;

tables	gender	age_range	controlled_diabetic;

run;

First,	you	can	see	from	the	program	that	the	permanent	data	set,
DIAB200,	is	placed	into	the	temporary	data	set,	PATIENT,	and
PROC	FREQ	is	applied	to	the	data	set,	PATIENT.	The	TABLES
statement	requests	a	one-way	frequency	table	for	each	of	the
variables	listed,	namely,	GENDER,	AGE_RANGE	and
CONTROLLED_DIABETIC,	respectively,	as	displayed	in	Output	3.1
Frequency	Tables	of	GENDER,	AGE_RANGE,	and
CONTROLLED_DIABETIC.	Notice	that	PROC	FREQ	has	reduced	a
data	matrix	with	200	rows	to	a	frequency	table	with	2	rows
representing	the	numbers	of	males	and	females,	respectively.	This
allows	for	extreme	ease	in	interpretation.	

In	particular,	you	can	see	that	of	the	200	patients	in	the	data	set,
91	(45.50%)	are	females	(F),	and	109	(54.50%)	are	males	(M);
specifically,	there	are	approximately	9%	more	males	than
females.		You	can	also	see	that	those	patients	with	controlled
diabetes	make	up	32.00%	of	the	data,	or	64	patients,	as	compared
to	68.00%	accounting	for	those	with	uncontrolled	diabetes;
basically,	the	group	with	uncontrolled	diabetes	is	approximately
twice	as	large	as	that	with	controlled	diabetes.		

The	FREQ	procedure	also	provides	cumulative	information.
Specifically,	note	that	38	patients	are	listed	in	the	row	‘65-70’
meaning	that	38	patients	are	in	that	category	and	all	previous
categories;	in	other	words,	38	patients	are	70	years	of	age	or
younger,	94	patients	are	75	years	of	age	or	younger,	129	patients
are	80	years	of	age	or	younger,	etc.	Similar	cumulative	information
is	provided	for	percent;	using	this	information,	you	can	conclude,
for	example,	that	almost	half,	47%,	of	the	patients	are	75	years	of
age	or	younger;	or	very	few	(16%)	patients	are	older	than	85	years
of	age.

	



Output	3.1	Frequency	Tables	of	GENDER,	AGE_RANGE,	and	CONTROLLED_DIABETIC

	

The	FREQ	Procedure

	

GENDER Frequency Percent
Cumulative
Frequency

Cumulative
Percent

F 91 45.50 91 45.50

M 109 54.50 200 100.00

	

	

AGE_RANGE Frequency Percent
Cumulative
Frequency

Cumulative
Percent

64	and
under

5 2.50 5 2.50

65-70 33 16.50 38 19.00

71-75 56 28.00 94 47.00

76-80 35 17.50 129 64.50

81-85 39 19.50 168 84.00

86-90 21 10.50 189 94.50

over	90 11 5.50 200 100.00

	

CONTROLLED_DIABETIC Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 136 68.00 136 68.00

1 64 32.00 200 100.00

	

PLOTS	Options	within	the	TABLES	Statement

There	are	various	options	that	can	be	used	within	the	TABLES
statement	for	tailoring	the	output	of	the	FREQ	procedure.	One



option,	in	particular,	is	the	PLOTS	option	which	provides	a	visual
representation	of	the	frequency	table.	For	one-way	frequency	tables
when	summarizing	a	single	variable	alone,	there	are	only	three
possible	requests,	one	of	which—		FREQPLOT—will	be	illustrated
here.	For	example,	if	the	analyst	would	like	an	accompanying	bar
chart	for	visualizing	GENDER,	the	PLOTS	option	with	the
FREQPLOT	request	would	be	applied	as	in	Program	3.2	Frequency
Table	and	Bar	Chart	of	GENDER.
Program	3.2	Frequency	Table	and	Bar	Chart	of	GENDER

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	freq	data=patient;

tables	gender

/plots=freqplot(scale=percent);

title	‘Exploration	of	Gender	for	Diabetic	Care	Management	Study’;

run;																									

Output	3.2	Frequency	Table	and	Bar	Chart	of	GENDER	now
includes	a	bar	chart	where	the	heights	of	the	bars	represent	the
percentages	for	each	of	the	respective	groups,	as	requested	by	the
PLOT	option	(SCALE=PERCENT).	The	picture	of	the	data,	in	terms
of	GENDER,	easily	illustrates	the	idea	that,	while	there	are	more
males	in	the	data	set	than	females,	the	group	sizes	are	not	widely
disparate.	Note	that	if	the	analyst	prefers	the	Y-axis	to	represent	the
actual	frequencies,	then	the	(SCALE=FREQ)	option	would	be	used
instead.	Finally,	note	that	the	bars	representing	the	categories	do
not	touch	indicating	that	the	values	on	the	X-axis	are	distinct,	non-
overlapping	groups	having	no	scale;	this	representation	is	always
warranted	when	summarizing	categorical	variables.
Output	3.2	Frequency	Table	and	Bar	Chart	of	GENDER

Exploration	of	Gender	for	Diabetic	Care	Management	Study

The	FREQ	Procedure

	



GENDER Frequency Percent
Cumulative
Frequency

Cumulative
Percent

F 91 45.50 91 45.50

M 109 54.50 200 100.00

	

Crosstabulations	for	Illustrating	Associations	between	Two
Categorical	Variables

Now	let	us	consider	an	investigation	into	whether	or	not	there	is	an
association	between	two	categorical	variables.	Consider,	first,	the
two	variables,	GENDER	and	CONTROLLED_DIABETIC,	and	Program
3.3	Crosstabulation	of	Gender	by	Diabetes	Status	used	to	generate
crosstabulations.
Program	3.3	Crosstabulation	of	Gender	by	Diabetes	Status

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	



proc	format;

value	yesno	0=No	1=Yes;

value		$gender	“M”=“Males”	“F”	=“Females”;

run;

	

proc	freq	data=patient;

tables	gender*controlled_diabetic

/plots=freqplot(scale=percent);

format	controlled_diabetic	yesno.	gender	$gender.;

title	‘Exploration	of	Gender	by	Diabetes	Status’;

run;

In	the	code	provided	above,	the	FREQ	procedure	is	identical	to	the
code	used	to	generate	three	separate	one-way	tables	in	Output	3.1
Frequency	Tables	of	GENDER,	AGE_RANGE,	and
CONTROLLED_DIABETIC—with	one	exception.	Note	that	the	two
categorical	variables,	GENDER	and	CONTROLLED_DIABETIC,	are
now	joined	by	an	asterisk	(*).	This	notation	is	used	to	generate	a
two-way	table,	or	crosstabulation,	as	seen	in	Output	3.3a
Crosstabulation	of	Gender	by	Diabetes	Status.		

Of	course,	we	have	enhanced	the	SAS	output	by	including	a
FORMAT	procedure	with	a	FORMAT	statement	to	define	how	the
values	of	the	GENDER	and	CONTROLLED_DIABETIC	are
printed.		In	Output	3.3a	Crosstabulation	of	Gender	by	Diabetes
Status,	for	example,	notice	that	gender	is	now	displayed	as	‘Males’
or	‘Females’	as	opposed	to	using	the	letters,	M	or	F,	respectively;
and	diabetes	status	is	now	displayed	as	either	‘YES’	or	‘NO’	as
opposed	to	1	or	0,	respectively.		In	addition,	the	TITLE	statement
has	been	added	to	identify	the	context	of	the	output.
Output	3.3a	Crosstabulation	of	Gender	by	Diabetes	Status

Exploration	of	Gender	by	Diabetes	Status

	

The	FREQ	Procedure

	

Table	of	GENDER	by	CONTROLLED_DIABETIC



GENDER CONTROLLED_DIABETIC

Frequency
Percent
Row	Pct
Col	Pct No Yes Total

Females 61
30.50
67.03
44.85

30
15.00
32.97
46.88

91
45.50

Males 75
37.50
68.81
55.15

34
17.00
31.19
53.13

109
54.50

Total 136
68.00

64
32.00

200
100.00

Let’s	consider	the	entries	in	each	cell	of	the	table,	namely,
frequency,	percent,	row	percent,	and	column	percent,
respectively,	as	indicated	in	the	top	left	corner	of	the
crosstabulation.

1.						The	top	numbers	in	each	cell	represent	the	frequency	of
observations	in	that	particular	cell	as	defined	by	the
intersection	of	the	row	and	column.	For	example,	there	are	61
females	with	uncontrolled	diabetes	and	30	females	with
controlled	diabetes,	for	a	row	total	of	91	females	in	the	data;
there	are	75	males	with	uncontrolled	diabetes	and	34	males
with	controlled	diabetes,	for	a	row	total	of	109	males.	You
can	also	add	the	frequencies	of	females	and	males	in	each
column	to	get	the	column	totals	of	136	with	uncontrolled
diabetes	versus	64	with	controlled	diabetes.	Notice	that	the
column	totals	add	up	to	200,	as	do	the	row	totals.

2.						The	percent	for	each	of	the	four	cells,	30.50,	15.00,	37.50,
and	17.00,	accounts	for	100	percent	of	the	data.	Specifically
note	that,	of	all	200	patients,	30.50%	(or	61	patients)	are
females	with	uncontrolled	diabetes.	Notice	that	the	row
percents,	30.50	and	15.00,	add	up	to	45.50	percent	of	the
data	representing	females;	the	row	percents,	37.50	and	17.00,
add	up	to	54.50	percent	of	the	data	representing	males.	The
same	operation	can	be	done	to	get	the	column	percents.	

3.						Consider	now	the	row	percent,	blocked	off	in	Output	3.3a
Crosstabulation	of	Gender	by	Diabetes	Status.	When	looking



at	females,	67.03	percent	of	the	data	consists	of	patients	with
uncontrolled	diabetes	and	32.97	percent	of	the	data	consists
of	patients	with	controlled	diabetes.	These	row	percents	are
also	known	as	conditional	percents;	in	other	words,	these
are	percents	given,	or	conditioned	on	the	fact,	that	we	are
looking	only	at	females.	The	breakdown	of	the	conditional
percents	is	very	similar	for	males,	where	68.81	percent	of
males	consist	of	patients	with	uncontrolled	diabetes	and	31.19
percent	of	the	data	consists	of	males	with	controlled	diabetes.
Overall,	68.00	percent	of	the	data	consists	of	patients	with
uncontrolled	diabetes	and	32.00	percent	of	the	data	consists
of	those	with	controlled	diabetes,	for	a	total	of	100	percent.	

4.						An	inspection	of	column	percent	shows	that,	when	looking
at	those	with	uncontrolled	diabetes,	44.85	percent	are	females
and	55.15	percent	are	males;	while	for	those	with	controlled
diabetes,	46.88	percent	are	females	and	53.13	percent	are
males.	Those	are	fairly	consistent	with	the	row	percents	which
show	that,	overall,	females	make	up	45.50	percent	of	the
data,	while	males	make	up	54.50	percent	of	the	data.	Column
percents	are	also	referred	to	as	conditional	percents;	in	other
words,	these	are	percents	of	females	and	males,	respectively,
conditioned	on	selecting	either	patients	with	or	without
controlled	diabetes.

Now	that	we	understand	the	information	provided	by	the	FREQ
procedure,	how	do	we	use	this	information	to	describe	the
association,	or	the	relationship,	between	the	two	categorical
variables,	GENDER	and	CONTROLLED_DIABETIC?	First,	let’s
consider	this	fact:		two	categorical	variables	have	no	association
with	each	other	if	the	row	percents	are	similar	across	all	rows,	in
other	words,	if	the	distribution	of	diabetic	status	is	the	same	across
both	genders.	When	looking	at	Output	3.3	Crosstabulation	of
Gender	by	Diabetes	Status,	we	can	see	that	the	row	percents
blocked	off	for	both	males	and	females	are	similar;	therefore,	we
can	say	that	the	two	variables	GENDER	and
CONTROLLED_DIABETIC	status	are	not	associated	with	each	other.
As	a	result,	we	can	say,	in	general,	that	the	percentage	of
controlled	versus	uncontrolled	is	the	same	for	regardless	of	gender
and	can,	therefore,	describe	the	CONTROLLED_DIABETIC	status
while	ignoring	gender.	In	short,	we	can	use	the	total	percents	of



each	column,	blocked	off	as	well,	to	describe	the	diabetes	status
and	that	statements	about	diabetes	status	would	apply	to	any
gender.	

Practically	speaking,	this	seems	to	indicate	that	when	trying	to
identify	a	patient’s	diabetic	status,	gender	would	not	be	helpful.
Notice	also	that	this	conclusion	is	further	illustrated	through
visualization,	as	shown	in	Output	3.3b	Crosstabulation	of	Gender
by	Diabetes	Status:	Frequency	Pots	of	Gender	by	Diabetes	Status,
where	the	shape	of	the	bars	for	females	is	similar	to	the	shape	of	the
bars	for	males,	indicating	that	the	trend	in	diabetes	status	is	the
same	regardless	of	gender.
Output	3.3b	Crosstabulation	of	Gender	by	Diabetes	Status:	Frequency	Pots	of
Gender	by	Diabetes	Status

Let’s	now	consider,	for	the	same	data,	the	possible	relationship
between	diabetes	status	and	renal	disease.		Program	3.4	Cross	Tabs
and	Frequency	Plots	of	Diabetes	Status	and	Renal	Disease	is	used	to
generate	the	crosstabulations	found	in	Output	3.4	Cross	Tabs	and
Frequency	Plots	of	Diabetes	Status	and	Renal	Disease.
Program	3.4	Cross	Tabs	and	Frequency	Plots	of	Diabetes	Status	and	Renal	Disease

libname	sasba	‘c:\sasba\hc’;

data	patient;



set	sasba.diab200;

run;

	

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	freq;	tables	controlled_diabetic*renal_disease

/plots=freqplot(scale=percent);

format	controlled_diabetic	yesno.	renal_disease	yesno.;

title	‘Exploration	of	Diabetes	Status	and	Renal	Disease’;

run;

We	can	see	that	overall,	90	percent	of	patients	do	not	have	renal
disease	compared	to	10	percent	who	do.		However,	notice	that
there	is	a	shift	when	we	take	into	account	a	second	variable,	a
patient’s	diabetes	status,	as	indicated	by	the	row	percents.
Specifically,	we	see	that	for	those	patients	whose	diabetes	is	not
controlled,	13.24	percent	have	renal	disease.	For	those	patients
whose	diabetes	is	controlled,	3.13	percent	have	renal	disease	–	less
than	a	quarter	of	those	with	uncontrolled	diabetes.	The	row
percents	for	RENAL_DISEASE	are	not	the	same	across	the	two	levels
of	CONTROLLED_DIABETIC,	therefore	indicating	an	association
between	RENAL_DISEASE	and	CONTROLLED_DIABETIC.		

As	a	result,	the	analyst	cannot	use	the	percents,	for	renal	disease
(90	percent	do	not	have	renal	disease	versus	10	percent	have	renal
disease),	ignoring	diabetes	status,	to	describe	the	nature	of	the
data.	The	analyst	must	take	into	account	whether	or	not	the	patient
has	controlled	his	or	her	diabetes.	In	other	words,	a	patient’s	renal
disease	status	is	associated	with	diabetes	status.	In	particular,	if
your	diabetes	is	controlled,	you	have	a	3.13	percent	chance	of
having	renal	disease;	on	the	other	hand,	if	your	diabetes	is	not
controlled,	you	have	a	13.24	percent	chance	of	having	renal
disease.	(Note:	In	Chapter	5,	“Analysis	of	Categorical	Variables,”
we	will	discuss	using	sample	data	to	test	associations	between	two
categorical	variables	in	the	population.)
Output	3.4		Cross	Tabs	and	Frequency	Plots	of	Diabetes	Status	and	Renal	Disease



Exploration	of	Diabetes	Status	and	Renal	Disease

The	FREQ	Procedure

	

Table	of	CONTROLLED_DIABETIC	by	RENAL_DISEASE

CONTROLLED_DIABETIC RENAL_DISEASE

Frequency
Percent
Row	Pct
Col	Pct No Yes Total

No 118
59.00
86.76
65.56

18
9.00
13.24
90.00

136
68.00

Yes 62
31.00
96.88
34.44

2
1.00
3.13
10.00

64
32.00

Total 180
90.00

20
10.00

200
100.00

	

MISSING	Option	within	the	TABLES	Statement

If	an	observation	is	missing	a	value	on	any	variable	that	is	included



in	the	TABLES	statement,	that	observation	is	excluded	from	the
table	analysis.		This	can	be	misleading,	so	the	analyst	may	want	to
include	all	observations	in	the	analysis	by	using	the	MISSING
option	in	the	TABLES	statement.

Consider	the	population	of	patients	in	Diabetic	Care	Management
Case.	Suppose	we	are	interested	in	seeing	the	relationships	between
two	categorical	variables,	namely	CONTROLLED_DIABETIC
(diabetes	status)	and	PRIMARY_MED	(primary	medication).
Program	3.5	Crosstabulation	of	Diabetes	Status	and	Primary
Medication	with	Missing	Obs	Excluded	produces	the	output	found
in	Output	3.5	Crosstabulation	of	Diabetes	Status	and	Primary
Medication	with	Missing	Obs	Excluded.
Program	3.5	Crosstabulation	of	Diabetes	Status	and	Primary	Medication	with
Missing	Obs	Excluded

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diabetics;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	freq;	tables	controlled_diabetic*primary_med;

format	controlled_diabetic	yesno.;

title	‘Exploration	of	Diabetes	Type	and	Medicine’;

run;

Notice	that	20,592	(32.6%)	of	63,108	diabetic	patients	have
missing	values	on	either	variables	CONTROLLED_DIABETIC,
PRIMARY_MED,	or	both.	Also	all	percentages	are	based	upon	a	data
set	size	of	42,516,	so	that	distribution	of	the	bivariate	responses	is
not	representative	of	the	entire	population.

	

Output	3.5	Crosstabulation	of	Diabetes	Status	and	Primary	Medication	with	Missing
Obs	Excluded

Exploration	of	Diabetes	Type	and	Medicine



	

The	FREQ	Procedure

	

Table	of	CONTROLLED_DIABETIC	by	PRIMARY_MED

CONTROLLED_DIABETIC PRIMARY_MED

Frequency
Percent
Row	Pct
Col	Pct

AG
Inhibitor

Amylin
Mimetic Biguanide

DPP-4
Inhibitor

Incretin
Mimetic Meglitinide

No 6048
14.23
16.68
85.65

117
0.28
0.32
46.61

6202
14.59
17.10
86.16

5834
13.72
16.09
86.14

94
0.22
0.26
47.00

6079
14.30
16.76
85.62

Yes 1013
2.38
16.20
14.35

134
0.32
2.14
53.39

996
2.34
15.92
13.84

939
2.21
15.01
13.86

106
0.25
1.69
53.00

1021
2.40
16.32
14.38

Total 7061
16.61

251
0.59

7198
16.93

6773
15.93

200
0.47

7100
16.70

Frequency	Missing	=	20592

	

Table	of	CONTROLLED_DIABETIC	by	PRIMARY_MED

CONTROLLED_DIABETIC PRIMARY_MED

Frequency
Percent
Row	Pct
Col	Pct Sulfonylurea Thiazolidinedione Total

No 6210
14.61
17.13
85.54

5677
13.35
15.66
85.07

36261
85.29

Yes 1050
2.47
16.79
14.46

996
2.34
15.92
14.93

6255
14.71

Total 7260
17.08

6673
15.70

42516
100.00

Frequency	Missing	=	20592

In	order	to	include	all	observations,	the	analyst	can	include	the



MISSING	option	as	follows:
Program	3.6	Crosstabulation	of	Diabetes	Status	and	Primary	Medication	with
Missing	Obs	Included

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diabetics;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	freq;	tables	controlled_diabetic*primary_med/missing;

format	controlled_diabetic	yesno.;

title	‘Exploration	of	Diabetes	Type	and	Medicine’;

run;

Notice,	in	Output	3.6	Crosstabulation	of	Diabetes	Status	and
Primary	Medication	with	Missing	Obs	Included,	that	all	63,108
observations	are	included	in	the	table	analysis.	In	fact,	including
the	missing	observations	gives	the	analyst	additional	information.
For	example,	you	can	see	that	all	observations	with	missing	values
(20,592)	are	missing	only	values	on	the	primary	medication.
Furthermore,	you	can	see	that	of	those	missing	values	on
PRIMARY_MED,	14,012	(68.05%)	have	their	diabetes	controlled,
whereas	6580	(31.95%)	do	not	as	illustrated	in	Output	3.6
Crosstabulation	of	Diabetes	Status	and	Primary	Medication	with
Missing	Obs	Included.	This	is	in	contrast	to	those	not	missing	on
PRIMARY_MED,	where	14.17%	have	their	diabetes	controlled	and
85.29%	do	not.	In	addition,	note	that	the	values	of	the	percents
change	now	that	all	observations	are	included	in	the	analysis.

Finally,	for	those	whose	diabetes	is	controlled,	69.14%	have
missing	primary	medications;	however,	for	those	whose		diabetes	is
not	controlled,	only	15.36%	have	missing	primary	medications.
Consequently,	missingness	on	PRIMARY_MED	is	predictive	of
controlled	diabetes.
Output	3.6	Crosstabulation	of	Diabetes	Status	and	Primary	Medication	with	Missing
Obs	Included



Exploration	of	Diabetes	Type	and	Medicine

	

The	FREQ	Procedure

	

Table	of	CONTROLLED_DIABETIC	by	PRIMARY_MED

CONTROLLED_DIABETIC PRIMARY_MED

Frequency
Percent
Row	Pct
Col	Pct 	

AG
Inhibitor

Amylin
Mimetic Biguanide

DPP-4
Inhibitor

Incretin
Mimetic Meglitinide

No 6580
10.43
15.36
31.95

6048
9.58
14.12
85.65

117
0.19
0.27
46.61

6202
9.83
14.48
86.16

5834
9.24
13.62
86.14

94
0.15
0.22
47.00

Yes 14012
22.20
69.14
68.05

1013
1.61
5.00
14.35

134
0.21
0.66
53.39

996
1.58
4.91
13.84

939
1.49
4.63
13.86

106
0.17
0.52
53.00

Total 20592
32.63

7061
11.19

251
0.40

7198
11.41

6773
10.73

200
0.32

	

Table	of	CONTROLLED_DIABETIC	by	PRIMARY_MED

CONTROLLED_DIABETIC PRIMARY_MED

Frequency
Percent
Row	Pct
Col	Pct Sulfonylurea Thiazolidinedione Total

No 6210
9.84
14.50
85.54

5677
9.00
13.25
85.07

42841
67.89

Yes 1050
1.66
5.18
14.46

996
1.58
4.91
14.93

20267
32.11

Total 7260
11.50

6673
10.57

63108
100.00

	



View	and	Interpret	Numeric	Data
In	the	previous	section,	we	discussed	procedures	for	visualizing
categorical	data.	We	now	turn	our	attention	to	continuous	numeric
data.	Recall	that	numeric	variables	are	those	whose	values
represent	quantities.	When	analyzing	numeric	data,	the	analyst	will
want	a	picture	of	the	data	in	order	to	answer	questions	such	as,
‘Where	are	the	observations	clustered?’	or	‘What	is	the	shape	of	the
data—symmetric	or	skewed?’	The	analyst	will	also	be	interested	in
how	wide	the	data	is,	do	outliers—or	errors—exist	in	the	data,	and
may	even	want	to	compare	these	numeric	variables	across	different
groups.	Here,	we	will	discuss	three	kinds	of	plots	commonly	used	to
describe	the	distribution	of	numeric	variables,	namely,	the
histogram,	normal	probability	plot,	and	box-and-whisker	plot.
These	plots,	along	with	the	measures	of	center,	variation,	and
shape,	discussed	in	Chapter	2,	“Summarizing	Your	Data	with
Descriptive	Statistics”	allow	for	a	broader	understanding	of	the
data.

Histograms	Using	the	UNIVARIATE	Procedure
A	histogram	is	a	graphical	display	of	numeric	data	where	the	x-
axis	represents	the	values	of	the	numeric	variable	and	the	y-axis
represents	the	frequencies	or	proportion	of	observations	within	the
various	classes	along	the	X-axis,	as	illustrated	in	Figure	3.2
Histogram	for	Numeric	Data.		
Figure	3.2	Histogram	for	Numeric	Data



Note	that	each	class	is	made	up	of	a	range	of	values,	all	having	the
same	width.	Furthermore,	the	bars	of	a	histogram	must	touch;	in
other	words,	where	one	class	ends,	the	next	must	begin.	This
criterion	takes	into	account	the	continuous	nature	of	numeric	data
where	all	values	along	the	x-axis	are	possible.	This	is	certainly	to	be
distinguished	from	the	fact	that	the	bars	of	a	bar	chart	do	not
touch,	where	the	values	of	categorical	variables	are	distinct,	having
no	overlap	nor	ordering.	In	order	to	generate	the	histogram	and
other	visual	displays,	the	analyst	can	employ	the	UNIVARIATE
procedure.

Procedure	Syntax	for	PROC	UNIVARIATE

PROC	UNIVARIATE	is	a	procedure	used	to	create	histograms,
normal	probability	plots,	and	box-and-whisker	plots	and	has	the
general	form:

PROC	UNIVARIATE	DATA=SAS-data-set	<options>;

CLASS	variable-1	variable-2;

VAR	variable(s);

HISTOGRAM	variable(s)	</options>;

QQPLOT	variable(s)	</options>;

INSET	keyword(s)	</options>;

RUN;

	



To	illustrate	the	UNIVARIATE	procedure,	let’s	revisit	the	Diabetic
Care	Management	Case	and	consider	the	numeric	continuous
variable	BMI,	the	Body	Mass	Index.	The	BMI	is	calculated	by	taking
a	person’s	weight	(in	kilograms)	and	dividing	by	his	or	her	height
squared	(meters2);	the	BMI	is	used	for	purposes	of	grouping	a
person	into	weight	categories	associated	with	certain	health	risks.
Before	illustrating	the	visual	displays,	let’s	start	with	the	most	basic
output,	consisting	of	only	descriptive	statistics	for	BMI,	using
Program	3.7	Univariate	Statistics	on	BMI	for	200	Diabetic	Patients.
Program	3.7	Univariate	Statistics	on	BMI	for	200	Diabetic	Patients

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	univariate	data=patient;

var	bmi;

run;

As	seen	previously,	the	permanent	data	set,	DIAB200,	is	placed	into
the	temporary	data	set,	PATIENT,	and	PROC	UNIVARIATE	is
applied	to	the	data	set,	PATIENT.	The	VAR	statement	requests	that
univariate	statistics	are	provided	for	the	variable	BMI.	If	the	VAR
statement	is	omitted,	SAS	will	conduct	univariate	procedures	on	all
numeric	variables	in	the	data	set.	

The	UNIVARIATE	procedure	produces	five	tables	of	summary
information,	as	seen	in	Output	3.7	Univariate	Statistics	on	BMI	for
200	Diabetic	Patients,	four	of	which	are	for	descriptive	purposes
and	will	be	discussed	here.	Each	of	the	tables	provides	for	the
following:

1.						The	first	three	tables	provide	various	descriptive	summaries
described	in	Chapter	2,	“Summarizing	Your	Data	with
Descriptive	Statistics.”	Specifically,	those	tables	include
measures	of	center	(mean,	median,	and	mode),	dispersion
(range,	variance,	and	standard	deviation),	and	shape
(skewness	and	kurtosis).	The	interquartile	range	represents
the	range	of	the	middle	50	percent	of	the	data.

2.						The	fourth	table	tests	for	location,	provides	for	inferential



tests,	and	will	be	discussed	in	Chapter	4,	“The	Normal
Distribution	and	Introduction	to	Inferential	Statistics.”

3.						The	fifth	table,	referred	to	as	Quantiles	(Definition	5),	lists
the	numeric	values	that	represent	the	location	along	the	x-axis
(minimum,	maximum,	percentile,	and	quartiles).		It	should	be
noted	that	the	interquartile	range	is	the	difference	between
Q1	and	Q3.		For	example,	the	75th	percentile	(Q3)	is	32.7516,
indicating	that	75%,	or	three-quarters,	of	the	patients	have
BMI	less	than	32.7516.

4.						The	last	table	provides	a	list	of	the	extreme	values,
specifically,	the	five	smallest	values	and	the	five	largest
values.	The	default	number	of	high	and	low	values	provided	is
five	and	can	be	changed	to	n	by	adding	the	NEXTROBS=
option	to	the	procedure	as	follows:

proc	univariate	data=patient	nextrobs=n;

Note	that	a	more	in	depth	description	of	this	output	will	be
provided	after	more	coverage	of	the	UNIVARIATE	procedure.
Output	3.7	Univariate	Statistics	on	BMI	for	200	Diabetic	Patients

Moments

N 200 Sum	Weights 200

Mean 30.072601 Sum
Observations

6014.5202

Std	Deviation 5.60985177 Variance 31.4704368

Skewness 1.0693403 Kurtosis 1.9520074

Uncorrected
SS

187134.883 Corrected	SS 6262.61693

Coeff
Variation

18.6543617 Std	Error	Mean 0.39667642

	

Basic	Statistical	Measures

Location Variability

Mean 30.07260 Std	Deviation 5.60985

Median 29.46455 Variance 31.47044

Mode . Range 32.45714



	 	 Interquartile
Range

7.17870

	

Tests	for	Location:	Mu0=0

Test Statistic p	Value

Student’s	t t 75.81142 Pr	>	|t| <.0001

Sign M 100 Pr	>=
|M|

<.0001

Signed
Rank

S 10050 Pr	>=
|S|

<.0001

	

Quantiles	(Definition	5)

Level Quantile

100%	Max 52.4590

99% 49.1948

95% 38.8705

90% 37.2570

75%	Q3 32.7516

50%
Median

29.4646

25%	Q1 25.5729

10% 23.7092

5% 22.7304

1% 20.8097

0%	Min 20.0018

	

Extreme	Observations

Lowest Highest

Value Obs Value Obs

20.0018 189 46.5296 17

20.7570 116 46.5842 135



20.8624 131 47.2062 32

21.4191 92 51.1834 188

21.7975 147 52.4590 83

Now	let’s	elaborate	on	this	output	and	provide	the	histogram	for
visualizing	the	summary	measures	just	discussed.	To	do	that,	the
analyst	could	simply	add	the	HISTOGRAM	statement.	If	the
HISTOGRAM	statement	is	used	with	no	accompanying	options,
then	SAS	will	decide	how	many	classes	the	histogram	should	have
and	the	width	for	the	classes.	As	an	analyst,	you	may	prefer	to	use
what	you	know	about	the	data	to	customize	the	histogram.	In	order
to	do	that	consider	the	following	steps:

1.						Decide	on	the	number	of	classes,	or	bars,	in	your	histogram.

2.						Determine	the	width	of	each	class.

3.						Define	the	lower-class	limits	and	upper-class	limits	for	each
bar.

4.						Define	the	midpoint	as	the	average	of	the	lower-class	and
upper-class	limits.

Solution:

Step	1:		Let’s	say,	for	example,	the	analyst	wants	to	first	consider
using	10	classes.

Step	2:		To	determine	the	width	of	each	class,	consider	that	you	are
taking	the	x-axis,	starting	at	the	minimum	BMI	of	20.0018	and
ending	at	the	maximum	of	52.4590,	and	cutting	it	into	ten	equal
parts,	using	the	formula:

	

While	the	calculated	width	is	3.25	BMI	units,	you	should	always
select	a	width	that	simplifies	the	interpretation.	As	a	result,	let’s
round	up	to	a	width	of	5.0.

Step	3:		When	constructing	the	limits	for	the	first	class,	the	analyst
must	consider	that	the	class	must	contain	the	first	observation
which	is	the	minimum	value	of	20.0018.	So	while	the	analyst	may
be	justified	in	using	20.0018	as	the	lower-class	limit,	for	ease	of



interpretation,	he	or	she	may	prefer	to	start	the	class	at	a	value	of
20.0	instead.	Because	the	width	is	5,	the	upper-class	limit	of	the
first	class	would	be	a	BMI	of	25,	excluding	25.	The	next	class	would
start	at	25,	including	25,	and	then	end	at	30,	excluding	30,	and	so
on.		As	a	result,	the	classes	would	be	defined	as	seen	in	Table	3.1
Summary	Data	for	the	Variable	BMI.

Step	4:		To	calculate	the	midpoints	of	each	class,	simply	take	the
average	of	the	lower-class	and	upper-class	limits	of	the	associated
class.	Note	that	the	values	of	the	midpoints	will	be	used	to	tailor
the	SAS	output.	
Table	3.1	Summary	Data	for	the	Variable	BMI

BMI
Class

BMI
Midpoint Frequency Percent

Cumulative
Frequency

Cumulative
Percent

20	up	to		25 22.5 35 17.5 35 17.5

25	up	to		30 27.5 71 35.5 106 53.0

30	up	to		35 32.5 60 30.0 166 83.0

35	up	to		40 37.5 26 13.0 192 96.0

40	up	to		45 42.5 3 1.5 195 97.5

45	up	to		50 47.5 3 1.5 198 99.0

50	up	to		55 52.5 2 1.0 200 100.0

In	order	to	generate	the	histogram,	the	analyst	would	add	the
HISTOGRAM	statement	with	the	MIDPOINTS	option.	The	default
scale	for	the	Y-axis	is	percent,	so	in	order	to	change	the	scale	to
counts,	the	VSCALE=	option	was	included.	Finally,	the	analyst
would	include	the	NORMAL	option	so	that	the	normal	curve	having
the	mean	and	standard	deviation	as	the	original	data	would	overlay
the	histogram,	as	seen	in	Program	3.8	Histogram	of	the	Variable
BMI.
Program	3.8	Histogram	of	the	Variable	BMI

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;



run;

	

proc	univariate	data=patient;

var	bmi;

histogram	/midpoints	=	22.5	to	52.5	by	5

vscale=count

normal	kernel;

run;

The	histogram	provided	in	Output	3.8	Histogram	of	the	Variable
BMI,	along	with	the	descriptive	information	from	Figure	5.10,	gives
the	analyst	the	information	needed	to	describe	Body-Mass-Index,
BMI,	for	the	200	diabetic	patients.	In	particular,	we	can	say	that:

1.						BMI	has	a	range	of	32.5,	with	a	minimum	of	20.0	and	a
maximum	of	52.5.		The	five	smallest	values	range	from	20.0
to	21.8	and	the	five	largest	values	range	from	46.5	to
52.5.		The	extreme	values	are	represented	in	this	histogram	by
both	a	long	right	tail	and	values	bunched	on	the	left
side.		Also	note	that	the	five	largest	BMI	values	are
represented	by	the	3	rightmost	bars,	whereas	the	five	smallest
values	are	represented	by	the	one	leftmost	bar.

2.						With	respect	to	measures	of	center,	the	mean	BMI	is	30.0,
which	is	the	typical	value	or	the	balance	point	of	the
histogram.		The	median	BMI	is	29.5	which	is	the	midpoint;
that	tells	us	that	half	of	the	patients	have	BMI	less	than	29.5
and	half	of	the	patients	have	BMI	more	than	29.5.		Because
	no	BMI	value	appears	more	than	once,	there	is	no	mode;
however,	you	can	tell	from	the	histogram	that	the	largest
number	of	patients,	71,	has	BMI	around	27.5,	say,	between	25
and	30,	as	indicated	by	the	highest	bar.

3.						The	BMI	values	are	right,	or	positively,	skewed	(skewness	=
+1.07).	This	pattern	is	especially	obvious	by	the	long	right
tail.	Four	percent	of	the	patients	have	BMI	at	or	larger	than
40.	Eight-three	percent	of	patients	have	BMI	under	35.	Note
also	that	the	histogram	deviates	from	the	normal	curve,
indicating	that	the	data	is	not	normal.

4.						Sixty-five	percent	of	the	patients	have	BMI	between	25	and
35	which	is	approximately	one	standard	deviation	from	the
mean.



Output	3.8	Histogram	of	the	Variable	BMI

Some	concluding	remarks	are	in	order.	First,	notice	that	we	initially
set	the	number	of	bars	to	ten	but	the	number	of	bars	produced	was
seven.	This	sometimes	happens	when	rounding	the	width	and/or
selecting	the	lower-class	limit	of	the	first	class	so	as	to	enhance	the
simplicity	in	interpretation.	Suffice	it	to	say	that	creating	a
histogram	is	just	as	much	art	as	science	and	any	two	people	will
arrive	at	two	different	versions	of	the	representation;	however,	the
general	conclusions	should	be	the	same.	Keep	in	mind,	however,
that	the	analyst	should	use	anywhere	from,	say,	5	to	20	classes;
where	a	relative	small	number	of	classes	is	best	for	small	data	sets,
and	as	the	data	set	gets	larger,	the	analyst	should	consider	more
classes.	Furthermore,	the	KERNEL	option	requests	a	curve	that	fits
more	closely	to	the	histogram,	which	supports	the	conclusion	that
the	data	is	not	normal.

Q-Q	Plots	Using	the	UNIVARIATE	Procedure
When	you	are	exploring	your	data,	there	are	many	tools	available
to	investigate	the	nature	of	numeric	data.	One	such	tool	is	the
quantile-quantile	plot.	The	quantile-quantile	plot,	also	referred	to
as	the	Q-Q	plot,	is	a	tool	used	by	the	analyst	as	a	visual	approach
to	inspecting	whether	or	not	a	numeric	variable	originates	from	a



theoretical	distribution,	for	example,	the	normal	distribution.	The
Q-Q	plot	is	more	effective	and	useful	in	certain	circumstances	than
the	histogram	in	that	it	is	more	sensitive	to	subtle	deviations	from
normality.

The	Q-Q	plot	is	created	from	a	set	of	n	ordered	pairs,	(Zi,	Xi),	where
Zi	represents	the	expected	Z-score	for	observation	i	under	the
assumption	that	the	observation	originates	from	a	normal
population,	and	Xi	is	the	actual	value	of	the	variable	for
observation	i.	

To	illustrate,	let’s	consider	a	small	data	set	consisting	of	eight
teenagers	and	the	number	of	texts	each	received	in	an	hour,	having
ranks	1	through	7:	

10									12									14										16										18										20									22								

Simulation	studies	have	shown	that,	for	repeated	random	samples
selected	from	normal	populations,	the	ith	observation	in	an	ordered
array	has	a	standardized	Z-score	such	that	i/(n+1)	proportion	of
the	area	under	the	normal	curve	is	below	that	Z-score.	So,	to	get
the	expected	Z-scores	for	each	of	the	n	observations,	we	would
divide	the	standard	normal	distribution	into	(n+1)	equal	parts,
each	with	1/(n+1)	area	under	the	curve.	

For	our	example,	with	a	sample	size	of	7,	we	would	divide	the
standard	normal	distribution	into	8	equal	parts,	each	making	up
1/8,	0.125,	of	the	entire	area.	So,	for	example,	using	the
cumulative	Z-table	found	in	Appendix	C	Z	Table,	you	will	find	a	Z-
score	of	-1.15	associated	with	0.125	area	under	the	curve.	In	short,
you	would	expect	7	observations	randomly	selected	from	a	normal
population	to	have	the	Z-scores,	as	illustrated	in	Table	3.2	Expected
Z-Scores	for	Number	of	Texts,
Table	3.2	Expected	Z-Scores	for	Number	of	Texts

X=Number	of
Texts

Observation
Number

Cumulative	Area
Below	the	Z-
Score Z-Score

10 1 1/(7+1)=0.125 -1.15

12 2 2/(7+1)=0.250 -0.67



14 3 3/(7+1)=0.375 -0.32

16 4 4/(7+1)=0.500 0.00

18 5 5/(7+1)=0.625 0.32

20 6 6/(7+1)=0.750 0.67

22 7 7/(7+1)=0.875 1.15

	

The	Z-scores	paired	with	the	original	X	values	give	the	following	Q-
Q	plot,	as	illustrated	in	Figure	3.3	Q-Q	Plot	for	Number	of	Texts.
Figure	3.3	Q-Q	Plot	for	Number	of	Texts

Interpreting	the	Q-Q	Plots

In	general,	if	the	points	on	the	Q-Q	plot	fall	on	or	near	a	straight
line,	then	the	data	under	investigation	is	considered	approximately
normal.	Specifically,	if	the	data	under	investigation	has	a	mean	of	0
and	a	standard	deviation	of	1,	then	the	points	should	fall	on	or	near
the	straight	line	defined	by	y	=	x.	If	the	data	under	investigation
differs	in	its	mean	and	standard	deviation	from	the	theoretical
distribution,	then	the	points	should	fall	on	or	near	the	straight	line
defined	by	y	=	mx+b,	where	b	is	the	estimated	mean	and	m	is	the



estimated	standard	deviation	of	the	theoretical	distribution.	The
interpretation	of	the	Q-Q	plots	requires	some	judgment.	So,	the
closer	the	points	fall	around	a	line,	the	stronger	the	evidence	that
the	data	is	normally	distributed.

In	order	to	generate	the	Q-Q	plot,	the	analyst	can	employ	the
UNIVARIATE	procedure	as	in	Program		3.9	Q-Q	Plot	for	the
Variable	BMI.
Program		3.9	Q-Q	Plot	for	the	Variable	BMI

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	univariate	data=patient;

var	bmi;

histogram	/midpoints	=	22.5	to	52.5	by	5

vscale=count;

qqplot/normal	(mu=est	sigma=est);

run;

As	stated	previously,	Program		3.9	Q-Q	Plot	for	the	Variable	BMI
provides	descriptive	statistics	and	the	histogram.	With	the	addition
of	the	QQPLOT	statement,	the	output	now	provides	the	Q-Q	plot.
The	NORMAL	option	indicates	that	the	theoretical	distribution	for
comparing	to	the	data	is	the	normal	distribution.	Other	theoretical
distributions	can	be	tested,	including	exponential,	gamma,	and
Weibull,	to	name	a	few.	The	NORMAL	options,	MU=	and
SIGMA=,	request	a	distribution	reference	line	with	the	specified
population	mean	and	standard	deviation,	respectively,	and	EST
requests	that	the	sample	mean	and	sample	standard	deviation	be
used	as	estimates	of	the	population	mean	and	standard	deviation,
respectively.	
Output	3.9	Q-Q	Plot	for	the	Variable	BMI



From	the	Q-Q	plot	provided	in	Output	3.9	Q-Q	Plot	for	the	Variable
BMI,	there	is	an	indication	that	the	data	is	right	skewed.	So	how
does	the	analyst	interpret	the	Q-Q	plot	for	describing	the
characteristics	of	the	data?	In	general,	the	following	rules	of	thumb
can	be	used	for	interpretation	purposes:

1.						When	the	Q-Q	plot	is	concave	up,	the	data	distribution	is
right	skewed.

2.						When	the	Q-Q	plot	is	concave	down,	the	data	distribution	is
left	skewed.

3.						When	the	Q-Q	plot	has	points	below	the	line	on	the	left	side
and	above	the	line	on	the	right	side,	the	data	distribution	has
long	tails.

4.						When	the	Q-Q	plot	has	points	above	the	line	on	the	left	side
and	below	the	line	on	the	right	side,	the	data	distribution	has
short	tails.

5.						When	a	few	points	deviate	from	the	line,	there	may	be
outliers.

Box-and-Whisker	Plot	Using	the	UNIVARIATE
Procedure
The	box-and-whisker	plot,	often	referred	to	as	the	box	plot,	is	a
graphical	way	of	representing	various	characteristics	of	the	data,



and	is	especially	useful	when	comparing	numeric	variables	across
multiple	groups.	First	introduced	by	John	W.	Tukey	in	the	1970s,
the	box	plot	is	constructed	using	a	five-number	summary,
consisting	(in	order)	of	the	minimum,	the	quartiles	(Q1,	Median,
Q3),	and	the	maximum	values	of	the	data.	These	values	aid	in
describing	the	shape	of	the	distribution,	the	middle	half	of	the	data,
and	extreme	values,	including	outliers.

Calculating	Quartiles	for	Five-Number	Summary

Before	describing	the	box	plot,	let’s	discuss	the	calculation	of	the
quartiles.	To	illustrate,	let’s	consider	the	small	data	set	consisting
of	eight	teenagers	and	the	number	of	texts	each	received	in	an
hour,	having	ranks	1	through	7:	

10									12									14										16										18										20									22

The	quartiles	split	the	data	set	into	quarters.	The	first	quartile	is	the
value	where	25%	of	the	observations	are	at	or	below,	the	second
quartile	is	the	value	where	50%	of	the	observations	are	at	or	below
and	is	equivalent	to	the	median,	and	the	third	quartile	is	the	value
where	75%	of	the	observations	are	at	or	below.

In	order	to	determine	the	quartiles,	the	data	set	must	be	placed	into
an	ordered	array	that	ranks	the	observations	from	smallest	to
largest.	For	n	observations	in	an	ordered	array,	the	positions	of	the
first	quartile	(Q1)	and	the	third	quartile	(Q3)	are	found	using	the
following	formula:

	

So	for	our	sample	data	set,	the	position	of	Q1	is	calculated	using:

=		2

Therefore,	Q1	is	located	in	the	second	position	of	the	ordered	array,
Q1	=	12,	meaning	that	one-quarter,	or	25%,	of	the	data	is	at	or
below	12	texts.	The	position	of	the	Q3	is	calculated	using:



		=		6

Therefore,	Q3	is	located	in	the	sixth	position	of	the	ordered	array,
Q3	=	20,	meaning	that	three-quarters,	or	75%,	of	the	data	is	at	or
below	20	texts.

Notice	that	for	our	sample	size	of	7,	the	positions	of	the	quartiles
are	integers,	but	this	may	not	always	be	the	case.	If	the	position
number	is	composed	of	a	half,	for	example,	3.5,	then	the	quartile	is
halfway	between	the	third	and	the	fourth	observation	and	is	the
average	of	the	numbers	in	the	third	and	the	fourth	positions,
respectively.	If	the	position	number	is	any	other	decimal	value,
round	that	position	number	to	the	nearest	integer	and	select	the
data	value	in	that	corresponding	position.

Now	that	we	have	the	quartiles,	we	can	identify	the	minimum	and
maximum	values,	along	with	the	median	to	get	the	five-number
summary	(10,	12,	16,	20,	22).	The	box	plot	is	constructed	along	the
y-axis	by	placing	a	horizontal	line	at	each	point	on	the	y-axis
corresponding	to	the	five	numbers,	connecting	the	quartiles	to	form
the	box,	and	then	connecting	the	extreme	values	to	the	box	to	form
the	whiskers,	as	seen	in	Figure	3.4	Box	Plot	for	Number	of	Texts.	
Figure	3.4	Box	Plot	for	Number	of	Texts

Notice	that	the	box	plot	for	our	texts	data	is	symmetric.	The
median	cuts	the	box	in	half	and	the	whiskers	are	the	same	length.



In	fact,	for	symmetric	data,	the	mean	and	median	are	equal;	in	our
example,	the	mean	and	median	number	of	texts	is	16.	These	facts
are	all	an	indication	that	our	data	is	symmetric.

Interpreting	the	Box	Plot

When	you	are	inspecting	the	box	plot,	there	are	some	general
guidelines	for	determining	the	characteristics	of	the	data:

1.				The	data	is	symmetric	when	the	median	cuts	the	box	in	half
and	the	lengths	of	the	whiskers	are	equal.	As	you	may	recall
from	Chapter	2,	“Summarizing	Your	Data	with	Descriptive
Statistics”	when	data	is	symmetric,	the	mean	and	median	are
equal.

2.				The	data	is	right	skewed	(positively	skewed)	if	the	median	is
below	the	center	of	the	box	and	the	upper	whisker	is	longer
than	the	lower	whisker.	Note	that	if	the	median	is	below	the
center	of	the	box,	there	is	a	bunching	of	the	data	at	the	lower
end	of	the	y-axis	and	fewer	observations	at	the	upper	end.
Also	keep	in	mind	that	when	the	upper	whisker	is	longer,	the
upper	25%	of	the	data	has	a	larger	range.

3.				The	data	is	left	skewed	(negatively	skewed)	if	the	median	is
above	the	center	of	the	box	and	the	lower	whisker	is	longer
than	the	upper	whisker.	Note	that	if	the	median	is	above	the
center	of	the	box,	there	is	a	bunching	of	the	data	at	the	upper
end	of	the	y-axis	and	fewer	observations	at	the	lower	left	end.
Also	keep	in	mind	that	when	the	lower	whisker	is	longer,	the
lower	25%	of	the	data	has	a	larger	range.

4.				The	interquartile	range	(IQR)	is	the	range	of	the	middle
half	of	the	data	and	is	defined	as	Q3-Q1.	If	any	observation	is
more	than	1.5	x	IQR	from	the	box,	that	observation	is
considered	an	outlier.		An	outlier	is	designated	by	an	asterisk
(*)	on	the	box	plot.

In	order	to	generate	the	box	plot,	the	analyst	can	employ	the
UNIVARIATE	procedure	as	follows:
Program	3.10	Distribution	and	Probability	Plot	for	BMI

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;



run;

	

proc	univariate	data=patient	plots;

var	bmi;

histogram	/	midpoints	=	22.5	to	52.5	by	5

vscale=count;

run;

Notice	that	the	PLOTS	option	is	added	to	the	PROC	UNIVARIATE
statement	and,	as	a	result,	the	output	provided	in	Output	3.10
Distribution	and	Probability	Plot	for	BMI	includes	both	the	box	plot
and	Q-Q	plot.		The	QQPLOT	statement	was	not	included	here	so	as
to	prevent	duplication.
Output	3.10	Distribution	and	Probability	Plot	for	BMI

At	first	glance,	we	have	three	graphics	supporting	the	notion	that



BMI	values	are	right	skewed,	namely,	the	histogram,	Q-Q	plot,	and
the	box	plot.	Consider	now	the	box	plot,	created	from	the	five-
number	summary,		20.00,	25.57,	29.46,	32.75,	52.46.	Notice	that
the	median	cuts	the	box	in	half;	however,	the	upper	whisker	is
longer,	indicating	a	right	skewed	distribution.		

	

Note	also	the	outliers	at	the	upper	end	of	the	distribution	as
indicated	by	the	circles	in	the	box	plot—	those	are	observations
whose	values	are	more	than	1.5xIQR	units	from	either	of	the
quartiles,	Q1	or	Q3.	Those	limits	are	defined	by:

Upper	Limit	=	Q3	+	1.5IQR	=	32.75	+	1.5(7.18)	=	43.52

Lower	Limit	=	Q1	–	1.5IQR	=	25.57	–	1.5(7.18)	=	14.8

In	other	words,	any	observations	outside	of	BMI	values	14.8	and
43.52	are	outliers.	There	are	no	BMI	values	below	14.8.	Therefore,
there	are	no	outliers	on	the	lower	end	of	the	distribution.	However,
an	inspection	of	the	data	values	indicates	that	seven	BMI	values
exceed	43.52,	as	shown	by	the	outliers	on	the	box	plot.	Notice	also
that	the	outliers	(extremely	large	numbers)	pull	the	mean	to	the
right	as	indicated	by	the	diamond	to	the	right	of	the	median.	In
short,	the	box	plot	is	a	very	effective	tool	for	detecting	unusual
observations.

UNIVARIATE	Procedures	Using	the	INSET	Statement
As	described	in	previous	sections,	the	UNIVARIATE	procedure
provides	the	analyst	with	a	wealth	of	information	through	visual
plots	and	accompanying	descriptive	statistics	which	help	to	make
sense	of	the	plots.	The	INSET	statement	can	be	included	so	that	the
pertinent	statistics	are	directly	printed	on	the	graph	as	illustrated	in
Program	3.11	Histogram	with	Descriptive	Statistics	of	BMI.
Program	3.11	Histogram	with	Descriptive	Statistics	of	BMI

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	univariate	data=patient	plots;



var	bmi;

histogram	/	midpoints	=	22.5	to	52.5	by	5

vscale=count

normal;

inset	mean	median	q1	q3	std	min	max	nobs	nmiss	skewness	/	pos
=	ne;

run;

Notice	that	the	INSET	statement	has	been	added	with	various
statistics	keywords	requesting	that	the	mean,	median,	first	quartile,
third	quartile,	standard	deviation,	minimum,	maximum,	number	of
observations,	number	of	missing	observations,	and	skewness,	to
name	a	few.	Notice	also	that	the	INSET	statement	has	the	POS=
option	which	allows	the	analyst	to	define	where	the	inset	should	be
included	in	relation	to	the	graph;	in	particular,	NE	requests	that	the
statistics	be	included	in	the	‘northeast’	quadrant	of	the	graph,	as
illustrated	in	Output	3.11		Histogram	with	Descriptive	Statistics	of
BMI.	In	short,	many	of	the	conclusions	we	made	previously	about
BMI	from	many	pages	of	output	can	be	reduced	to	one	plot.
Output	3.11		Histogram	with	Descriptive	Statistics	of	BMI



UNIVARIATE	Procedures	Using	the	CLASS	Statement

In	many	situations,	a	numeric	variable	may	differ	naturally	across
various	groups,	and	consequently,	the	variable	should	be	analyzed
separately	for	each	group.	For	example,	males	and	females	differ
significantly	on	weight.	Consequently,	we	should	investigate	the
bivariate	relationship	between	the	numeric	variable,	weight,	and
the	categorical	variable,	gender.	If	the	analyst	produces	numeric
and	graphical	summaries	of	an	entire	data	set,	ignoring	gender,
there	would	be	a	distorted	view	of	weight	for	the	observations
under	investigation.	

For	the	diabetic	care	management	case,	the	average	weight	of	all
200	patients	is	154.1	pounds	with	a	standard	deviation	of	28.9
pounds.	Obviously	the	average	weight	for	females	is	less	than	154.1
pounds	and	the	average	weight	of	males	is	more.	Furthermore,
because	there	are	group	differences	in	weights	across	males	and
females,	the	standard	deviation	for	the	entire	200	observations	is
larger	than	that	for	each	of	the	respective	groups	which	are	more
similar	in	their	weights	and	have	relatively	smaller	standard
deviations.	

So	how	would	the	analyst	go	about	describing	each	group
separately?		Each	SAS	procedure	can	incorporate	a	BY	statement	to
obtain	separate	analyses.	The	analyst	could	also	use	the	CLASS	in
order	to	conduct	univariate	analyses	on	WEIGHT	by	the	class,
GENDER.	The	difference	between	using	the	BY	statement	and	the
CLASS	statement	is	that,	not	only	do	you	not	need	to	sort	using	a
CLASS	statement,	but	you	get	a	single	table	and	single	panel	plot
for	all	CLASS	groups	with	the	CLASS	statement,	allowing	you	to
easily	compare	measures	or	plots.	With	a	BY	statement,	the	output
for	each	BY	group	is	displayed	separately.		In	Program	3.12
Histogram	of	Pounds	with	Descriptive	Statistics	by	Gender,	we	use
the	CLASS	statement.
Program	3.12	Histogram	of	Pounds	with	Descriptive	Statistics	by	Gender

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

pounds	=	weight*2.20462;

run;

	



proc	univariate	data=patient	plots;

class	gender;

var	pounds;

histogram	/midpoints	=	100	to	270	by	10

vscale=count;

inset	mean	median	q1	q3	std	min	max	range	nobs	nmiss	skewness
/	pos	=	ne;

run;

An	inspection	of	the	output	shows	many	pages	of	information	that
distinguishes	the	weights	between	males	and	females.	However,
Program	3.12	Histogram	of	Pounds	with	Descriptive	Statistics	by
Gender	uses	the	INSET	statement,	along	with	the	CLASS	statement,
allowing	us	to	focus	on	a	summary	of	those	statistics	with	the
accompanying	histograms,	for	each	males	and	females,	as	shown	in
Output	3.12	Histogram	of	Pounds	with	Descriptive	Statistics	by
Gender.
Output	3.12	Histogram	of	Pounds	with	Descriptive	Statistics	by	Gender

In	a	single	picture	we	can	see	that	the	weights	differ	between	males



and	females	in	terms	of	their	position	on	the	X-axis,	as	measured	by
the	mean,	median,	quartiles,	minimum	and	maximum	values;	in
general	males	weigh	more	than	females.	In	particular,	females
average	133.9	pounds,	with	a	median	of	133.9	pounds,	a	minimum
of	103.7	pounds,	a	maximum	of	199.0	pounds,	first	quartile	of
120.2	pounds,	and	third	quartile	of	143.2	pounds;	whereas	males
average	171.5	pounds,	with	a	median	of	169.2	pounds,	a	minimum
of	132.4	pounds,	a	maximum	of	260.0	pounds,	first	quartile	of
156.0	pounds,	and	third	quartile	of	182.7	pounds

Males	and	females	differ	in	terms	of	their	spread	and	shape.
Females	have	less	dispersion	in	weights	with	a	range	of	95.3
pounds	and	a	standard	deviation	of	19.9	pounds,	than	do	males
with	a	range	of	127.7	pounds	and	a	standard	deviation	of	23.7.
Note	that	the	mean,	range,	and	standard	deviation	for	males	weight
may	be	influenced	by	the	outlying	male	weights	in	the	230	to	260
range;	these	outliers	may	also	account	for	a	slightly	longer	right	tail
for	males,	as	measured	by	the	skewness	of	1.44.

In	short,	this	data	supports	the	idea	that	WEIGHT	is	associated
with,	or	depends	upon,	GENDER.	In	fact,	in	Chapter	6,	“Two-
Sample	T-Test,”	you	will	see	how	hypothesis	testing	is	used	to
determine	if	means	differences	exist	across	two	populations,	based
upon	sample	data.	Specifically,	we	will	discuss	methods	for	using
sample	data	to	detect	differences	in	weight,	for	example,	when
comparing	males	and	female	populations.

Visual	Analyses	Using	the	SGPLOT	Procedure
SAS	software	was	initially	developed	as	code-based	software	where
the	emphasis	was	placed	on	statistical	analysis.		Recognizing	that
data	visualization	is	the	first	step	in	any	statistical	analysis,	a	new
suite	of	Statistical	Graphics,	or	SG,	procedures	were	introduced	in
SAS	9.2,	including	SGPLOT,	SGPANEL,	SGSCATTER,	and
SGRENDER.		The	purpose	of	these	procedures	is	to	provide	data
visualizations	as	a	complement	to	the	graphics	generated	by
ordinary	statistical	procedures.		This	section	will	specifically
describe	selected	features	of	the	SGPLOT	procedure	which	is
designed	to	produce	one	or	more	plots	overlaid	on	a	single	set	of
axes.	Note,	the	SGPLOT	procedure	is	being	used	to	introduce	some



concepts	seen	in	scatter	plots.		The	exam	does	not	test	on	SGPLOT.

Procedure	Syntax	for	PROC	SGPLOT
PROC	SGPLOT	is	a	procedure	used	to	create	various	types	of	plots,
or	data	visualizations,	and	includes	(Heath,	2007):		

1.						Basic	Plots—scatter,	series,	step,	band,	and	needle

2.						Fits	and	Confidence—loess,	regression,	penalized	B-spline,
and	ellipse

3.						Distributions—horizontal	and	vertical	box	plots,	histogram,
normal	curve,	and	kernel	density	estimate

4.						Categorizations—dot	plot,	horizontal	and	vertical	bar	charts,
horizontal	and	vertical	line	charts

The	SGPLOT	procedure	has	the	general	form:

PROC	SGPLOT	DATA	=	SAS-data-set<option(s)>;

REG	X=	numeric-variable	Y=	numeric-variable	</option(s)>;

SCATTER	X=	variable	Y=	variable	</option(s)>;	

HBAR	category-variable	<	/option(s)	>;

HBOX	response-variable	</option(s)>;		
HISTOGRAM	response-variable	<	/option(s)>;

DENSITY	response-variable	</option(s)>;

VBAR	category-variable	<	/option(s)>;

VBOX	response-variable	</option(s)>;

RUN;

Exploring	Bivariate	Relationships	with	Basic	Plots,
Fits,	and	Confidence
In	previous	sections	of	this	chapter,	we	investigated	bivariate
relationships.		In	particular,	we	reviewed	the	FREQ	procedure	and
crosstabulations	as	a	means	of	establishing	a	relationship	between
two	categorical	variables,	specifically	Diabetes	Controlled	Status
and	Renal	Disease.	We	then	utilized	the	UNIVARIATE	procedure	in
conjunction	with	the	BY	statement	to	investigate	the	relationship
between	one	continuous	numeric	variable	and	one	categorical



variable;	in	this	case,	we	observed	how	weight	differed	across
gender.		Finally,	we	used	the	CHART	procedure	to	further
investigate	relationships	between	two	or	more	variables,	using	the
GROUP=	and	SUBGROUP=	options.	Here	we	will	specifically
explore	the	relationship	between	two	numeric	continuous	variables
using	the	SGPLOT	procedure	and	will	provide	alternatives	to
exploring	bivariate	relationships	among	categorical	and/or	numeric
variables.	Keep	in	mind	here	that	we	will	discuss	selected	options
for	various	statements	as	a	way	to	illustrate	the	features	of	the
SGPLOT	procedure;	however,	you	should	refer	to	the	online	SAS
reference	guides	to	investigate	the	entire	suite	of	possibilities	for
tailoring	your	output.

The	SCATTER	and	REG	Statements

To	illustrate	the	SGPLOT	procedure,	let’s	revisit	the	Diabetic	Care
Management	Case	and	consider	the	two	numeric	continuous
variables,	namely	systolic	blood	pressure	(SYST_BP)	and	diastolic
blood	pressure	(DIAST_BP).	In	reality,	there	is	a	positive
relationship	between	systolic	blood	pressure	and	diastolic	blood
pressure;	however,	let’s	explore	that	question	by	using	Program
3.13	Scatter	Plot	of	Systolic	and	Diastolic	Blood	Pressure.

The	SGPLOT	in	conjunction	with	the	SCATTER	statement	requests
SAS	to	create	a	bivariate	scatter	plot	on	the	data	set	PATIENT	as
indicated	with	the	DATA=	statement	using	the	X	and	Y
coordinates	as	defined	by	the	two	numeric	continuous	variables,
SYST_BP	and	DIAST_BP,	respectively.	Note	also	that	the	marker
attributes	option,	MARKERATTRS,	is	illustrated	as	a	means	of
defining	the	plot	symbol	and	color,	and	is	an	example	of	the	many
options	that	can	be	used	with	the	SCATTER	statement.
Program	3.13	Scatter	Plot	of	Systolic	and	Diastolic	Blood	Pressure

ods	html	style	=	journal;

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab200;

run;

	

proc	sgplot	data=patient;

scatter	x=syst_bp	y=diast_bp



/	markerattrs=(symbol=diamondfilled	color=black);

title	‘Diabetic	Patients	Systolic	vs	Diastolic	Blood
Pressure’;

run;

So,	as	illustrated	in	Output	3.13	Scatter	Plot	of	Systolic	and
Diastolic	Blood	Pressure,	we	see	that	the	observations	are
represented	by	black	diamonds	as	opposed	to	the	default	black
open	circles.	We	can	see	also	that	the	scatter	plot	confirms	our
thought	that	systolic	blood	pressure	and	diastolic	blood	pressure
are	positively	related.
Output	3.13	Scatter	Plot	of	Systolic	and	Diastolic	Blood	Pressure

We	can	enhance	the	relationship	visually	by	including	a	regression
line	or	confidence	limits	as	illustrated	in	the	partial	Program	3.14
Regression	Line	and	Confidence	Limits	on	Bivariate	Scatter	Plot.
The	SGPLOT	in	conjunction	with	the	REG	statement	requests	SAS
to	create	a	bivariate	scatter	plot	using	the	X	and	Y	coordinates	as
defined	by	the	two	numeric	continuous	variables,	SYST_BP	and
DIAST_BP,	respectively,	and	overlays	the	regression	plot.
DEGREE=n		requests	that	SAS	fit	a	polynomial	of	degree	n.	The
default	DEGREE	is	1	requesting	that	SAS	fit	a	straight	line	to	the
scatter	plot,	as	depicted	in	Program	3.14	Regression	Line	and



Confidence	Limits	on	Bivariate	Scatter	Plot.	
Program	3.14	Regression	Line	and	Confidence	Limits	on	Bivariate	Scatter	Plot

proc	sgplot	data=patient;

reg	x=syst_bp	y=diast_bp	/	degree=1	clm	cli	alpha=.10;

title	‘Diabetic	Patients	Systolic	VS	Diastolic	Blood
Pressure’;

Notice	also	that	the	options	CLM	and	CLI	request	confidence
intervals	of	the	predicted	MEAN	and	the	INDIVIDUAL	predicted
values,	respectively.		The	default	confidence	level	for	the
confidence	limits	is	95%;	however,	the	ALPHA	option	provides	for
setting	an	alternative	level	at	(1-ALPHA)%	level	of	confidence.		In
our	example,	we	define	ALPHA=.10,	therefore	requesting	90%
confidence	limits.		As	result,	the	90%	confidence	limits	for	the
predicted	mean	are	illustrated	by	the	gray	shaded	area	around	the
estimated	prediction	line,	and	the	90%	prediction	limits	for	an
individual	Y	are	illustrated	by	the	dotted	lines,	as	shown	in	Output
3.14	Regression	Line	and	Confidence	Limits	on	Bivariate	Scatter
Plot.
Output	3.14	Regression	Line	and	Confidence	Limits	on	Bivariate	Scatter	Plot



In	some	situations,	we	expect	the	relationship	between	X	and	Y	to
be	curvilinear.	A	typical	example	is	that	of	demand	as	a	function	of
price.	We	all	know	that	as	the	price	of	an	item	increases,	the
demand	as	measured	by	the	quantity	sold	will	decrease.	However,
as	the	price	exceeds	a	particular	amount,	the	decrease	in	demand
may	not	be	as	pronounced.	In	other	words,	the	change	in	demand
is	not	constant	for	a	fixed	per	unit	change	in	price,	and	may	even
decrease	for	each	change	in	price.

Let’s	consider	the	case	of	a	brand	of	sunglasses	that	is	sold	at
randomly	selected	stores	in	a	chain	where	the	price	(PRICE_X)	is	set
to	different	values	and	the	manager	records	the	quantity	sold
(QTY_SOLD_Y)	over	a	certain	period	of	time.	In	order	to	explore	the
relationship	between	price	and	quantity	sold,	we	would	execute
Program	3.15	Scatter	Plot	of	Price	by	Quantity	Sold.

Notice	that	the	first	REG	statement	has	DEGREE=2	for	fitting	a
quadratic	function	to	the	data,	whereas	the	second	REG	statement
has	DEGREE=1	for	fitting	a	straight	line.	The	LOESS	(locally
weighted	smoothing)	curve	is	also	provided	and	is	constructed	to
fit	the	data	without	imposing	a	functional	form	of	the	relationship
as	does	a	linear	or	quadratic	function.

Because	SGPLOT	implies	that	all	executed	statements	are	overlayed
onto	the	same	coordinate	plane,	the	output	not	only	has	the	data
points	plotted	onto	the	coordinate	plane,	but	it	also	has	the
quadratic,	linear,	and	LOESS	plots	superimposed	onto	that	same
coordinate	plane,	as	illustrated	in	Output	3.15	Scatter	Plot	of	Price
by	Quantity	Sold.	In	order	to	distinguish	one	line	from	the	other,
the	LEGENDLABEL=	option	is	included	so	that	the	plot	generated
by	DEGREE=2	is	labeled	as	‘Quadratic’	and	the	plot	generated	by
DEGREE=1	is	labeled	as	‘Linear;’	otherwise	by	default	each	plot
would	be	labeled	as	‘Regression.’	By	default,	the	label	for	the	loess
curve	is	provided.
Program	3.15	Scatter	Plot	of	Price	by	Quantity	Sold

ods	html	style	=	journal;

libname	sasba	‘c:\sasba\data’;

data	sunglasses;

set	sasba.sunglasses;

run;

	



proc	sgplot	data=sunglasses;

reg	x=price_x	y=qty_sold_y	/	degree=2	legendlabel=“quadratic”;

reg	x=price_x	y=qty_sold_y	/	degree=1	legendlabel=“linear”;

loess	x=price_x	y=qty_sold_y;

title	‘Quantity	of	Sunglasses	Sold	Based	upon	Price’;

run;

Upon	inspection	of	Output	3.15	Scatter	Plot	of	Price	by	Quantity
Sold,	it	seems	that	the	relationship	between	price	and	quantity	sold
is	curvilinear.
Output	3.15	Scatter	Plot	of	Price	by	Quantity	Sold

Finally,	in	some	situations,	we	expect	the	relationship	between	X
and	Y	to	differ	across	different	groups.		In	those	cases,	it	is
necessary	to	fit	a	different	regression	line	for	each	of	the	respective
groups.	Consider	the	case	of	weight	and	blood	pressure.	In	general,
there	is	evidence	that	blood	pressure	is	related	to	weight;	in
particular,	as	weight	increases,	we	expect	blood	pressure	to
increase,	and	vice	versa.	In	addition,	we	know	from	personal
experience	that	males	and	females	differ	on	weight,	not	to	mention
that	this	is	also	illustrated	with	our	diabetic	care	data.	There	is



evidence	that	males	and	females	differ	in	systolic	blood	pressure,
and	subsequently,	it	may	be	then	that	the	relationship	between
weight	and	blood	pressure	differs	when	considering	gender.	
So	in	our	Diabetic	Care	Management	Case,	let’s	consider	the
relationship	between	the	two	numeric	continuous	variables,
WEIGHT	and	Systolic	Blood	Pressure	(SYST_BP)	and	how	the
relationship	may	differ	when	considering	GENDER.	Consider	the
partial	Program	3.16	Scatter	Plot	of	Weight	and	Blood	Pressure	by
Gender.

The	SCATTER	statement	requests	that	all	200	observations	are
plotted	on	the	XY-coordinate	plane	and	the	DATALABEL=	option
requests	that	all	male	observations	be	represented	by	the	value	of
GENDER,	in	particular	‘M,’	and	all	females	observations	be
represented	by	an	‘F’.	The	REG	statement	requests	that	a	single
regression	line	be	fit	to	the	data,	ignoring	GENDER,	as	illustrated	in
Output	3.16a	Scatter	Plot	of	Weight	and	Blood	Pressure	by	Gender.
Program	3.16	Scatter	Plot	of	Weight	and	Blood	Pressure	by	Gender

ods	html	style	=	journal;

libname	sasba	‘c:\sasba\hc’;

data	patient;

set;	sasba.diab200;

run;

	

proc	sgplot	data=patient;

reg	x=weight	y=syst_bp;

scatter	x=weight	y=syst_bp	/	datalabel=gender;		

title	‘Diabetic	Patients	Weight	and	Blood	Pressure	by	Gender’;

run;

Output	3.16a	Scatter	Plot	of	Weight	and	Blood	Pressure	by	Gender



The	scatter	plot	seems	to	indicate	that	there	is	a	positive
relationship	between	weight	and	systolic	blood	pressure	as
indicated	by	the	regression	line	having	a	positive	slope.		However,
on	closer	inspection,	it	seems	that	males	as	indicated	by	‘M’	are
found	in	greater	number	on	the	upper	right	hand	side	of	the	scatter
plot.		Specifically,	it	seems	that	the	males	have	a	different	pattern
than	females.	In	order	to	investigate	further,	let’s	provide	for
separate	regression	lines	for	males	and	females	by	adding	the
GROUP=	option	to	the	REG	statement	and	defining	the	variable,
GENDER,	to	be	the	grouping	variable	as	follows:
reg	x=weight	y=syst_bp	/	group=gender;

The	pattern	found	in	Output	3.16b	Scatter	Plot	of	Weight	by
Systolic	Blood	Pressure	by	Gender	seems	to	point	to	the	idea	that
the	relationship	between	weight	and	systolic	blood	pressure	differs
when	comparing	males	and	females,	warranting	two	different
regression	lines.	In	particular,	our	data,	as	illustrated	by	the	solid
line	placed	higher	than	the	dotted	line,	shows	that	systolic	blood
pressure,	on	average,	is	greater	for	males	than	females,	across	the
range	of	weight.	Also	note	that	the	solid	male	line	extends	further
to	the	right	than	the	dotted	female	line	indicating	that	there	are
several	male	weights	exceeding	the	maximum	female	weight.
Furthermore,	it	seems	that	there	is	a	slightly	positive	slope	for



males,	indicating	a	positive	relationship,	whereas	the	slope	for
females	seems	relatively	flat,	possibly	supporting	the	idea	that
systolic	blood	pressure	is	not	related	to	weight	for	females.	When
interpreting	the	output,	keep	in	mind	that	our	sample	comes	from	a
population	of	diabetic	patients	which	have	different	health	profiles
from	the	general	population.	Therefore,	patterns	may	deviate	from
what	we	expect	when	looking	at	other	populations.
Output	3.16b	Scatter	Plot	of	Weight	by	Systolic	Blood	Pressure	by	Gender

Exploring	Other	Relationships	Using	SGPLOT
Categorical	data	can	also	be	summarized	using	the	HBAR	and
VBAR	statements	within	the	SGPLOT	procedure.	Let’s	consider	the
DIABETIC_CONTROLLED	variable	in	the	Diabetic	Care
Management	Case,	where	the	variable	outcome	is	1	if	the	patient’s
diabetes	is	controlled	or	0	otherwise.	Program	3.17	Vertical	Bar
Charts	for	Diabetes	Status	produces	the	appropriate	bar	graph	with
the	SGPLOT	procedure.

The	VBAR	statement	requests	that	SAS	create	a	vertical	bar	graph
for	the	variable	CONTROLLED_DIABETIC	where	the	FORMAT
statement	defines	the	0	outcomes	to	be	labeled	as	‘No’	and	the	1
outcomes	to	be	labeled	as	‘Yes.’	Note	also	that	the	DATALABEL



option	requests	that	the	frequencies	be	provided	for	each	bar
produced	as	illustrated	in	Output	3.17	Vertical	Bar	Charts	for
Diabetes	Status.
Program	3.17	Vertical	Bar	Charts	for	Diabetes	Status

ods	html	style	=	journal;

libname	sasba	‘c:\sasba\hc’;

data	patient;	set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	sgplot	data=patient;

format	controlled_diabetic	yesno.;

vbar	controlled_diabetic	/	datalabel;

title	“Diabetic	Care	Management	Case”;

run;

Output	3.17		Vertical	Bar	Charts	for	Diabetes	Status



SGPLOT	allows	for	additional	capabilities.	In	order	to	take
advantage	of	the	overlay	capabilities,	we	can	use	an	additional
VBAR	statement	within	the	SGPLOT	procedure	to	include	the
number	of	patients	with	renal	disease	for	each	level	of
CONTROLLED_DIABETIC	status	using	Program	3.18	Bar	Chart	of
Diabetes	Status	by	Renal	Disease.
Program	3.18	Bar	Chart	of	Diabetes	Status	by	Renal	Disease

ods	html	style	=	journal;

libname	sasba	‘c:\sasba\hc’;

data	patient;	set	sasba.diab200;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	sgplot	data=patient;

format	controlled_diabetic	yesno.;

vbar	controlled_diabetic	/	datalabel;

vbar	controlled_diabetic	/	datalabel	response=renal_disease
stat=sum

barwidth	=	0.5	transparency	=	0.2;

title	“Diabetic	Care	Management	Case”;

run;

As	seen	in	the	previous	code,	the	first	VBAR	statement	produces	a
bar	chart	of	the	variable	CONTROLLED_DIABETIC.	The	second
VBAR	statement	requests	that,	for	each	level	of
CONTROLLED_DIABETIC,	the	response	variable	RENAL_DISEASE,
which	must	have	a	numeric	value,	must	also	be	summarized	and
displayed	on	the	vertical	axis.	The	STAT=SUM	variable	requests
that	the	values	of	RENAL_DISEASE	be	added	for	each	level	of
CONTROLLED_DIABETIC.	Because	RENAL_DISEASE	is	coded	1	for
YES	and	0	for	NO,	the	STAT=SUM	is	essentially	requesting	that	the
number	of	patients	with	renal	disease	should	be	displayed	as
illustrated	in	Output	3.18	Bar	Chart	of	diabetes	Status	by	Renal
Disease.	

You	can	see	from	the	bar	graphs	that	of	the	200	patients,	136	do
not	have	their	diabetes	controlled,	whereas	64	patients	do	have



their	diabetes	controlled.	Furthermore,	of	the	136	patients	who
have	uncontrolled	diabetes,	18	(13.24%)	have	renal	disease,	and	of
the	64	patients	with	controlled	diabetes,	2	(3.13%)	have	renal
disease.	Note	that	Output	3.18a	Bar	Chart	of	Diabetes	Status	by
Renal	Disease	is	an	overlay	of	the	two	bar	charts	generated	with
the	FREQ	procedure	in	Output	3.4	Cross	Tabs	and	Frequency	Plots
of	Diabetes	Status	and	Renal	Disease.
Output	3.18a	Bar	Chart	of	Diabetes	Status	by	Renal	Disease

For	aesthetic	purposes,	you	can	include	a	BARWIDTH	option	which
defines	the	width	of	the	bars	as	a	ratio	of	the	maximum	width,
where	the	maximum	width	is	the	distance	between	the	centers	of
adjacent	bars.	In	particular,	if	you	set	the	width	equal	to	1,	there	is
no	distance	between	the	bars;	however,	if	you	set	the	width	equal
to	0.5,	then	the	width	of	the	bars	is	identical	to	the	space	between
the	bars.	You	can	also	define	the	transparency	of	the	bars,	where	a
value	of	0	requests	that	the	bars	are	completely	opaque	and	a	value
of	1	requests	that	the	bars	are	completely	transparent.

Note	that	in	the	previous	example,	if	we	had	included	only	the
second	VBAR	statement	as	indicated	below,	SAS	would	have



generated	the	output	as	found	in	Output	3.18b	Numbers	with	Renal
Diseases	by	Diabetes	Status.

Vbar	controlled_diabetic	/	datalabel
response=renal_disease	stat=sum

barwidth	=	0.5	transparency	=	0.2;

Output	3.18b	Numbers	with	Renal	Diseases	by	Diabetes	Status

In	some	cases,	we	may	want	to	visualize	summaries	of	numeric
variables	across	various	categorical	groups.		Suppose,	for	example,
we	want	to	compare	both	the	average	systolic	and	diastolic	blood
pressures	across	the	two	groups,	controlled	and	uncontrolled
diabetes.	We	can	define	the	categorical	variable,
CONTROLLED_DIABETIC,	using	the	VBAR	statement	and	the
numeric	outcomes	of	interest	using	the	RESPONSE	option	in
Program	3.19	Bar	Charts	for	Diastolic	and	Systolic	BP	by	Diabetes
Status.
Program	3.19	Bar	Charts	for	Diastolic	and	Systolic	BP	by	Diabetes	Status

ods	html	style	=	journal;

libname	sasba	‘c:\sasba\hc’;

data	patient;	set	sasba.diab200;

run;

	

proc	format;



value	yesno	0=No	1=Yes;

run;

	

proc	sort	data=patient;

by	controlled_diabetic;

run;

	

proc	means	data=patient;

var	syst_bp	diast_bp;

by	controlled_diabetic;

format	controlled_diabetic	yesno.;

run;

	

proc	sgplot	data=patient;

format	controlled_diabetic	yesno.;

vbar	controlled_diabetic	/	response	=	diast_bp	stat=mean

datalabel	datalabelattrs=(size=9	weight=bold);

vbar	controlled_diabetic	/	response	=	syst_bp	stat=mean

datalabel	datalabelattrs=(size=9	weight=bold)				

barwidth	=	0.5	transparency	=	0.4;

title	“Diabetic	Care	Management	Case”;

run;

The	code	requests	that	vertical	bars	are	created	for	each	of	the
groups,	as	represented	by	CONTROLLED_DIABETIC.	One	set	of
vertical	bars	will	represent	diastolic	blood	pressure	as	defined	by
the	RESPONSE=	option,	and	the	other	set	of	vertical	bars	will
represent	systolic	blood	pressure	as	defined	by	the	RESPONSE=
option.	For	each	set	of	vertical	bars,	the	mean	of	the	response
variable	will	be	plotted,	as	defined	by	the	STAT=MEAN
option.		Note	also	that	the	results	of	the	MEANS	procedure	were
also	generated	as	a	complement	to	the	chart	in	Output	3.19	Bar
Charts	for	Diastolic	and	Systolic	BP	by	Diabetes	Status.
Output	3.19	Bar	Charts	for	Diastolic	and	Systolic	BP	by	Diabetes	Status



From	the	output,	the	analyst	can	see	that	both	the	systolic	and
diastolic	blood	pressures	are	higher	for	those	with	uncontrolled
diabetes	when	compared	to	those	with	controlled	diabetes.		In
particular,	if	a	patient’s	diabetes	is	uncontrolled,	the	average
systolic	blood	pressure	is	109.6	as	compared	to	those	with
controlled	diabetes	with	an	average	97.7.	If	a	patient’s	diabetes	is
uncontrolled,	the	average	diastolic	blood	pressure	is	94.4	as
compared	to	those	with	controlled	diabetes	with	an	average
diastolic	blood	pressure	of	79.8.		

This	chapter	has	covered	many	ways	of	visualizing	and	getting	to
know	the	details.	When	reporting	the	details	of	your	data,	visual
representations	must	accompany	any	numeric	summaries.	In	the
following	chapters,	you		will	learn	many	methods	aimed	at
inferential	statistics,	that	is,	making	inferences	about	a	population
based	upon	sample	information.	It	is	equally	imperative	to	use
visual	analysis	when	conducting	inferential	statistics	as	well.

	

Key	Terms



association

bar	chart

box-and-whisker	plot

column	percent

conditional	percent

confidence	limits

crosstabulation	table

five-number	summary

frequency

frequency	distribution

frequency	table

histogram

interquartile	range	(IQR)

loess	curve

ordered	array

outlier

outlierscatter	plot

percent

quantile-quantile	(Q-Q)	plot

quartile

regression	line

row	percent

	



Chapter	Quiz
Select	the	best	answer	for	each	of	the	following	questions:

1.						Which	of	the	following	procedures	can	be	used	to	visualize
both	numeric	and	categorical	data?

a.						FREQ

b.						UNIVARIATE

c.						SGPLOT

d.						All	of	the	above.

e.						Only	a	and	b.

2.						Suppose	you	had	data	for	students	attending	a	local
community	college	(data	name	=	CC_STUDENT)	and	you
were	to	analyze	employment	status	(variable	name	=
WORK_STATUS)	with	the	four	possible	values	(full-time,	part-
time,	unemployed,	unknown).		Which	of	the	following	would
produce	both	a	frequency	table	and	bar	chart?

a.						data	student;	set	cc_student;

proc	univariate	data=student;

tables	work_status	/	plots=freqplot;	run;

b.						data	student;	set	cc_student;

proc	freq	data=student;

tables	work_status	/	plots=freqplot;	run;

c.						data	student;	set	cc_student;

proc	freq	data=student;

plots=work_status;	run;

d.						data	student;	set	cc_student;

proc	univariate	data=student;

plots=work_status;	run;

3.						Suppose	you	randomly	selected	200	community	college
students	and	asked	if	they	used	Facebook.	Using	the



frequency	table	below,	which	of	the	following	is	true?
a.						When	looking	at	males,	the	probability	of	using	Facebook
is	0.3750.

b.						When	looking	at	females,	the	probability	of	using
Facebook	is	0.50.

c.						Facebook	usage	is	associated	with	gender.

d.						The	probability	that	you	randomly	select	a	female	student
that	does	not	use	Facebook	is

0.375.

	

Table	of	FACEBOOK_USE	by	GENDER

FACEBOOK_USE GENDER

Frequency
Percent
Row	Pct
Col	Pct Female Male Total

No 75
37.50
50.00
75.00

75
37.50
50.00
75.00

150
75.00

Yes 25
12.50
50.00
25.00

25
12.50
50.00
25.00

50
25.00

Total 100
50.00

100
50.00

200
100.00

	

	

Suppose	you	had	data	for	students	attending	a	local	community
college	(data	name	=	CC_STUDENT)	and	you	were	to	analyze	the
number	of	credit	hours	completed	as	of	the	previous	semester
(variable	name	=											CREDIT_HRS).		Use	this	information	to
answer	questions	4	–	6:

4.						If	the	minimum	value	is	0	and	the	maximum	value	is	135,
which	of	the	following	would	produce	a	histogram	consisting
of	9	bars?



a.						data	student;	set	cc_student;

proc	univariate	data=student;	var	credit_hrs;

histogram	/midpoints	=	7.5	to	133.5	by	15;		run;

b.						data	student;	set	cc_student;

proc	univariate	data=student;	var	credit_hrs;

histogram	/midpoints	=	0	to	135	by	9;		run;

c.						data	student;	set	cc_student;

proc	sgplot	data=student;	var	credit_hrs;

histogram	/midpoints	=	7.5	to	133.5	by	15;		run;

d.						data	student;	set	cc_student;

proc	sgplot	data=student;	var	credit_hrs;

histogram	/number=9;		run;

5.						When	creating	a	histogram,	which	of	the	following
statements	would	be	used	with	the	PROC	to	both	fit	a	normal
curve	over	the	histogram	and	provide	an	inset	containing	the
mean,	median,	mode,	and	standard	deviation?

a.						data	student;	set	cc_student;

proc	xxxxxxxx	data=student;	var	credit_hrs;

histogram=normal	/	inset	mean	median	mode	std;	run;

b.						data	student;	set	cc_student;

proc	xxxxxxxx	data=student;	var	credit_hrs;

histogram	/	normal;

inset	mean	median	mode	std;	run;

c.						data	student;	set	cc_student;

proc	xxxxxxxx	data=student;	var	credit_hrs;

histogram	/	normal	inset	=	mean	median	mode	std;	run;

d.						data	student;	set	cc_student;

proc	xxxxxxxx	data=student;	var	credit_hrs;

normal	/	histogram	=	inset	(mean	median	mode	std);	run;



6.						If	the	analyst	wants	to	explore	credit	hours	by	gender,	which
of	the	following	statements	must	be	added	to	the	procedure?

a.						group	gender;

b.						class=gender;

c.						class	gender;

d.						group=gender;

7.						When	exploring	the	shape	of	numeric	data,	which	of	the
following	can	be	used?

a.						histogram,	box	plot,	Q-Q	plot

b.						bar	chart,	box	plot,	Q-Q	plot

c.						histogram,	crosstabulations,	box	plot

d.						All	of	the	above.

e.						Only	a	and	b

	

8.						Suppose	you	had	data	for	students	attending	a	local
community	college	(data	name	=	CC_STUDENT)	and	you
were	to	analyze	the	number	of	credit	hours	completed	as	of
the	previous	semester	(variable	name	=	CREDIT_HRS).		If	the
five-number	summary	is	0,	30,	39,	58,	135,	which	of	the
following	statements	is	true?

a.						The	IQR	is	27.

b.						There	is	at	least	one	outlier.

c.						The	data	is	right	skewed.

d.						All	of	the	above	statements	are	true.

e.						Only	a	and	c	are	true.

9.						Consider	a	random	sample	of	college	graduates.		Which	of
the	following	statements	in	the	SGPLOT	procedure	will
produce	a	scatter	plot	of	GPA	by	HRS_STUDY	(average
number	of	hours	spent	studying	per	week)?

a.						scatter	x=gpa	y=hrs_study;

b.						reg	x=gpa	y=hrs_study;



c.						plot	x=gpa	y=hrs_study;

d.						All	of	the	above.

e.						Only	a	and	b.

10.			Consider	a	random	sample	of	college	graduates.		Which	of
the	following	statements	in	the	SGPLOT	procedure	will
produce	a	bar	graph	of	GENDER?

a.						bar	gender;

b.						hbox	gender;

c.						vbar	gender;

d.						plot	gender;
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Key	Terms
Chapter	Quiz

Introduction
In	Chapter	2,	“Summarizing	Your	Data	with	Descriptive	Statistics,”
we	described	the	analysis	procedures	for	exploring	and	describing
quantitative	data.	In	particular,	we	provided	instruction	on	how	to
generate	visual	representations	of	our	data	using	histograms,	bar
charts,	pie	charts,	and	scatter	diagrams,	to	name	a	few.	We	further
described	the	numeric	measures	used	for	summarizing	the
characteristics	of	those	visual	displays	in	terms	of	center,	spread,
shape,	and	extreme	values.	All	of	these	procedures	give	us	context
and	useful	information	about	our	sample	data	and,	in	turn,	this



descriptive	information	can	be	used	to	make	sense	of	the
population.	In	this	chapter,	we	will	explore,	in	detail,	the
foundation	of	inferential	statistics	which	requires	first	a	strong
understanding	of	a	particular	class	of	quantitative	variables,
namely,	normal	continuous	random	variables.	These	are
variables	having	‘bell-shaped’	histograms,	or	distributions.	Once
you	are	familiar	with	the	characteristics	of	normal	distributions,	we
will	introduce	the	empirical	rule	and	use	it	to	assess	the
percentage	of	observations	within	a	particular	distance	from	the
mean	and	expand	that	topic	to	the	use	of	the	standard	normal
distribution	for	answering	probability	questions	about	normal
random	variables.	We	will	then	introduce	the	concept	of	sampling
distributions	and	apply	the	central	limit	theorem	to	answer
questions	about	the	probability	of	selecting	a	sample	mean	value
when	we	know	the	population	characteristics.	Finally,	we	will
introduce	terminology	and	use	the	sampling	distribution	to	develop
the	rationale	for	inferential	statistics	by	using	sample	data	to
confirm	or	not	our	belief	about	the	population.	Specifically,	we	will
describe	the	formal	procedures	for	testing	our	belief	about	the
population	in	a	process	referred	to	as	hypothesis	testing.

In	this	chapter,	you	will	learn	how	to:

	describe	the	characteristics	of	a	normal	distribution

	apply	the	empirical	rule	to	normal	random	variables

	describe	the	characteristics	of	a	standard	normal	distribution

	use	the	standard	normal	z-table	to	calculate	the	probability
that	a	z-score	has	values	within	a	defined	range

	convert	any	normal	random	variable	to	a	standard	normal
distribution	and	understand	that	a	z-score	represents	the
number	of	standard	deviations	from	the	mean

	use	the	standard	normal	z-table	to	calculate	the	probability
that	the	value	of	a	normal	random	variable	has	values	within
a	defined	range

	construct	a	sampling	distribution	and	understand	that	the
mean	of	the	sampling	distribution	is	equal	to	the	mean	of	the
population	and	the	standard	error	is	the	standard	deviation	of
the	sampling	distribution
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	describe	the	standard	error	as	a	function	of	sample	size;	and
understand	that	as	the	sample	size	increases,	the	standard
error	decreases;	and	as	the	sample	size	decreases,	the	standard
error	increases

	apply	the	central	limit	theorem	to	define	the	shape	of	the
sampling	distribution;	and	understand	that	if	the	population	is
normal,	then	the	sampling	distribution	is	normal;	and	if	the
shape	of	the	population	is	non-normal	or	unknown	and	the
sample	size	is	large	(n	≥	30),	the	shape	of	the	sampling
distribution	is	normal

	use	the	characteristics	of	the	sampling	distribution	and	the
standard	normal	z-table	to	calculate	the	probability	that	the
sample	mean	has	values	within	a	defined	range

	set	up	the	null	and	alternative	hypotheses	based	upon	the
inferential	statement	to	be	tested;	and	know	when	to	use	a
one-tailed	or	two-tailed	test

	use	sample	data	and	the	z-test	(when	σ	is	known)	to	test
hypotheses	to	make	conclusions	about	the	population	based
upon	the	level	of	significance

	use	the	p-value	of	the	z-test	to	test	hypotheses	to	make
conclusions	about	the	population

	use	sample	data	and	the	t-test	(when	σ	is	unknown)	to	test
hypotheses	to	make	conclusions	about	the	population

	calculate	the	confidence	interval	of	the	sample	mean;	and
know	that	the	calculation	requires	a	z-value	when	σ	is	known
or	a	t-value	when	σ	is	unknown

	use	the	confidence	interval	to	estimate	the	population	mean
and	make	conclusions	about	the	hypothesis	test

	use	both	the	sample	size	or	level	of	confidence	to	change	the
width	of	the	confidence	interval

Continuous	Random	Variables
There	are	two	types	of	numeric	random	variables,	namely,	discrete
and	continuous.	This	chapter	will	concentrate	its	discussion	on
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continuous	random	variables,	that	is,	variables	whose	outcomes
have	an	infinite	number	of	possible	of	outcomes.	There	are	many
types	of	numeric	continuous	random	variables,	each	having	unique
characteristics.	The	most	important	variable	type	has	a	bell-shaped
curve,	or	a	normal	probability	distribution.	Because	of	its	wide
application,	that	type	of	variable	will	be	discussed	here	in	detail.

Normal	Random	Variables
Many	continuous	random	variables	are	naturally	described	by	a
normal	distribution.	For	example,	weight,	height,	IQ,	lifetime	of
automobile	tires,	fuel	efficiency	of	mid-size	automobiles,	contents
of	cereal	boxes,	number	of	hours	of	sleep	per	night	among
Americans	adults,	and	daily	consumption	of	coffee,	to	name	a	few,
all	have	bell-shaped	distributions.	Secondly,	the	normal	probability
distribution	provides	the	theoretical	framework	for	many	statistical
analyses	through	the	application	of	the	central	limit	theorem.		In
order	to	understand	the	application	of	normal	probability
distributions,	the	analyst	must	first	recognize	the	characteristics	of
all	normal	random	variables.	

First,	there	is	an	entire	family	of	normal	distributions	specifically
defined	by	the	mean	(µ)	and	the	standard	deviation	(σ).	The
probability	distribution	function,	which	provides	the	bell-shaped
graph	of	the	histogram,	is	defined	as

	

The	mean	defines	the	center,	or	the	balance	point,	of	the	data	and
the	standard	deviation	defines	the	spread	around	the	center.
Histograms	that	are	wider	and	flatter	have	relatively	large	standard
deviations,	while	histograms	that	are	thinner	and	more	peaked
have	relatively	small	standard	deviations.

To	illustrate,	consider	the	distribution	of	weights	for	three
populations	as	depicted	in	Figure	4.1	Distributions	of	Adult
Weights	for	Three	Populations.	The	first	normal	curve	represents
the	weight	of	adult	women	in	the	United	States,	whereas	the
second	curve	represents	the	weight	of	men.	Notice	that	women	are
further	to	the	left	on	the	horizontal	axis	indicating	that	women



typically	weigh	less	than	men.	Note	also	that	those	two	histograms
have	the	same	standard	deviation	indicating	that	the	weights	have
the	same	variation	or	spread	around	their	respective	means.	Let’s
now	suppose	the	third	normal	curve	represents	the	weight	of
defensive	linemen	who	play	professional	football—not	only	do	they
weigh	more	than	the	average	man	and	woman,	but	their	weights
are	similar	and	have	very	little	variation	around	the	mean	as
indicated	by	a	relatively	small	standard	deviation	(a	narrower
histogram).
Figure	4.1	Distributions	of	Adult	Weights	for	Three	Populations

Second,	normal	distributions	are	symmetric	around	the	mean;	in
other	words,	if	you	were	to	fold	the	histogram	in	half	at	the	mean,
the	left	side	would	be	a	mirror	image	of	the	right	side.	The	mean
provides	the	axis	of	symmetry	which	cuts	the	histogram	in	half,	so
by	definition,	that	point	coincides	with	the	median.		Finally,	the
axis	of	symmetry	also	occurs	at	the	point	where	the	histogram	is
highest	and	represents	an	area	of	higher	concentration.	For	the	case
of	women	in	the	United	States,	the	weights	are	concentrated
around	the	mean	weight	of	165	pounds	where	half	of	women
weigh	less	than	165,	half	weigh	more	than	165.

Finally,	normal	distributions	are	asymptotic,	meaning	that	the
normal	curve	approaches	the	X-axis	but	never	crosses	it.
Consequently,	values	of	a	normal	random	variable	can	range	from	-
∞	to	+∞.		It	should	also	be	noted	that	the	total	area	under	a
normal	curve	is	1.0	and	that	area	is	associated	with	the	probability
that	the	value	of	a	normal	random	variable	occurs.

The	Empirical	Rule
Once	we	know	that	a	numeric	variable	follows	a	normal



distribution,	we	can	make	some	general	conclusions	about	the
percentage	of	observations	falling	within	a	certain	distance	of	the
mean.	The	empirical	rule	is	illustrated	in	Figure	4.2	Visualization
of	the	Empirical	Rule	and	stated	as	follows:

	68%	of	observations	are	within	1	standard	deviation	of	the
mean.

	95%	of	observations	are	within	2	standard	deviations	of	the
mean.

	99.7%	of	observations	are	within	3	standard	deviations	of	the
mean.

Figure	4.2	Visualization	of	the	Empirical	Rule

Example:		Consider	the	complete	data	that	makes	up	the	Diabetic
Care	Management	Case	described	in	Chapter	1,	“Statistics	and
Making	Sense	of	Our	World.”	In	particular,	let’s	review	the	height
(in	inches)	of	male	diabetics	with	the	following	visual	generated
from	the	UNIVARIATE	procedure,	as	illustrated	in	Figure	4.3
Empirical	Rule	Applied	to	Height	of	Diabetic	Males.
Figure	4.3	Empirical	Rule	Applied	to	Height	of	Diabetic	Males				
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Applying	the	empirical	rule	for	μ	equal	to	71.66	and	σ	equal	to
1.17,	we	have	the	following:

	µ	±	1σ	=	71.66		±	1(1.17)	=	(70.49,	72.83)

	µ	±	2σ	=	71.66		±	2(1.17)	=	(69.32,	74.00)

	µ	±	3σ	=	71.66		±	3(1.17)	=	(68.15,	75.17)

In	other	words,	knowing	that	male	heights	in	the	Diabetic	Care
Management	Case	are	normally	distributed,	with	a	mean	of	71.66
inches	and	a	standard	deviation	of	1.17	inches,	we	can	approximate
that:

	68%	of	males	have	heights	between	70.49	and	72.38	inches
(5’10’’	and	6’0’’)

	95%	of	males	have	heights	between	69.32	and	74.00	inches
(5’9’’	and	6’2”)
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	99.7%	of	males	have	heights	between	68.15	and	75.17	inches
(5’8”	and	6’3”)

When	running	Program	4.1	Actual	Percentage	of	Males	Having
Heights	within	1,	2,	and	3	Standard	Deviations	from	the	Mean	and
generating	the	accompanying	output,	Output	4.1	Actual	Percentage
of	Males	Having	Heights	within	1,	2,	and	3	Standard	Deviations
from	the	Mean,	you	can	see	that	the	actual	percentages	of	heights
within	1,	2,	and	3	standard	deviations	from	the	mean,	respectively,
match	almost	exactly	the	percentages	as	defined	in	the	empirical
rule.	In	short,	we	would	have	been	just	as	accurate	in	our
assessments	of	those	percentages	by	applying	the	empirical	rule	to
the	data,	without	the	need	to	‘count’	the	observations	within	those
ranges.
Program	4.1	Actual	Percentage	of	Males	Having	Heights	within	1,	2,	and	3	Standard
Deviations	from	the	Mean

libname	sasba	‘c:\sasba\hc’;

data	males;

set	sasba.diabetics;

if	gender=‘M’;

ul68	=	71.66+1.17;		ll68	=	71.66-1.17;

ul95	=	71.66+2.34;		ll95	=	71.66-2.34;

ul100	=	71.66+3.51;	ll100	=	71.66-3.51;

within1sd=0;	within2sd=0;	within3sd=0;

if	inches	ge	ll68	and	inches	le	ul68	then	within1sd=1;

if	inches	ge	ll95	and	inches	le	ul95	then	within2sd=1;

if	inches	ge	ll100	and	inches	le	ul100	then	within3sd=1;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	freq;

tables	within1sd	within2sd	within3sd;

format	within1sd	within2sd	within3sd	yesno.;

run;

Output	4.1	Actual	Percentage	of	Males	Having	Heights	within	1,	2,	and	3	Standard

●					



Deviations	from	the	Mean

within1sd Frequency Percent
Cumulative
Frequency

Cumulative
Percent

No 11114 32.00 11114 32.00

Yes 23619 68.00 34733 100.00

	
	

within2sd Frequency Percent
Cumulative
Frequency

Cumulative
Percent

No 1563 4.50 1563 4.50

Yes 33170 95.50 34733 100.00

	
	

within3sd Frequency Percent
Cumulative
Frequency

Cumulative
Percent

No 92 0.26 92 0.26

Yes 34641 99.74 34733 100.00

	

The	Standard	Normal	Distribution
Consider	the	following	scenario:	Suppose	you	take	a	test	in	your
statistics	class	and	make	an	80—would	you	be	happy	with	that
score?	At	face	value,	probably	not,	assuming	that	you	would
certainly	prefer	a	higher	grade.	However,	you	don’t	have	enough
information	to	make	a	fair	assessment.	If	the	test	scores	of	the	class
were	approximately	normally	distributed	with	mean	of	70	and
standard	deviation	of	10,	you	might	be	somewhat	satisfied	in	the
fact	that	you	were	one	standard	deviation	above	the	mean.	Now,	if
instead,	the	average	of	the	test	scores	was	70	with	a	standard
deviation	of	5,	you	may	be	very	happy	to	know	that	you	scored	two
standard	deviations	above	the	mean.	In	short,	your	performance
depends	upon,	not	only	the	mean,	but	also	on	the	variation	of	the
scores	around	the	mean.



In	order	to	standardize	the	scores,	taking	into	account	the	variation
in	the	data	and	allowing	for	comparisons,	the	analyst	would
convert	each	exam	score	(X)	to	a	standardized	Z-score	using	the
following	formula:

	

In	fact,	consider	every	student	taking	the	statistics	test,	for
example.	If	you	standardized	all	of	the	test	scores	for	each	student,
the	new	data	set—made	up	of	Z-scores—would	have	a	mean	of	0
and	a	standard	deviation	of	1.	Also,	the	histogram	of	the	Z-scores
would	be	normally	distributed,	representing	the	standard	normal
distribution.

Each	Z-score	basically	answers	the	question	‘How	many	standard
deviations	is	the	X-value	from	the	average	X-value?’		So	for
example,	if	your	friend	made	a	64	on	the	statistics	exam	where	the
standard	deviation	was	5,	his	or	her	Z-score	would	be	-1.20
indicating	that	the	test	score	is	1.20	standard	deviations	below	the
mean.

Finally,	we	can	use	z-scores	to	restate	the	empirical	rule.	When	a
numeric	random	variable	is	normally	distributed,	we	can	say	that

	68%	of	observations	have	Z-scores	between	±1

	95%	of	observation	have	Z-scores	between	±2

	99.7%	of	observations	have	Z-scores	between	±3

Suppose,	now,	that	we	wanted	to	extend	what	we	know	to	answer
more	precise	statements	about	the	percentage,	or	proportion,	of
observations	with	various	distances	from	the	mean,	other	than	the
distances	as	defined	by	the	empirical	rule.	Consider	the	following
example:

Example	1:	Given	a	standard	normal	Z-distribution,	what
proportion	of	observations	have	Z-values	falling	below	-1.15?	This
is	identical	to	asking	the	question,	what	is	the	probability	that	Z	is
less	than	-1.15,	P(Z<-1.15),	and	is	represented	by	the	distribution
in	Figure	4.4	Proportion	of	Z-Values	Less	Than	-1.15,	P(Z<-1.15).
Figure	4.4	Proportion	of	Z-values	Less	Than	-1.15,	P(Z	<	-1.15)
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Solution:	In	order	to	find	the	proportion,	we	would	utilize	the
standard	normal	Z-table	(from	Appendix	C	Z-Table),	referenced	in
Table	4.1	Excerpt	from	Standard	Normal	Cumulative	Area	(for	Z	≤
0).	Notice	that	a	Z-value	of	-1.15	is	represented	as	-1.1	when
truncated	to	one	decimal	place,	thereby	pointing	to	the	row	where
the	appropriate	proportion	will	be	found.	Note	also	that	a	Z	of
-1.15	has	a	5	in	the	second	decimal	place,	represented	as	0.05,	and
is	an	indicator	of	the	column	where	the	appropriate	proportion	will
be	found.	Specifically,	when	you	see	the	intersection	of	the
appropriate	row	and	column	as	indicated	by	the	overlap	of	the
boxes,	you	can	see	that	the	desired	proportion	is	0.1251.

So,	this	means	that	12.51%	of	Z-scores	are	below	-1.15;	in	other
words,	12.51%	of	any	population	represented	by	a	normal
probability	distribution	will	have	values	more	than	1.15	standard
deviations	below	the	mean.	In	the	case	of	male	diabetics,	this
translates	into	the	statement,	12.5%	of	males	have	heights	less	than
1.15	standard	deviations	(1.15x1.17)	below	the	mean	of	71.66
inches,	or	12.5%	are	less	than	70.31	inches	tall.
Table	4.1	Excerpt	from	Standard	Normal	Cumulative	Area		(for	Z	≤	0)



Example	2:	Given	a	standard	normal	Z-distribution,	what
proportion	of	observations	have	Z-values	falling	below	+1.15?	This
is	identical	to	asking	the	question,	what	is	the	probability	that	Z	is
less	than	+1.15,	P(Z<+1.15),	and	is	represented	by	the
distribution	in	Figure	4.5	Proportion	of	Z-Values	Less	Than	1.15,
P(Z<+1.15).
Figure	4.5	Proportion	of	Z-values	Less	Than	1.15,	P(Z	<	+1.15)



Solution:		Referring	to	Table	4.2	Excerpt	from	Standard	Normal
Cumulative	Area		(for	Z	≥	0)	and	utilizing	the	Z-table	in	the	same
way	as	previously	described,	we	would	look	at	the	intersection	of
the	1.1	row	and	the	0.05	column	to	get	the	answer,	0.8749.		So,
this	means	that	87.49%	of	Z-scores	are	below	+1.15.	In	the	case	of
male	diabetics,	this	translates	into	the	statement,	87.49%	of	males
have	heights	less	than	1.15	standard	deviations	(1.15x1.17)	below
the	mean	of	71.66	inches,	or	87.49%	of	male	diabetics	are	less	than
73.01	inches	tall.
Table	4.2	Excerpt	from	Standard	Normal	Cumulative	Area	(for	Z	≥	0)



From	Example	1	and	Example	2,	and	referring	to	the	standard
normal	Z-table	in	Appendix	C	Z	Table,	it	should	be	noted	that	the
standard	normal	Z-table	is	made	up	of	two	pages,	namely	page	1
which	provides	proportions	for	negative	Z-values	and	page	2
proportions	for	positive	Z-values.	Note	also	that	the	table	gives	only
the	area	under	the	curve	‘below’	a	particular	Z-value.
Consequently,	we	can	use	the	standard	normal	Z-table	to	arrive	at
proportions	under	the	curve	‘above’	a		particular	Z-value,	as
illustrated	in	Example	3.

Example	3:	Given	a	standard	normal	Z-distribution,	what
proportion	of	observations	have	Z-values	falling	above
+1.15?		This	is	identical	to	asking	the	question,	what	is	the
probability	that	Z	is	more	than	+1.15,	P(Z>+1.15),	and	is
represented	by	the	distribution	in	Figure	4.6	Proportion	of	Z-Values
Greater	Than	1.15,	P(Z	>	+1.15).
Figure	4.6	Proportion	of	Z-Values	Greater	Than	1.15,	P(Z	>	+1.15)



Solution:		From	Example	2,	we	know	that	0.8749	of	Z-values	are
below	+1.15,	so	using	the	fact	that	the	total	area	under	a	normal
curve	is	equal	to	1.0,	we	know	that	the	area	under	the	curve	above
+1.15	is	0.1251,	or	1.0	–	0.8749.		So	anytime	you	use	the	Z-table
to	find	the	area	under	the	curve	below	a	Z-value,	you	can	subtract
that	proportion	from	1.0	to	arrive	at	the	area	under	the	curve
above	that	Z-value.

We	can	also	use	the	property	of	symmetry	to	answer	the	question
posed	in	Example	3.		In	other	words,	if	the	P(Z	<	-1.15)	=	0.1251,
as	seen	in	Example	1,	then	the	P(Z	>	+1.15)	=	0.1251,	as
well.		In	other	words,	the	tail	area	below	a	Z-value	of	-1.15	is
identical	to	the	tail	area	above	a	Z-value	of	+1.15.

Example	4:	Given	a	standard	normal	Z-distribution,	what
proportion	of	observations	have	Z-values	falling	between	-1.00	and
+1.00?	This	is	identical	to	asking	the	question,	what	is	the
probability	that	Z	is	more	than	-1.00	and	less	than	+1.00,
P(-1.00<Z<+1.00),	and	is	represented	by	the	distribution	in
Figure	4.7	Proportion	of	Z-Values	between	-1.00	and	+1.00,
P(-1.00	<	Z	<	+1.00).
Figure	4.7	Proportion	of	Z-Values	between	-1.00	and	+1.00,	P(-1.00	<	Z	<	+1.00)



Solution:		Referring	to	the	first	page	of	the	Z-table	in	Appendix	C	Z
Table,	you	will	find	that	the	area	under	the	curve	below	a	Z-value
of	-1.00	is	0.1587.	Because	of	symmetry,	the	area	under	the	curve
above	a	Z-value	of	+1.00	is	also	0.1587.	Consequently,	finding	the
area	between	-1.00	and	+1.00	requires	lopping	off	the	tails;	that	is,
the	area	under	the	curve	between	-1.00	and	+1.00	is	1.00	–
2(0.1587),	or	0.6826.		In	conclusion,	68.26%	of	observations	from
a	normal	distribution	fall	within	1	standard	deviation	of	the
mean.		Note	that	this	is	a	more	precise	statement	of	the	empirical
rule.	In	fact,	try	using	the	standard	normal	Z-table	to	verify	that
95.44%	of	observations	are	within	2	standard	deviations	of	the
mean,	and	that	99.73%	of	observations	are	within	3	standard
deviations	of	the	mean.

Example	5:	Given	a	standard	normal	Z-distribution,	what
proportion	of	observations	have	Z-values	falling	between	-1.96	and
+1.96?		This	is	identical	to	asking	the	question,	what	is	the
probability	that	Z	is	more	than	-1.96	and	less	than	+1.96,
P(-1.96<Z<+1.96),	and	is	represented	by	the	distribution	in
Figure	4.8	Proportion	of	Z-Values	between	-1.96	and	+1.96,
P(-1.96<Z+1.96).
Figure	4.8	Proportion	of	Z-Values	between	-1.96	and	+1.96,	P(-1.96	<	Z	<	+1.96)



Solution:		Referring	to	the	first	page	of	the	Z-table	in	Appendix	C	Z
Table,	you	will	find	the	area	under	the	curve	below	a	Z-value	of
-1.96	is	0.0250.		Because	of	symmetry,	the	area	under	the	curve
above	a	Z-value	of	+1.96	is	also	0.0250.	Therefore,	the	area	under
the	curve	between	-1.96	and	+1.96	is	1.00	–	2(0.0250),	or	0.9500.
In	conclusion,	95%	of	observations	from	a	normal	distribution	fall
within	1.96	standard	deviations	of	the	mean.

Applying	the	Standard	Normal	Distribution	to	Answer
Probability	Questions
As	mentioned	earlier	in	this	chapter,	there	are	infinitely	many
values	for	any	numeric	continuous	random	variable,	so	the
probability	that	you	randomly	select	a	specific	numeric	continuous
value,	c,	is	0,	that	is,	P(X=c)	=	0.	However,	we	can	ask	the
question,	‘What	proportion	of	observations	fall	within	a	certain
range?’		For	example,	you	may	want	to	know	the	proportion	of
students	graduating	from	a	local	university	who	have	earned
starting	salaries	between	$45,000	and	$50,000.	Currently,	we	have
already	considered	two	approaches:	first,	you	could	count	the
number	of	students	who	have	starting	salaries	between	$45,000
and	$50,000,	and	then	divide	by	the	total	number	of	graduates	to
get	the	proportion,	or	probability.	Or,	if	the	numeric	variable	of
interest	is	normally	distributed,	you	could	apply	the	empirical	rule
to	get	approximations	based	upon	the	relative	distance	from	the
mean.	A	third,	and	computationally	extensive,	approach	would
involve	using	integral	calculus	to	find	the	area	under	the	curve
between	$45,000	and	$50,000.	The	first	requires	you	to	have	the



actual	data;	the	second	provides	for	an	approximation	only	relative
to	1,	2,	and	3	standard	deviations	from	the	mean;	and	the	third	is
nearly	impossible!
A	better,	commonly	used	approach	can	be	used	if	both	the
distribution	is	normal	and	the	mean	and	standard	deviation	are
known.	Simply	convert	the	data	to	a	standard	normal	distribution
and	use	a	standard	normal	Z-table	to	answer	probability	questions.
Let’s	describe	this	approach	through	an	example.

Example	6:		In	the	United	States,	the	daily	consumption	of	sugar	is
epidemic	averaging	126	grams	(Ferdman,	2015),	two-and-a-half
times	larger	than	the	amount	recommended	by	the	World	Health
organization	(WHO,	2014).	According	to	WHO,	the	total
recommended	daily	sugar	consumption	for	an	adult	having	a
normal	BMI	(Body	Mass	Index)	is	less	than	50	grams	(less	than	10%
of	the	total	daily	energy	intake).	So	the	question	is:	‘What
proportion	of	Americans	exceed	the	recommended	daily	sugar
consumption?’	In	other	words,	‘Given	that	the	daily	consumption	of
sugar	among	Americans	averages	126	grams,	what	proportion	of
Americans	exceed	50	grams	per	day?’

Assume	the	daily	sugar	consumption	among	all	Americans	is
normal	with	a	mean	of	126	grams	and	standard	deviation	of	45
grams.	

Solution:	The	normal	distribution	found	at	the	left	in	Figure	4.9
Proportion	of	Americans	Exceeding	Recommended	Daily	Sugar
Consumption	illustrates	the	proportion	of	Americans	exceeding	50
grams	of	sugar	per	day	when	the	average	daily	consumption	is	126
grams.		In	order	to	find	that	proportion,	we	must	first	determine
how	many	standard	deviations	50	is	from	the	mean	of	126,	using
the	formula:

	

Our	question	then	becomes,	what	proportion	of	Americans	have
sugar	consumption	more	than	1.69	standard	deviations	below	the
mean?	When	referring	to	the	standard	normal	Z-table,	you	see	that
the	area	below	a	Z	of	-1.69	is	0.0455;	therefore,	the	area	above	Z	is
0.9545,	as	illustrated	at	the	right	of	Figure	4.9	Proportion	of



Americans	Exceeding	Recommended	Daily	Sugar	Consumption.	In
conclusion,	knowing	that	the	daily	consumption	of	sugar	is
normally	distributed,	with	a	mean	of	126	grams	and	a	standard
deviation	of	45	grams,	we	can	conclude	that	95.45%	have	daily
sugar	consumption	greater	than	50	grams.	In	other	words,	95.45%
of	Americans	exceed	the	recommended	daily	sugar	consumption.
Figure	4.9	Proportion	of	Americans	Exceeding	Recommended	Daily	Sugar
Consumption

Example	7:		College	students	spend	an	average	of	11.4	hours	per
day	using	their	6	digital	devices.	Let’s	assume	that	(X),	the	time
college	students	spend	using	digital	devices,	is	normally	distributed
with	a	mean	of	11.4	hours	and	a	standard	deviation	of	1.2	hours.
What	proportion	of	college	students	use	digital	devices	more	than
14	hours	per	day?		In	other	words,	what	is	the	probability	that	a
randomly	selected	college	student	spends	more	than	14	hours	per
day	using	a	digital	device,	P(X>14.0),	as	illustrated	in	Figure	4.10
Proportion	of	College	Students	Spending	More	Than	14	Hours
Using	Digital	Devices?

Solution:		The	normal	distribution	found	at	the	left	in	Figure	4.10
Proportion	of	College	Students	Spending	More	Than	14	Hours
Using	Digital	Devices	illustrates	the	proportion	of	college	students
using	digital	devices	more	than	14	hours	per	day.	Again,	we	must
convert	14	hours	to	a	Z,	using	the	formula:

	

Referring	to	the	standard	normal	Z-table,	you	see	that	the	area
below	a	Z	of	+2.17	is	0.9850;	therefore,	the	area	above	Z	is
0.0150,	as	illustrated	at	the	right	of	Figure	4.10	Proportion	of



College	Students	Spending	More	Than	14	Hours	Using	Digital
Devices.	In	conclusion,	based	upon	the	fact	that	the	population	of
digital	device	usage	among	college	students	is	normally	distributed
with	a	mean	of	14	hours	and	standard	deviation	of	1.2	hours,	the
proportion	of	students	who	have	usage	exceeding	14	hours	is
0.0150,	or	1.5%—a	relatively	small	percentage.
Figure	4.10	Proportion	of	College	Students	Spending	More	Than	14	Hours	Using
Digital	Devices

The	Sampling	Distribution	of	the	Mean
In	Chapter	3,	“Data	Visualization,”	you	learned	how	to	use	numeric
indices	to	describe	your	data,	namely	measures	of	center,
dispersion,	and	shape,	and	how	to	produce	those	measures	using
the	UNIVARIATE	procedure.	Because	we	rarely	have	the
population,	the	natural	tendency	is	to	make	statements	about	the
population	based	upon	on	descriptions	of	the	sample.	For	example,
based	upon	the	2015	American	Time	Use	Survey	(ATUS),	the
Bureau	of	Labor	Statistics	(2015)	estimates	that	young	Americans
15-19	years	of	age	sleep	an	average	of	9.7	hours	every	night.
Intuitively	we	know	it	is	improbable	that	the	sample	mean	will	be
identical	to	the	true	population	mean;	however,	we	trust	that	it	will
reasonably	close	within	some	margin	of	error.

The	sample	average	is	the	best	guess	for	what	exists	in	the
population,	but	how	can	we	assess	the	accuracy	of	our	statement?
First,	consider	this:		suppose	various	researchers	take	their	own,
respective,	random	samples	from	the	population	of	young
Americans	aged	15	–	19	years	of	age,	in	an	attempt	to	estimate	the
average	number	of	hours	of	sleep.	Obviously,	each	researcher	will
select	different	samples;	therefore,	each	of	those	sample	means	will



be	different	and	it’s	very	unlikely	that	any	one	of	those	sample
means	will	be	exactly	identical	to	the	actual	population	mean.	A
very	small	proportion	of	sample	means	will	be	relatively	‘far’	from
the	population	mean,	but	generally	speaking,	you	would	expect	the
sample	means	to	be	close	to	the	population	mean.	The	accuracy	of
the	sample	mean	as	an	estimate	for	the	population	mean	depends
upon	the	variability	of	the	sample	mean.	If	the	sample	means	are
relatively	close	to	each	other,	then	any	one	sample	mean	would	be
relatively	‘close’	to	the	population	mean.	If	the	sample	means	are
widely	dispersed,	then	the	sample	means	are	relatively	‘far’	from
the	population	mean.	So,	even	though	in	practice	we	use	only	one
sample	mean	for	making	inferences	about	the	population	mean,	we
must	investigate	how	all	possible	sample	means	behave	or	vary.
In	this	section,	we	will	describe	the	characteristics	of	the	set	of	all
possible	sample	means	when	we	know	the	population	mean	(µ)	and
population	standard	deviation	(σ).	The	set	of	all	possible	sample
means	is	referred	to	as	the	sampling	distribution	of	the	sample
mean	and	will	provide	the	foundation	for	making	inferences	about
an	unknown	population	mean	based	upon	a	single	sample	mean.

Characteristics	of	the	Sampling	Distribution	of	the	Mean
In	order	to	understand	the	basis	of	inferential	statistics,	the	analyst
must	understand	how	a	sampling	distribution	is	constructed	and	its
characteristics.	First,	the	sampling	distribution	of	the	sample	mean	

	is	defined	as	the	set	of	all	possible	sample	means	obtained	by
taking	all	possible	random	samples	of	size	n	from	the	population.
This	set	of	sample	means	basically	make	up	a	set	of	numbers	and,
like	all	numbers,	this	data	can	be	summarized	by	the	mean,
standard	deviation,	and	shape.

In	order	to	build	a	hypothetical	sampling	distribution,	let’s	first
consider	the	numeric	random	variable	(X),	the	time	it	takes	for
customers	to	be	seated	at	a	casual-dining	restaurant.	Suppose	all
wait-times	for	a	casual-dining	restaurant	are	exponentially
distributed	(right	skewed)	with	a	mean	and	standard	deviation	of
20	minutes,	as	illustrated	in	Figure	4.11	Distribution	of	Wait-Times
at	a	Casual-Dining	Restaurant.
Figure	4.11	Distribution	of	Wait-Times	at	a	Casual-Dining	Restaurant



Theoretically,	to	create	a	sampling	distribution,	the	analyst	would
select	the	first	random	sample	of	a	fixed	sample	size	from	the
population	of	wait-times,	record	the	mean	wait-time	 ,	then
‘throw’	that	sample	back	into	the	population,	take	a	second	random
sample	of	the	same	size,	record	the	mean	wait-time	 ,	and
again	‘throw’	that	sample	back	into	the	population.	This	process
would	be	repeated	until	all	possible	j	random	samples	of	a	fixed
sample	size	are	selected	from	the	population,	(i.e.,	through	 ).
In	the	end,	the	analyst	would	have	a	‘new’	data	set	with	all	possible
sample	means.

Program	4.2	Description	of	the	Sampling	Distribution	of	Mean
Wait-Times	is	a	simulation	of	what	the	analyst	would	have	to	do	to
create	a	sampling	distribution	of	100,000	sample	means	by	taking
100,000	random	samples	of	size	100	customers	from	an
exponential	population	having	a	mean	of	20	minutes.
Program	4.2	Description	of	the	Sampling	Distribution	of	Mean	Wait-Times

data	restaurant;

	

call	streaminit(1);	*set	random	seed;



do	j	=	1	to	100000;																	

do	i	=	1	to	100;																	

time	=	rand(“exponential”,20);

output;

end;

end;

run;

	

proc	sort	data=restaurant;	by	j;

run;

	

proc	means	noprint;

var	time;				*calculate	sample	mean	time	for	100,000	samples;

output	out=samplingdistr	mean=meantime;

by	j;

run;

	

proc	univariate	data=samplingdistr

histogram	meantime;

var	meantime;

run;

In	Program	4.2	Description	of	the	Sampling	Distribution	of	Mean
Wait-Times,	data	is	generated	and	saved	in	a	temporary	SAS	data
set	called	RESTAURANT.	Within	the	DO	LOOP	(I	=	1	to	100),	the
value	of	an	exponential	numeric	random	variable	with	a	mean	of
20	minutes	is	generated	for	each	of	the	i	observations	to	make	up	a
sample	of	size	100.	The	DO	LOOP	(J	=	1	to	100000)	indicates	that
random	samples	of	size	100	are	created	100,000	times.	The	PROC
SORT	and	PROC	MEANS	steps	both	provide	for	sorting	the
observations	by	the	sample	number	j,	calculating	the	sample	mean
for	each	sample	j,	and	then	saving	those	100,000	means,	each
named	MEANTIME,	to	a	temporary	SAS	data	set	called
SAMPLINGDISTR.	Note	that	because	the	data	set,
SAMPLINGDISTR,	theoretically,	contains	all	possible	samples,	this
data	set	represents	the	population	of	sample	means.	Finally,	the	last
step	employs	the	UNIVARIATE	procedure	for	describing	the
sampling	distribution	in	terms	of	mean,	standard	error,	and	shape,
as	illustrated	in	Output	4.2	Description	of	the	Sampling



Distribution	of	Mean	Wait-Times.	It	should	also	be	noted	that,	in
order	to	reproduce	the	same	set	of	random	values	each	time	the
program	is	run,	CALL	STREAMINIT	is	required	before	invoking	the
RAND	function;	the	specific	number	in	parentheses	determines	the
specific	set	of	random	numbers	generated	via	the	RAND	function.
Output	4.2	Description	of	the	Sampling	Distribution	of	Mean	Wait-Times

Basic	Statistical	Measures

Location Variability

Mean 20.00721 Std	Deviation 2.00143

Median 19.95005 Variance 4.00572

Mode . Range 17.20544

	 	 Interquartile
Range

2.69622

	 	 	 	

In	summary,	we	observe	the	following	characteristics	from	the
univariate	analysis:

1.						The	population	mean	of	the	sample	means	is	20.0	minutes	(



).	Notice	that	the	mean	of	the	sampling
distribution	is	represented	by	the	Greek	symbol	µ	because	the
data	is	considered	a	population	and	the	subscript	indicates
that	20.0	minutes	is	the	population	mean	of	the	sample
means.	

2.		The	population	standard	deviation	of	the	sample	means	is	2.0
minutes	( )	and	is	referred	to	as	the	standard	error
of	the	mean.	

3.			An	inspection	of	the	histogram	illustrates	that	the	sampling
distribution	of	the	mean	is	normal,	even	though	the
population	is	not	normal.	We	will	see	shortly	that	the	shape	of
the	sampling	distribution	will	always	be	normal	under	specific
situations.	

The	Central	Limit	Theorem
As	illustrated	through	our	simulation	example,	generating	a
sampling	distribution	of	all	infinitely	many	sample	means	to
investigate	its	properties	involves	an	incredible	amount	of	work
and	is,	therefore,	impractical;	in	most	cases,	it	is	impossible.
However,	there	are	some	basic	conclusions	that	are	always	true
and,	consequently,	can	always	be	made	in	lieu	of	creating	the
sampling	distribution.	These	conclusions	are	related	directly	to	the
mean,	standard	deviation,	and	shape	of	the	sampling	distribution
and	are	as	follows:

	

	

	The	shape	of	the	sampling	distribution	is	normal	under	either
of	these	conditions:	(1)	The	shape	of	the	sampling	distribution
is	normal	if	the	population	is	normal.	(2)	When	the	shape	of
the	population	is	not	normal	or	unknown,	the	shape	of	the
sampling	distribution	is	approximately	normal	when	the
sample	size	is	sufficiently	large,	where	large	is	considered	30
or	more.	This	statement	is	known	as	the	central	limit
theorem.

The	first	item	indicates	that	the	mean	of	the	sampling	distribution
is	equal	to	the	mean	of	the	population.	In	other	words,	we	expect

●					

●					

●					



the	sample	mean	to	be	equal	to	the	population	mean.	Secondly,	the
standard	error	of	the	mean,	 	gives	the	analyst	an	idea	of	how
the	sample	means,	 ,	varies	from	sample	to	sample.		In	fact,
when	the	standard	error	is	relatively	small,	we	expect	relatively
little	variation	in	the	sample	means	around	the	population	mean;
when	the	standard	error	is	relatively	large,	we	expect	relatively
large	variation	in	the	sample	means	around	the	population	mean.
Finally,	item	3	gives	conditions	where	the	sampling	distribution	is
normal	and,	as	mentioned	earlier,	will	provide	the	foundation	for
conducting	inferential	statistics.
So,	let’s	revisit	our	exponential	wait-time	example.	Instead	of
actually	creating	a	sampling	distribution	of	means	and	analyzing
that	to	get	basic	descriptions,	we	can	now	apply	the	three
statements	above	to	get	those	descriptions.	In	other	words,
knowing	only	that	we	are	to	take	a	random	sample	of	size	100	from
a	non-normal	population	of	wait-times	with	both	a	mean	and
standard	deviation	of	20	minutes,	we	would	have	concluded	that:

	The	mean	of	the	sampling	distribution	is	20	minutes	(
µ ).

	The	standard	error	is	2.0	minutes	(

),	where	n=100.

The	shape	of	the	sampling	distribution	is	approximately
normal	because	the	sample	size	of	100	is	large	(i.e.,	greater
than	30),	even	though	the	population	is	non-normal.

There	are	a	few	comments	in	order	now	that	we	have	described	the
characteristics	of	the	sampling	distribution.	First,	when	the
population	is	not	normal	and	the	sample	size	is	small,	we	cannot
say	that	the	sampling	distribution	is	normal;	however,	the	first	two
statements	pertaining	to	the	mean	and	standard	error	are	always
true.	In	fact,	you	can	rerun	the	SAS	code	used	to	generate	the
sampling	distribution	for	sample	sizes	less	than	30	(for	example,	for
a	sample	size	of	10,	use	DO	I	=	1	to	10;)	and	you	will	see	that	the
sampling	distribution	is	no	longer	normal.	However,	
	minutes	and	 	minutes.	On	your	own,	you
can	also	run	the	simulation	program	to	show	that	for	a	normal
population,	the	sampling	distribution	is	normal	for	small	sample
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sizes.	

Finally,	notice	in	our	example,	for	a	sample	of	size	100,	the
standard	error	 	is	2,	while	for	a	sample	size	of	10,	the
standard	error	 	is	6.325.	In	other	words,	we	have	less
variability	in	the	sample	means	when	the	sample	size	is	larger.	It
should	make	good	intuitive	sense	that	the	standard	error	depends
upon	the	sample	size;	basically,	as	the	sample	size	increases	and
approaches	the	population	size,	the	sample	‘looks’	more	like	the
population	and	the	sample	means	 	will	approach	the
population	mean	(µ).	Consider	the	difference	in	the	two	sampling
distributions	for	sample	sizes	30	and	100,	respectively,	in	Figure
4.12	Sampling	Distribution	of	Average	Wait-Times	by	Sample
Size.		In	short,	for	a	sample	of	size	30,	the	variation	in	means	is
larger	than	for	a	sample	size	of	100.
Figure	4.12	Sampling	Distribution	of	Average	Wait-Times	by	Sample	Size

Application	of	the	Sampling	Distribution	of	the	Mean
Now	let’s	use	the	characteristics	of	the	sampling	distribution	to
help	us	assess	that	chances	that	the	sample	mean	takes	on	a	value
within	a	specific	range.	Let’s	revisit	our	restaurant	wait-time
example.	Suppose	we	know	that,	for	a	casual-dining	restaurant,	the
wait-time	(X)	is	exponentially	distributed	(right	skewed)	with	a



mean	and	standard	deviation	of	20	minutes.
Suppose	you	take	a	random	sample	of	50	customers	during	lunch.
Based	upon	your	sample	of	50	customers,	if	the	population	of	wait-
times	is	non-normal	with	a	mean	of	20	minutes	and	standard
deviation	of	20	minutes,	what	is	the	probability	that	the	average
wait-time	will	be	more	than	25.0	minutes,	 ?

In	order	to	answer	any	questions	about	sample	means,	we	must
first	look	at	how	we	expect	the	sample	means	to	behave	by
applying	our	rules	for	the	sampling	distribution	of	the	mean.	Doing
so	gives	us	the	following:

	The	mean	of	the	sampling	distribution	is	20	minutes	(
).

	The	standard	error	is	2.8284	minutes	(

).

	The	shape	of	the	sampling	distribution	is	approximately
normal	because	the	sample	size	of	50	is	considered	large	(i.e.,
n>30),	even	though	the	population	is	non-normal.

So,	the	question	we	are	asking	can	be	translated	into	the	following
sampling	distribution	as	illustrated	in	Figure	4.13	Sample
Distribution	of	the	Mean	Based	upon	a	Sample	Size	of	50.
Figure	4.13	Sample	Distribution	of	the	Mean	Based	upon	a	Sample	Size	of	50
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Secondly,	we	are	now	looking	at	the	probability	that	the	sample
mean	falls	within	a	particular	range	where	all	possible	sample
means	(i.e.,	the	sampling	distribution)	have	a	shape	that	is	normal.
So	how	do	we	calculate	a	probability?	By	now,	you	may	recognize
that	anytime	you	ask	a	probability	question	about	a	normal
distribution,	you	must	convert	a	numeric	value	to	a	Z-score	and	use
your	standard	normal	Z-table.

So	how	do	you	standardize?	In	the	beginning	of	this	chapter,	you
saw	that	when	asking	a	probability	question	about	X	falling	within
a	certain	range	within	a	normal	distribution,	you	subtracted	the
mean	from	X,	and	then	divided	by	the	standard	deviation	of	X.
Now,	you	are	interested	in	finding	the	probability	with	respect	to	a
sample	mean,	so	you	must	standardize	the	sampling	distribution	of
the	sample	mean	by	subtracting	the	mean	of	the	sampling
distribution	and	dividing	by	the	standard	deviation	of	the	sample
mean,	or	the	standard	error.	In	short,	to	convert	 	to	a	Z-score,
you	must	use	the	following	formula:

So	our	sample	mean	of	25	minutes	is	converted	to	a	standardized	Z
score	as	follows:



	

The	Z-score	of	+1.77	indicates	that	the	sample	mean	of	25	is	1.77
standard	errors	above	the	population	mean	of	20.		In	order	to	find
the	probability,	you	must	locate	1.77	in	the	Z-table	to	find	the	area
under	the	curve;	that	is,	0.9616.	So	the	area	under	the	curve	above
Z	is	0.0384,	as	shown	in	Figure	4.14	Probability	That	Z	>	+1.77.
In	conclusion,	when	the	average	time	to	seat	customers	at	a	casual-
dining	restaurant	is	non-normal	with	a	mean	of	20	minutes	and	a
standard	deviation	of	20	minutes,	the	probability	of	selecting	a
sample	of	size	50	having	an	average	wait-time	more	than	25
minutes	is	0.0384,	or	3.84%—in	other	words,	somewhat	unlikely.
Figure	4.14	Probability	That	Z	>	+1.77

Effects	of	Sample	Size	on	the	Sampling	Distribution

As	stated	previously,	sample	size	affects	the	variation	of	the	sample
means	and	that	variation	is	specifically	defined	by	the	standard
error.	Remember	that	as	sample	size	increases,	the	standard	error
decreases	and,	vice	versa:	as	the	sample	size	decreases,	the
standard	error	increases.	Well,	how	does	that	affect	our	probability
questions	about	the	sample	mean?	In	order	to	illustrate	its	effects,
let’s	revisit	the	previous	problem	with	a	different	sample	size.

Example	8:	Consider	the	population	of	wait-times	at	a	casual-



dining	restaurant	which	is	non-normal,	having	a	mean	of	20
minutes	and	standard	deviation	of	20	minutes.	Suppose	you	now
take	a	random	sample	of	100	customers	and	ask	the	question,	what
is	the	probability	that	the	average	wait-time	will	be	more	than	25.0
minutes,	 ?	Notice	that	the	appropriate	sampling
distribution	is	more	peaked	as	illustrated	in	Figure	4.15	Sampling
Distribution	of	the	Mean	for	Two	Sample	Sizes.

Solution:		Note	that	the	process	of	answering	the	question	remains
the	same.	However,	the	standard	error	changes	because	it	is	a
function	of	sample	size,	and	consequently,	the	value	of	Z-score
changes	as	follows:

	

The	question	now	becomes,	what	is	the	probability	that	Z	is	greater
than	+2.50,	that	is	P(Z>2.50)?	Using	your	Z-table,	you	should
arrive	at	the	answer	0.0062.	In	other	words,	if	you	take	a	random
sample	of	size	100	from	a	population	that	is	non-normal	with	a
mean	and	standard	deviation	of	20,	you	have	a	0.62%	chance	of
selecting	a	mean	of	25	or	more.	From	a	practical	perspective,	you
should	see	that	the	probability	of	getting	a	sample	mean	in	the	tail
(i.e.,	relatively	far	from	the	mean)	is	less	likely	for	the	sample	size
of	100	(0.0062)	when	compared	to	a	sample	of	size	50	(.0384)	as
further	shown	in	Figure	4.15	Sampling	Distribution	of	the	Mean	for
Two	Sample	Sizes.	It	should	make	intuitive	sense	that,	as	the
sample	size	increases,	you	expect	the	sample	mean	to	be	‘closer’	to
the	population	mean	as	opposed	falling	in	the	tails.
Figure	4.15	Sampling	Distribution	of	the	Mean	for	Two	Sample	Sizes



Introduction	to	Hypothesis	Testing
In	Chapter	2,	“Summarizing	Your	Data	with	Descriptive	Statistics”
and	Chapter	3,	“Data	Visualization,”	we	used	procedures	to
summarize	the	data	we	select	from	a	single	sample	in	terms	of	both
numeric	descriptions	and	visual	descriptions.	These	procedures	are
referred	to	as	descriptive	statistics.	We	now	turn	out	attention	to
the	topic	of	inferential	statistics	where	we	use	sample	data	to
infer	some	conclusion	about	the	population.

In	the	previous	section,	we	introduced	the	sampling	distribution
which	gives	us	a	way	to	assess	some	expectation	about	our	sample
means	when	we	know	the	true	population	mean.	We	will	now
consider	only	those	situations	where	we	do	not	know	the	value	of
the	population	mean.	Specifically,	we	will	make	an	assumption
about	the	population	mean	and,	along	with	this	assumption,	we
have	some	‘expectation’	about	the	values	of	the	sample	mean,
based	upon	what	we	know	about	the	sampling	distribution.

So	when	we	select	a	random	sample,	and	consider	our	single
‘observed’	mean,	we	must	ask	ourselves	the	following	question:	Is
the	observed	mean	relatively	far	from	what	we	‘expect’	when	our
assumption	is	true?	If	the	answer	to	that	question	is	‘Yes,’	that	is,
our	data	differs	from	what	we	expect,	then	we	must	question	our
initial	assumption.	If	our	answer	is	‘No,’	then	we	have	no	reason	to



question	our	initial	assumption	and	assume	it	is	still	intact.
We	all,	at	some	time	or	another,	make	observations	and
consequently	make	generalizations	based	upon	those	observations.
Let’s	consider	an	example	to	which	most	of	us	can	relate—traffic
and	how	long	it	takes	us	to	drive	to	work	each	day.	After	working	a
job	for	a	period	of	time,	you	begin	to	make	a	generalization	about
the	time	it	takes	to	get	to	work	and,	therefore,	leave	at	the	same
time	each	morning	to	ensure	you	get	to	work	on	time.	Suppose,	for
example,	your	commute	time	is	20	minutes.	As	long	as	nothing
changes	for	your	morning	commute—barring	the	typical	traffic
accident	or	bad	weather—you	expect	to	get	to	work	on	time	each
day	if	you	allow	20	minutes	for	commuting.	If	you	follow	your
normal	routine	and	continue	to	get	to	work	on	time,	you	can
assume	that	the	average	commute	time	for	all	mornings	(in	the
population)	remains	unchanged	at	20	minutes.

Suppose	now	that	on	random	days	you	are	late	for	work,	along
with,	say,	friends	and	co-workers	who	drive	the	same	distance,	and
find	that	the	average	commute	time	is	now	30	minutes.	You	may
then	change	your	routine	to	allow	more	time	because	you	have
reason	to	believe	that	the	commute	time,	in	general,	has	now
increased.	Now,	would	you	necessarily	change	your	routine	if	you
had,	for	example,	experienced	an	average	commute	time	of	22?	In
other	words,	would	the	difference	in	what	you	observe	(22
minutes)	and	what	you	expect	(20	minutes)	be	large	enough	to
consider	a	change	in	your	normal	routine?	Maybe	not!

In	this	section,	we	will	introduce	a	systematic	approach	for	testing
our	initial	assumption	about	the	population	based	upon	a	single
sample	in	a	process	called	hypothesis	testing.	In	particular,	we
will	make	an	initial	assumption	about	the	population	parameter,
take	a	random	sample	from	that	population	and	calculate	the
sample	statistic,	and	then	provide	a	decision	rule	for	how	far	our
observed	statistic	must	deviate	from	our	expected	population
parameter	before	we	are	willing	to	abandon	our	initial	assumption.

Defining	the	Null	and	Alternative	Hypotheses
In	order	to	carry	out	a	hypothesis	test,	the	analyst	must	first	make	a
formal	statement	about	the	population	parameter	of	interest—in
our	case,	the	population	mean.	The	statement	consists	of	two	parts:



the	null	hypothesis	and	the	alternative	hypothesis.	The	null
hypothesis	(Ho)	is	the	initial	statement	about	the	population	and
ordinarily	represents	a	commonly	accepted	state	of	affairs,	or	the
status	quo.	The	null	hypothesis	is	tentatively	assumed	to	be	true
unless	overwhelmingly	contradicted	by	data.	The	alternative
hypothesis	(H1)	is	the	opposite	of	the	null	hypothesis	and	is
ordinarily	a	statement	of	what	the	analyst	wishes	to	prove.
Let’s	revisit	our	restaurant	wait-time	example.	Suppose	you	are	the
manager	of	a	casual-dining	restaurant	and	your	restaurant’s
practices	ensure	that	your	customers	are	seated	in	an	average	of	20
minutes	after	they	walk	in	the	door.	Suppose	you	are	considering
some	creative	ways	to	reduce	your	customer	wait-time	and	have
decided	to	implement	a	new	video-monitoring	system	to	identify
choke	points	in	your	restaurant.	If	the	new	system	is	successful,
then	the	wait-time	should	be	reduced.	As	with	any	technology,	the
new	system	could	cause	some	unexpected	inefficiencies	and	result
in	an	increase	in	wait-time.	In	short,	you	are	interested	in	detecting
a	change	in	either	direction.	In	order	to	detect	either	the	reduction
or	increase	in	the	wait-time,	you	must	first	define	your	hypotheses.
In	essence,	you	take	a	random	sample	of	customers	to	test	the	new
technology	and	want	to	show	that	the	newly	implemented
technology	is	effective	in	changing	the	wait-time.	Remember	—what
you	want	to	show	is	associated	with	the	alternative	hypothesis.	The
null	hypothesis	is	the	opposite:	that	is,	the	technology	has	no	effect
and	that	the	wait-time	has	remained	the	same.	Therefore,	the
hypotheses	of	interest	are:

Ho:	µ	=	20				versus	H1:	µ	≠	20.		

This	specific	hypothesis	set	is	referred	to	as	directional
hypotheses	as	the	analyst	is	interested	in	detecting	a	change	in
either	direction,	a	reduction	or	an	increase	in	wait-time.

Before	testing	the	hypotheses,	the	analyst	must	also	describe	the
appropriate	sampling	distribution	so	that	he	or	she	has	an	idea	of
what	to	expect	if	the	null	hypothesis	is	true.	Remember,	if	the
original	population	is	normal	or	if	the	sample	size	is	sufficiently
large	(central	limit	theorem),	then	the	sampling	distribution	is
normal,	with	mean	(µ0)	and	standard	error	( ),	where	µ0	is	the
hypothesized	population	mean,	as	indicated	in	Figure	4.16



Rejection	Region	for	a	Two-Tailed	Test.
Figure	4.16	Rejection	Region	for	a	Two-Tailed	Test

So,	when	we	take	our	single	sample	of	customers	and	obtain	our
sample	mean	wait-time,	if	that	sample	mean	is	relatively	‘far’	from
what	we	expect	(µ0),	then	we	must	reject	the	null	hypothesis.	In
other	words,	we	will	reject	the	null	if	the	sample	mean	is	either
significantly	less	than	µo	or	significantly	more	than	µo.		The
rejection	region,	as	shaded	in	Figure	4.16	Rejection	Region	for	a
Two-Tailed	Test,	indicates	those	sample	means	that	are	not
expected	if	the	null	hypothesis	is	true.	Note	that	this	test	is	also
referred	to	as	a	two-tailed	test,	as	the	rejection	region	resides	in
both	tails.

Suppose,	instead,	that	the	manager	is	interested	only	in	detecting	a
reduction	in	wait-time.	Then	the	appropriate	hypothesis	set	would
be:

Ho:	μ	≥	20		versus				H1:	μ	<	20

Notice	that	what	the	manager	wants	to	show	is	a	decrease	in	wait-
time	as	illustrated	in	the	alternative	hypothesis.	Here,	if	the	sample
mean	is	significantly	less	than	the	hypothesized	mean	µo,	we	will



reject	the	null	hypothesis	in	favor	of	the	alternative.	This	specific
hypothesis	set	is	a	directional	test	and	is	also	known	as	a	one-
tailed,	lower-tailed	test	as	shown	in	Figure	4.17	Rejection	Region
for	a	Lower-Tailed	Test.
Figure	4.17	Rejection	Region	for	a	Lower-Tailed	Test

On	the	other	hand,	suppose	the	manager	is	interested	in
determining	only	if	the	restaurant’s	performance	has	diminished
(i.e.,	that	the	wait-time	has	increased).	Then	the	appropriate
hypothesis	set	would	be:

Ho:	μ	≤	20		versus				H1:	μ	>	20

In	this	case,	if	the	sample	mean	is	significantly	more	than	the
hypothesized	mean	µo,	we	will	reject	the	null	hypothesis.	This
specific	hypothesis	set	is	a	directional	test	and	is	also	known	as	a
one-tailed,	upper-tailed	test	as	shown	in	Figure	4.18	Rejection
Region	for	an	Upper-Tailed	Test.
Figure	4.18	Rejection	Region	for	an	Upper-Tailed	Test



Defining	and	Controlling	Errors	in	Hypothesis	Testing
Remember,	when	doing	an	inferential	study,	we	are	making	an
assumption	about	some	unknown	population	parameter—in	this
chapter	that	is	the	population	mean.	So	when	we	take	a	sample	and
use	that	information	to	make	a	decision	about	the	null	hypothesis,
we	can	never	be	assured	that	we	are	making	the	right	decision.
Therefore,	our	goal	is	to	develop	a	decision	rule	that	ensures	we	are
minimizing	the	chance	of	making	an	error.	In	order	to	do	that,	we
must	first	define	the	two	types	of	errors.

A	Type	I	error	occurs	if	we	reject	a	true	null	hypothesis	and	can	be
viewed	as	a	‘false	alarm.’	A	Type	II	error	occurs	if	we	accept	a
false	null	hypothesis	and	can	be	viewed	as	a	‘missed	opportunity.’
We	will	define	α	as	the	probability	of	making	a	Type	I	error	and	β
as	the	probability	of	making	a	Type	II	error.	Of	course,	we	really
count	on	making	a	correct	decision,	where	we	either	accept	a	true
null	hypothesis	or	reject	a	false	null	hypothesis.

To	illustrate	the	implications	of	each	type	of	error,	let’s	consider
our	restaurant	wait-time	example,	where	the	industry-standard
wait-time	is	20	minutes	and	the	manager	wants	to	show	a	decrease
(improvement)	in	wait-time	after	implementing	the	new
technology:

Ho:	μ	≥	20		versus				H1:	μ	<	20	



Consider,	first,	the	Type	I	error—Suppose	that	the	manager
implements	the	new	technology	and,	in	reality,	the	null	hypothesis
is	true.	That	is,	the	technology	is	ineffective	and,	accordingly,	all
customers	have	an	average	wait-time	of	at	least	20	minutes.
Suppose	also	that	the	manager	takes	a	random	sample	of
customers,	records	the	wait-times,	observes	that	the	sample	mean	is
‘significantly’	less	than	the	expected	mean	of	20	minutes,	and,
consequently,	rejects	the	null	hypothesis.	In	this	case,	the	manager
has	committed	a	Type	I	error.	In	other	words,	there	is	a	false	alarm
where	the	manager	concludes	that	the	newly	implemented
technology	is	effective	when	in	reality	it’s	a	dud!	In	this	case,	the
manager	claims	that	his	investment	in	the	new	technology	was
effective,	when	in	reality	the	technology	was	implemented	with	no
true	improvement	in	wait-time.

Consider,	now,	the	Type	II	error.	Suppose,	in	reality,	the	null
hypothesis	is	false	and	all	customers	have	an	average	wait-time	less
than	20	minutes.	Suppose,	in	this	case,	the	manager	takes	a	random
sample	of	customers,	notes	a	sample	mean	relatively	close	to	or
greater	than	20	minutes,	and,	consequently,	accepts	the	null
hypothesis.	In	this	case,	the	manager	has	committed	a	Type	II
error.	In	short,	there	is	a	missed	opportunity	where	the	manager
concludes	that	the	newly	implemented	technology	is	not	effective
when	in	reality	it’s	a	success!	Here,	the	manager	may	opt	to	remove
the	technology	and,	thus,	will	miss	an	opportunity	to	increase
revenue	through	reduced	wait-times	and	increased	customer
satisfaction.

When	conducting	a	hypothesis	test,	the	analyst	is	interested	in
minimizing	the	chance	of	committing	an	error.	The	only	way	to
minimize	both	types	of	errors	is	to	increase	the	sample	size.
Ordinarily,	we	are	dealing	with	limited	resources	and	increasing
the	sample	size	may	be	infeasible	or	even	impossible.	In	the	case	of
a	fixed	sample	size,	the	analyst	cannot	minimize	or	control	both
types	of	errors	at	the	same	time.			So	why	is	this?	Remember	that
you	can	commit	a	Type	I	error	only	when	a	true	null	is	rejected.		So
the	analyst	could	avoid	a	Type	I	error	by	accepting	the	null;
however,	as	soon	as	the	decision	is	made	to	accept	the	null,	by
definition,	it	is	now	possible	to	make	a	Type	II	error.	As	a	result,
the	analyst	must	decide	which	type	of	error	is	to	be	controlled—
Type	I	or	Type	II?



In	reality,	the	analyst	should	consider	the	relative	costs	of	two
errors	when	determining	which	error	to	control.	In	hypothesis
testing,	it	is	a	commonly	accepted	practice	to	define	the	maximum
allowable	Type	I	error	rate.	In	other	words,	the	analyst	will	define
a	decision	rule	that	prohibits	rejecting	the	null,	thereby	guarding
against	a	Type	I	error,	unless	the	observed	sample	statistic	is
relatively	far	from	the	hypothesized	population	parameter.	In	short,
the	analyst	defines	a	distance	| 	where	he	or	she	is
relatively	confident	that	the	decision	to	reject	is	a	correct	decision.

Ultimately,	the	question	becomes:	What	distance	is	considered
‘far?’	That	is	determined	by	defining	the	level	of	significance	(α),
the	maximum	allowable	Type	I	error	rate.	For	hypothesis	testing,
common	choices	for	α	are	0.01,	0.05,	or	0.10.	So	if	you	really	want
to	play	it	safe,	you	would	set	your	level	of	significance	at	0.01,
meaning	that,	if	we	were	to	set	a	distance	criterion	for	rejecting	the
null	and	applied	that	criterion	to	100	random	samples,	we	would
make	a	mistake	by	rejecting	only	1	out	of	100	times.	If	however,
we	wanted	to	set	a	criterion	that	is	less	restrictive,	we	would	set
our	level	of	significance	to	0.10,	indicating	that	we	are	willing	to
make	a	mistake	by	rejecting	10	out	of	100	times.	Hopefully,	you
can	see	that	setting	the	significance	level	at	0.01	results	in	a
smaller	chance	of	rejecting,	implying	that	the	distance	criterion	is
larger	than	that	for	0.10	or	even	0.05.	In	other	words,	selecting	the
smallest	level	of	significance	suggests	that	our	intention	is	to	reject
the	null	only	in	cases	where	the	data	provides	strong	evidence	of	a
correct	decision.	Shortly,	we	will	see	why	this	is	true	when	we	use
the	level	of	significance	to	define	our	decision	rule	for	rejecting	the
null.

Hypothesis	Testing	for	the	Population	Mean	(σ	Known)
In	this	section,	we	lay	out	a	five-step	process	for	testing	hypotheses
about	the	population	mean	(µ)	when	σ	is	known.	We	illustrate	both
the	two-tailed	and	one-tailed	approach,	followed	by	an	explanation
and	illustration	of	the	p-value	approach.

Two-Tailed	Tests	for	the	Population	Mean	(µ)
Consider,	again,	our	restaurant	wait-time	example.		As	you	may



recall,	it	is	common	in	casual-dining	restaurants	to	wait	an	average
of	20.0	minutes	before	being	seated.	Suppose	you	are	an	analyst
hired	by	the	manager	and	your	task	is	to	determine	how	a	new
video-monitoring	system	performs	when	used	to	identify	choke
points.	Because	you	are	not	sure	of	the	effects,	you	are	interested	in
testing	the	system	for	both	possible	influences—either	the	system	is
successful	in	identifying	bottlenecks	and	helps	to	reduce	wait-times
or	the	system	is	unsuccessful	because	it	causes	unexpected
inefficiencies	resulting	in	an	increased	wait-time.	Therefore,	the
hypotheses	you	are	interested	in	testing	are:

Ho:	µ	=	20				versus	H1:	µ	≠	20.	

After	implementing	the	video-monitoring	system,	suppose	you
randomly	select	60	customers	and	find	that	the	average	time	to	seat
customers	is	15.5	minutes.	Obviously,	your	sample	mean	of	15.5	is
not	equal	to	your	hypothesized	population	mean	of	20;	however,
keep	in	mind	that	the	real	question	is	asking:		‘Is	15.5	minutes	far
enough	from	my	hypothesized	mean	time	of	20.0	minutes	to
conclude	that,	if	I	had	the	entire	population,	the	true	population
mean	wait-time	is	now	different	than	20	minutes?

Assume	that	the	distribution	of	the	wait-times	is	exponentially
distributed	with	a	population	standard	deviation	σ	=	20.0	minutes.
You	decide	to	set	your	level	of	significance	(α)	at	0.05	for
determining	the	rejection	rule.	The	process	of	hypothesis	testing
can	be	summarized	in	five	steps.	

Step	1:		So	that	the	analyst	knows	what	to	expect	if	the	null
hypothesis	is	true,	the	analyst	must	first	identify	and	describe	the
appropriate	sampling	distribution.	In	other	words,	if	the	null
hypothesis	is	true,	you	can	make	some	assumptions	about	how	the
set	of	all	possible	sample	means	behaves	by	applying	the	central
limit	theorem.	So	while	the	original	population	is	non-normal,
because	the	sample	size	60	is	considered	sufficiently	large,	the
sampling	distribution	is	normal	with	mean	(µ0)	and	standard	error
( ).		So	for	our	hypothesis	test,	we	can	describe	the	three
following	characteristics	of	the	sampling	distribution:

1.						The	sampling	distribution	of	the	mean	is	normal	because	the
sample	size	is	large	(n=60	>	30),	even	though	the	shape	of
the	population	is	not	normal.



2.						The	mean	of	the	sampling	distribution	( )	is	equal	to	the
mean	of	the	hypothesized	population	(µ0).	That	is,	 .

3.			The	standard	error	of	the	mean	which	measures	the	variation
in	the	sample	means	is	equal	to	

Step	2:		Once	the	analyst	knows	the	characteristics	of	the
sampling	distribution,	he	or	she	must	define	the	decision	rule	for
rejecting	the	null	hypothesis	based	upon	the	set	level	of
significance	(α).	In	other	words,	we	want	to	define	the	critical
region	so	that	if	the	sample	mean	exceeds	a	certain	distance	from
the	hypothesized	mean,	our	chance	of	making	a	Type	I	error	will	be
lower	than	that	allowed	by	the	α-level.			To	set	up	the	scenario,
consider	the	sampling	distribution	for	our	example	in	Figure	4.19
Rejection	Region	for	a	Two-Tailed	Test	at	α	=	0.05.
Figure	4.19	Rejection	Region	for	a	Two-Tailed	Test	at	α	=	0.05

Let’s	define	the	rejection	region	to	be	the	shaded	area.	This	shaded
area	corresponds	to	all	sample	means	considered	relatively	far
where	the	analyst	is	justified	in	rejecting	the	null	hypothesis	even
though	the	null	is	true.	This	represents	the	proportion	of	sample
means	where	we	would	erroneously	reject	the	null	hypothesis	and
commit	a	Type	I	error.	So	we	want	a	distance	from	the	hypothesize



mean	of	20,	where	we	will	reject	incorrectly	and,	thereby,	commit
a	Type	I	error	only	5%	of	the	time	(for	α=0.05).	Because	we	are
considering	a	two-tailed	test,	that	distance	corresponds	to	0.025	of
the	area	in	each	tail.	In	essence,	the	shaded	area	represents	the	.05
proportion	of	times	that	a	sample	mean	will	be	that	far	from	µo
when	µo	is	actually	true.

When	an	analyst	conducts	a	hypothesis	test,	it	is	common	to
measure	the	distance	between	μo	and	 	in	terms	of	the	number	of
standard	errors,	in	other	words,	using	the	Z-score.	So	our	question
becomes,	how	many	Z-scores	does	the	sample	mean	have	to	be
from	the	hypothesized	mean	in	order	to	reject	and	stay	below	the
.05	level	of	significance?	This	Z-score	is	referred	to	as	the	critical
value.	This	is	equivalent	to	asking	the	question,	what	is	the	Z-value
where	.025	proportion	of	the	Z-values	is	in	each	of	the
tails.		Because	we	have	established	that	the	sampling	distribution	is
normal,	we	can	use	our	Z-table	to	find	the	Z-value	resulting	in	.025
proportion	in	each	tail.

When	looking	in	the	Z-table,	as	illustrated	in	Table	4.3	Finding	Z-
Value	Associated	with	0.025	Area	in	the	Lower	Tail,	you	are
working	backwards,	so	you	must	look	in	the	body	of	the	table	to
find	the	appropriate	proportion,	.0250,	and	the	entry	defines	the
row	and	column	needed	to	identify	the	Z-value.	So	0.025	of	the	Z-
values	are	below	the	Z-value	of	-1.96,	and	by	symmetry,	0.025	of
the	Z-values	are	above	the	Z-value	of	+1.96.		In	conclusion,	our
critical	values	are	±	1.96.	
Table	4.3	Finding	Z-Value	Associated	with	0.025	Area	in	the	Lower	Tail



These	values	are	used	to	establish	our	rejection	rule:		We	will	reject
the	null	hypothesis	if	the	sample	mean	has	a	Z-value	more	than
+1.96	or	less	than	-1.96.	In	other	words,	we	will	reject	the	null
hypothesis	if	our	sample	mean	is	more	than	1.96	standard	errors
from	our	hypothesized	mean,	as	illustrated	in	Figure	4.20	Critical
Values	for	a	Two-Tailed	Test	at	α	=	0.05.	
Figure	4.20	Critical	Values	for	a	Two-Tailed	Test	at	α	=	0.05



Step	3:		The	form	of	the	rejection	rule	requires	that	we	convert
our	sample	mean	to	a	Z-score.	In	other	words,	we	are	asking	the
question:		How	many	standard	errors	is	my	sample	mean	from	my
hypothesized	mean.	We	can	answer	that	question	using	the
following	formula:

This	Z-value	is	referred	to	as	the	test	statistic	and	tells	the	analyst
that	the	sample	mean	of	15.5	is	1.74	standard	errors	below	the
hypothesized	mean	of	20.	

Step	4:		Now	that	we	know	our	test	statistic,	we	can	make	our
final	decision	about	the	null	hypothesis;	that	is,	because	our	test
statistic,	-1.74,	is	between	our	critical	values	(±1.96),	we	do	not
reject	the	null.	In	short,	as	illustrated	in	Figure	4.20	Critical	Values
for	a	Two-Tailed	Test	at	α	=	0.05,	our	sample	mean	is	not	far
enough	to	reject	the	null	and	maintain	a	Type	I	error	rate	less	than
0.05.

Step	5:		Once	we	make	our	final	decision,	we	must	interpret	that



decision	in	terms	of	the	alternative	hypothesis.	Because	we	do	not
reject	the	null	hypothesis,	we	conclude	that	there	is	not	enough
evidence	to	say	that	the	alternative	hypothesis	is	true,	that	the
average	wait-time	in	the	population	has	changed	from	20	minutes.
In	other	words,	there	is	not	enough	evidence,	based	upon	our
sample	of	60	customers,	to	say	that	the	newly	installed	video-
monitoring	system	had	any	effects	on	the	average	wait-time	of	all
casual-dining	customers.	

The	methodology	just	introduced	for	conducting	the	hypothesis	test
for	a	population	mean	is	called	the	Z-test	for	means	because	the
sampling	distribution	of	the	means	is	normal	and	allows	us	to	use
the	Z-table	for	finding	critical	values.	This	approach	is	sometimes
referred	to	as	the	Critical	Value	Approach.	

One-Tailed	Tests	for	the	Population	Mean	(µ)
The	specific	nature	of	the	business	question	always	determines	the
direction	of	the	test.	Suppose,	in	the	case	of	our	wait-time	example,
the	restaurant	manager	is	interested	only	in	detecting	a	decrease	in
the	wait-time	instead.	This	question	would	warrant	using	a	one-
tailed,	lower-tailed	test	where	the	appropriate	hypotheses	would
be:

Ho:	μ	≥	20			versus				H1:	μ	<	20

For	wait-times,	assume	that	the	distribution	of	the	wait-times	is
exponentially	distributed	with	a	population	standard	deviation	σ	=
20.0	minutes.	Suppose,	again,	that	the	manager	randomly	selects
60	customers	and	finds	that	the	average	time	to	seat	customers	is
15.5	minutes,	and	tests	the	hypothesis	at	a	0.05	level	of
significance.

Consider	each	of	the	steps	needed	to	conduct	the	hypothesis	test:

Step	1:			The	sampling	distribution	of	the	means	is	normal
because	the	sample	size	is	large	(n=60	>	30)	where	the	mean	of
the	sampling	distribution	( )	is	20	and	the	standard	error	of	the
mean	is	equal	to	 	Notice	that	this	is
identical	to	our	two-tailed	test	example	because	our	data	conditions
have	not	changed.

Step	2:		Based	upon	the	level	of	significance,	we	must	now	find



the	critical	value	and	state	our	rejection	rule.	Because	the
alternative	hypothesis	represents	‘less	than,’	we	will	conduct	a	one-
tailed,	lower-tailed	test.	The	critical	value	is	that	Z-value	where	.05
(or	5%)	of	the	Z-values	are	below,	as	indicated	in	Figure	4.21
Critical	Value	for	a	One-Tailed	Test	at	α	=	0.05.
Figure	4.21	Critical	Value	for	a	One-Tailed	Test	at	α	=	0.05

To	find	the	Z-value,	you	will	look	in	the	body	of	the	Z-table	in
Appendix	C	Z-Table	where	you	will	look	for	0.0500.	While	you	will
not	locate	0.0500	exactly,	you	will	find	both	areas	0.0495	and
0.0505,	associated	with	critical	values	
-1.64	and	-1.65,	respectively.	Using	linear	interpolation,	we	will
use	-1.645	as	the	critical	value	for	a	lower-tailed	test	at	.05	level	of
significance.

This	value	is	used	to	establish	our	rejection	rule:		We	will	reject	the
null	hypothesis	if	our	test	statistic	is	less	than	-1.645.		

Step	3:		Based	upon	the	sample	data,	calculate	the	test	statistic,
as	follows:

Step	4:		Our	test	statistic	-1.74	is	less	than	the	critical	value	of
-1.645,	so	we	will	reject	the	null	hypothesis,	as	illustrated	in	Figure



4.22	Test	Statistic	Compared	to	the	Critical	Value.
Figure	4.22	Test	Statistic	Compared	to	the	Critical	Value

Step	5:		Based	upon	our	sample	of	60	customers,	we	have	reason
to	believe	that	the	average	wait-time	for	the	casual-dining
restaurant	has	declined	since	installing	the	new	video-monitoring
system.

Now	that	you	have	conducted	your	first	hypothesis	test,	there	are	a
few	comments	to	be	noted.	First,	when	conducting	more
sophisticated	tests	of	hypotheses	(in	this	book	and	in	other
references),	the	same	five	basic	steps	will	be	employed	to	arrive	at
a	decision	to	reject	the	null	hypothesis	or	not.

Secondly,	notice	that,	in	our	wait-time	example,	when	we
conducted	the	two-tailed	versus	the	lower-tailed	test,	our	decisions
differed.	For	a	fixed	α-level	(in	our	case,	α	=	0.05),	when	we
conducted	the	two-tailed	test,	we	did	not	reject	the	null	hypothesis;
however,	when	we	conducted	the	lower-tailed	test	we	rejected.	In
fact,	changing	the	level	of	significance	(α)	or	whether	the	test	is
one-	or	two-tailed	will	affect	what	you	use	for	critical	values	as
seen	in	Table	4.4	Critical	Values	Based	upon	α-Level	and	One-
Tailed	versus	Two-Tailed	Tests.	Notice	also	because	of	symmetry,
the	magnitudes	of	the	critical	values	are	identical	when	comparing
one-	and	two-tailed	tests.	So	had	the	manager,	for	some	reason,



wanted	to	detect	only	an	increase	in	wait-time,	then	at	.05	level	of
significance,	the	critical	value	would	have	been	+1.645.
Table	4.4	Critical	Values	Based	upon	α-Level	and	One-Tailed	versus	Two-Tailed
Tests

α-Level Two-Tailed Upper-Tailed
One-Tailed
(Lower)

0.01 ±2.575 +2.33 -2.33

0.05 ±1.96 +1.645 -1.645

0.10 ±1.645 +1.28 -1.28

Next,	when	conducting	any	hypothesis	test,	it	should	be	noted	that
there	are	only	two	decisions	and	each	has	a	specific
interpretation.		In	short,

	If	you	reject	the	null	hypothesis,	there	is	evidence	that	the
alternative	hypothesis	is	true.

	If	you	do	not	reject	the	null	hypothesis,	there	no	is	evidence
that	the	alternative	hypothesis	is	true.	

The	analyst	must	keep	these	interpretations	clear	in	order	to	make
subsequent	decisions.

Finally,	consider	how	sample	size	can	affect	the	results	of	a
hypothesis	test.	Holding	all	other	values	constant,	what	would
happen	to	the	test	statistic	if	the	sample	size	had	been	larger,	say,
100?	You	can	do	the	math,	but	consider	that	if	the	sample	size
increases,	then	the	standard	error	decreases;	if	the	standard	error
decreases,	then	the	z-test	statistic	increases	and	is	more	likely	to
exceed	the	critical	value.	So	for	a	fixed	level	of	significance	(i.e.:
fixed	critical	value),	you	are	more	likely	to	reject	the	null	when	you
increase	your	sample	size.	This	has	to	do	with	the	power	of	the
test—that	is,	the	probability	of	rejecting	the	null	when	the	null	is
actually	false,	denoted	by	(1-β).	This,	in	essence,	is	the	probability
of	not	committing	a	Type	II	error.

Hypothesis	Testing	Using	the	P-Value	Approach
In	the	previous	section,	hypothesis	testing	required	finding	the
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critical	value(s)	based	upon	the	level	of	significance	(α),	and	this
criterion	was	used	to	make	your	decision.	Remember	the	level	of
significance	is	the	maximum	allowable	chance	of	making	a	Type	I
error.	In	this	section,	we	will	use	the	p-value	approach	to	make	our
decision.	Both	the	critical	value	approach	and	the	p-value	approach
are	different	ways	of	coming	up	with	the	same	decision.	So	in
practice,	you	would	use	one	approach	or	the	other,	not	both.	You
will	see,	however,	in	practice,	that	all	statistical	packages	supply	a
p-value	in	the	output,	so	the	use	of	the	p-value	allows	for	making
decisions	in	an	instant	and	also	provides	the	magnitude	of	the
evidence	to	reject	or	not.
So	what	is	a	p-value?	The	p-value	is	the	actual	chance	of	making	a
Type	I	error	using	your	sample	data.		How	do	you	calculate	the	p-
value?	Basically,	the	p-value	is	the	probability	of	getting	your
sample	mean	or	some	value	farther	in	the	tail	when,	in	reality,	the
null	is	true.	In	order	to	visualize	what	the	p-value	is	telling	us,	let’s
consider	our	one-tailed	test	where	the	manager	was	interested	in
detecting	a	reduction	in	the	wait-time	for	customers	at	a	casual-
dining	restaurant	after	implementing	a	new	video-monitoring
system.

Ho:	μ	≥	20			versus				H1:	μ	<	20

Remember,	the	manager	tests	60	randomly	selected	customers	and
finds	that	the	average	time	to	seat	customers	is	15.5	minutes	after
implementing	the	video-monitoring	system.	Assuming	that	the
distribution	of	the	wait-times	is	exponentially	distributed	with	a
population	standard	deviation	σ	=	20.0	minutes,	suppose	you	want
to	test	the	hypothesis	at	a	0.05	level	of	significance.

When	looking	at	Figure	4.23	p-Value	for	a	One-Tailed	Test,	by
definition	the	p-value	is	the	shaded	area.	The	shaded	area	is	the
probability	of	getting	a	mean	of	15.5	or	less	when	the	null	is	true—
that	is,	when	the	sampling	distribution	is	centered	at	20	minutes.	
Figure	4.23	p-Value	for	a	One-Tailed	Test



Notice	that	we	are	asking	a	probability	question	about	a	normal
distribution,	so	you	should

immediately	think:	Convert	the	sample	mean	to	a	Z-value	and	use
your	Z-table.	Remember	the	sample

mean	of	15.5	minutes	has	a	Z-value	of	-1.74,	so	when	looking
up		that	value	in	your	Z-table,	you	will	find

a	p-value	of	0.0409,	as	shown	in	Figure	4.23		p-Value	for	a	One-
Tailed	Test.

The	p-value	corresponds	to	the	proportion	of	times	you	would
reject	the	null,	with	a	mean	of	15.5	minutes	or	less,	when,	in
reality,	the	null	hypothesis	is	actually	true.	Because	the	chance	of
making	a	Type	I	error	is	less	than	the	maximum	allowable	as	set	by
the	α-level	(0.05),	you	can	reject	the	null	hypothesis.	

In	conclusion,	the	rejection	rule	when	using	the	p-value	is:

	If	p-value	<	α,	then	reject	the	null	hypothesis.

	If	p-value	≥	α,	then	do	not	reject	the	null	hypothesis.

Now	that	you	have	conducted	your	first	hypothesis	test	using	the	p-
value	approach,	there	are	some	points	to	make.	First,	note	that	the
same	decision	was	made	using	the	p-value	approach	for	the	one-
tailed	test	as	was	made	when	using	the	critical	value	approach.	In
both	cases,	you	used	the	same	sample	data	and,	therefore,	you	must
obviously	come	up	with	the	same	results.	This	is	true	always—
remember	that	these	are	different	ways	of	answering	the	same
question.

Second,	for	comparative	purposes,	suppose	you	had	observed	an
average	wait-time	of	16.75	minutes	for	the	60	randomly	selected
customers.	The	Z-value	for	that	sample	mean	is	-1.26	with	a	p-
value	of	0.1038.	In	that	situation,	your	chance	of	making	a	Type	I
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error	exceeds	0.05	level	of	significance,	so	you	would	not	reject	the
null	hypothesis.

Notice	also,	when	comparing	the	results	for	the	sample	mean	of
15.5	minutes	versus	the	sample	mean	of	16.75	that	the	sample
mean	of	15.5	is	farther	from	the	hypothesized	mean	of	20	minutes,
which	obviously	provides	stronger	evidence	for	rejecting	the	null
than	for	the	sample	mean	of	16.75.	In	fact,	the	sample	mean	of
15.5	is	farther	in	the	tail	which	is	associated	with	a	smaller	tail
area	than	that	associated	with	the	sample	mean	of	16.75.	

The	P-Value	for	the	Two-Tailed	Hypothesis	Test
In	the	last	section,	the	p-value	approach	was	developed	using	a
one-tailed	test.	When	using	this	approach	for	the	two-tailed	test,
the	analyst	must	take	into	account	that	a	Type	I	error	could	be
committed	if	the	sample	mean	falls	in	either	tail,	and	the	analyst
erroneously	rejects	the	null	hypothesis.	So	how	do	you	take	that
into	account	when	calculating	the	p-value?

Going	back	to	the	two-tailed	test	of	restaurant	wait-times,	consider
a	random	sample	of	60	customers	resulting	in	a	sample	mean	wait-
time	of	15.5	minutes	used	to	test	the	hypotheses	(assume	σ	=	20
minutes):

Ho:	µ	=	20				versus	H1:	µ	≠	20.

Remember,	by	definition,	the	p-value	represents	the	chance	of
making	a	Type	I	error	if	you	reject	with	a	mean	at	15.5	minutes	or
something	more	extreme	where	you	would	reject	incorrectly.	But
you	must	also	take	into	account	that	you	could	have	made	a
mistake	by	rejecting	in	the	other	direction.	Therefore,	in	order	to
arrive	at	the	correct	p-value,	you	must	add	the	area	for	both	tails,
as	indicated	in	Figure	4.24		p-Value	for	a	Two-Tailed	Test,	to	get	a
p-value	of	2(0.0409),	or	0.0818.	Because	your	p-value	of	0.0818
exceeded	the	0.05	level	of	significance,	you	do	not	reject	the	null
hypothesis.	In	conclusion,	there	is	no	evidence	that	the	average
wait-time	for	the	casual-dining	restaurant	has	changed	after
implementing	the	new	video-monitoring	system.	Again,	note	that
this	conclusion	is	identical	to	that	using	the	critical	value	approach.
Figure	4.24		p-Value	for	a	Two-Tailed	Test



Hypothesis	Testing	for	the	Population	Mean	(σ
Unknown)
As	you	know,	inferential	statistics	is	a	way	of	making	conclusions
about	unknown	population	parameters	based	upon	sample
information.	In	many	cases,	when	the	analyst	is	conducting
hypothesis	tests	about	the	population	mean,	not	only	is	µ	unknown,
but	so	too	is	the	population	standard	deviation	(σ).	In	this	section,
we	will	discuss	how	to	conduct	hypothesis	tests	when	σ	is
unknown.

One-Tailed	Tests	for	the	Population	Mean	(µ)
The	best	estimate	we	have	for	the	unknown	population	standard
deviation	is	the	sample	standard	deviation(s).		So,	in	hypothesis
testing	of	the	population	mean,	we	will	take	a	random	sample,
calculate	the	sample	mean,	and	then	compute	a	test	statistic	using
the	following	equation:

This	new	random	variable	is	called	a	t-test	statistic	because	it	has



the	shape	of	a	t-distribution	which	is	symmetric	with	a	mean	of
zero	but	has	‘heavier’	tails	than	that	of	a	normal	distribution.	In
fact,	there	is	a	family	of	t-distributions	specifically	defined	by
degrees	of	freedom	(n-1)	which	is	a	function	of	sample	size.	As	the
sample	size	decreases,	the	tails	become	heavier,	and	as	the	sample
size	increases,	the	tails	become	flatter.

In	order	to	use	the	t-distribution,	you	must	assume	that	the
sampling	distribution	of	the	mean	is	normal.	In	other	words,	the
central	limit	theorem	must	apply;	that	is,	the	population	must	be
normal	or	the	sample	size	must	be	large	(n	≥	30).	It	should	be
noted	that	as	the	sample	size	increases,	the	t-distribution
approaches	normality,	as	illustrated	in	Figure	4.25	The	t-
Distribution	for	Various	Sample	Sizes.	
Figure	4.25		The	t-Distribution	for	Various	Sample	Sizes

So	when	σ	is	unknown,	the	appropriate	reference	distribution	is	the
t-distribution	and	the	appropriate	hypothesis	test	is	referred	to	as	a
t-test	for	means.	It	should	be	noted	that	to	carry	out	a	hypothesis
test,	the	steps	are	identical	to	the	steps	illustrated	for	the	Z-test,
with	one	exception.	Because	we	are	now	converting	our	sample
mean	to	a	t-test	statistic,	we	must	obtain	our	critical	value	from	a	t-
table,	as	found	in	Appendix	D	t-Table.	We	can	also	use	the	SAS
TTEST	procedure	to	generate	the	p-value	in	order	to	make	our



conclusion	as	well.	Let’s	consider	the	following	example	where	the
t-test	would	be	appropriate.	

Example:		According	to	the	National	Center	for	Health	Statistics
(2009),	obesity	rates	have	doubled	among	children	and	adults	since
the	1970s.	In	fact,	more	than	one-third	of	American	adults	are
obese	(Centers	for	Disease	Control	and	Prevention,	2018).	Body-
Mass-Index	(BMI)	is	a	commonly	used	index	for	categorizing	a
person’s	weight	as	either	underweight,	normal,	overweight,	or
obese.	According	to	the	Centers	for	Disease	Control	and	Prevention
(CDC),	a	person	with	normal	weight	has	a	BMI	score	from	18.5	up
to	25.0;	a	BMI	score	of	25.0	through	29.9	is	considered	overweight.
The	ranges	apply	to	both	males	and	females.

Consider	the	Diabetic	Care	Management	Case	introduced	in
Chapter	1,	“Statistics	and	Making	Sense	of	Our	World.”	Suppose	we
take	a	random	sample	of	25	females	to	show	the	population	of
diabetic	female	patients	that	are	not	overweight,	that	is,	that	have
a	BMI	less	than	30.	Our	hypothesis	set	is	as	follows:

Ho:		µ	≥	30			versus	H1:	<	30

Using	0.10	level	of	significance,	carry	out	the	five	steps	for
hypothesis	testing:

Step	1:		The	analyst	must	first	identify	and	describe	the
appropriate	sampling	distribution.	Because	σ	is	unknown,	we	must
conduct	a	t-test	of	means.		So	for	our	hypothesis	test,	we	can
describe	the	three	following	characteristics	of	the	sampling
distribution	using	the	descriptive	statistics	from	Table	4.5
Descriptive	Statistics	of	BMI	for	25	Female	Diabetic	Patients.

	The	sampling	distribution	of	the	mean	is	shaped	like	a	t-
distribution	when	the	population	is	assumed	to	be	normal,
even	though	the	sample	size	is	small	(n=25	>	30).

	The	mean	of	the	sampling	distribution	( )	is	equal	to	the
mean	of	the	hypothesized	population	(µ0).	That	is,	 .

	The	estimated	standard	error	of	the	mean	is	
	=	1.0527.

Table	4.5		Descriptive	Statistics	of	BMI	for	25	Female	Diabetic	Patients
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N Mean Std.	Dev Minimum Maximum

25 27.412549 5.2634631 21.7975294 44.5076468

Step	2:		Because	the	appropriate	sampling	distribution	is	the	t-
distribution,	you	must	find	the	critical	t-value	based	upon	the	level
of	significance	(α)	and	the	degrees	of	freedom	(n-1).	When	looking
in	the	t-table,	as	illustrated	in	Table	4.6	Excerpt	from	the	t-Table,
you	must	use	alpha	to	define	the	column	(0.10)	and	degrees	of
freedom	(25-1,	or	24)	to	define	the	column.	In	conclusion,	our
critical	value	is	-1.318	since	we	are	conducting	a	lower-tailed	test.
	So	our	rejection	rule	is:		We	will	reject	the	null	hypothesis	if	the
sample	mean	has	a	t-value	less	than	-1.318.	In	other	words,	we	will
reject	the	null	hypothesis	if	our	sample	mean	is	more	than	1.318
standard	errors	below	our	hypothesized	mean,	as	illustrated	in
Figure	4.26	t-Test	Statistic	Compared	to	the	Critical	Value.
Table	4.6	Excerpt	from	the	t-Table

It	should	be	noted	that	had	the	analysis	been	a	two-tailed	test,	the
analyst	would	have	used	a	one-tail	area	(namely	0.05)	and	used
that	column	to	find	the	critical	values	±1.711.
Figure	4.26	t-Test	Statistic	Compared	to	the	Critical	Value



Step	3:		We	must	now	convert	our	sample	mean	to	a	t-test
statistic	using	the	following	formula:

	

This	t-value	tells	the	analyst	that	the	sample	mean	of	27.413	is
2.457	standard	errors	below	the	hypothesized	mean	of	30.

Step	4:		Our	test	statistic	-2.457	is	less	than	the	critical	value	of
-1.318,	so	we	will	reject	the	null	hypothesis,	as	illustrated	in
Output	4.3	t-Test	of	BMI	for	Female	Diabetics.

Step	5:		Based	upon	our	sample	of	25	female	diabetic	patients,
we	have	reason	to	believe	that	the	average	BMI	is	less	than	the	BMI
associated	with	being	overweight.		In	other	words,	we	have
evidence	that	our	target	population	is	not	overweight.

Let’s	now	consider	how	to	generate	the	output	for	conducting	a	t-
test	using	the	TTEST	procedure.		Here	we	will	see	that	the	output
gives	us	the	appropriate	p-value	for	making	our	decision.

Procedure	Syntax	for	PROC	TTEST

PROC	TTEST	is	a	procedure	used	to	conduct	hypothesis	tests	for	the
mean	when	the	population	standard	deviation	is	unknown	and	has



the	general	form:

PROC	TTEST	DATA=SAS-data-set<options>;

VAR	variable(s)	</options>;

RUN;

Program	4.3	t-Test	of	BMI	for	Female	Diabetics	is	used	to	test	our
hypothesis	about	BMI	for	female	diabetics.

In	Program	4.3	t-Test	of	BMI	for	Female	Diabetics,	you	see	that	the
permanent	data	set,	DIAB25F,	is	placed	into	a	temporary	data	set
called	PATIENT	using	the	SET	statement.	The	PROC	TTEST
requests	SAS	to	conduct	a	one-sample	t-test	on	the	data	set
PATIENT	as	indicated	with	the	DATA=	statement	option.	The	VAR
statement	defines	the	numeric	variable,	BMI,	under	investigation	in
our	hypothesis	test.	Note	also	that	the	program	uses	the	analysis
options	ALPHA=.10	and	H0=30	which	requests	that	SAS	conduct
the	test	at	0.10	level	of	significance	and	defines	the	hypothesized
mean	(µo)	BMI	to	be	30.	The	results	are	found	in	Output	4.3		t-Test
of	BMI	for	Female	Diabetics.
Program	4.3	t-Test	of	BMI	for	Female	Diabetics

ods	graphics	on;

libname	sasba	‘c:\sasba\hc’;

data	patient;

set	sasba.diab25f;

run;

	

proc	ttest	data=patient

alpha=.10	h0=30;						

var	bmi;

title	‘t-test	of	BMI	for	Female	Diabetics’;

run;		

Notice	that	the	output	includes	descriptive	statistics	so	that	we	can
see	our	sample	size,	sample	mean,	sample	standard	deviation,
standard	error,	minimum	and	maximum	values.	You	can	also	see
the	test	statistic	of	-2.46	with	24	degrees	of	freedom	(25	females
minus	1)	and	a	p-value	of	0.0216	for	a	two-tailed	test	as	indicated
by	Pr	>	|t|.	In	order	to	get	the	appropriate	p-value	for	a	one-tailed
test,	we	must	divide	the	p-value	in	half	to	get	0.0108.



So,	using	the	p-value	approach,	our	p-value	(0.0108)	is	less	than
0.10	level	of	significance;	therefore,	we	reject	the	null	hypothesis,
concluding	that	there	is	evidence	that	the	female	diabetics	have	a
BMI	less	than	30.
Output	4.3		t-Test	of	BMI	for	Female	Diabetics

N Mean Std	Dev Std	Err Minimum Maximum

25 27.4125 5.2635 1.0527 21.7975 44.5076

	

Mean 90%	CL	Mean Std	Dev
90%	CL	Std

Dev

27.4125 25.6115 29.2136 5.2635 4.2730 6.9291

	

DF t	Value Pr	>	|t|

24 -2.46 0.0216

	

Confidence	Intervals	for	Estimating	the	Population
Mean
As	you	may	recall,	hypothesis	testing	falls	under	the	category	of
inferential	statistics,	that	is,	the	branch	of	statistics	where	the
analyst	makes	conclusions	about	the	population	based	upon	a
single	sample.	In	this	section,	we	will	cover	another	inferential
analysis	approach—estimation.

Consider	the	Diabetic	Care	Management	Case	previously	used	to
illustrate	the	t-test	conducted	on	body	mass	index	(BMI).	For	the
sample	of	91	female	diabetics,	the	sample	average	BMI	is	27.3.	This
sample	mean	is	an	estimate	of	the	BMI	for	the	population	of	all
female	diabetics	and	is	referred	to	as	a	point	estimate.		In	reality
and	very	often,	we	all	use	the	sample	mean	as	a	single	number	to
represent	an	unknown	population	mean.	Now,	consider	the	fact
that,	for	all	random	samples	of	female	diabetics,	the	sample	means
vary	and,	more	than	likely,	will	never	exactly	equal	the	true
population	mean.	Therefore,	to	estimate	the	population	mean,	we



may	prefer	to	construct	instead	an	interval	estimate.	Specifically,	in
this	section,	we	will	discuss	the	confidence	interval,	which
provides	a	range	of	values	that	we	believe	contains	the	true
population	mean	based	upon	a	certain	level	of	confidence.

Confidence	Interval	for	the	Population	Mean	(σ
Known)
The	calculation	of	the	confidence	interval	depends	upon	two
factors:		(1)	the	standard	error	of	the	mean	and	(2)	the	level	of
confidence.	First,	the	confidence	interval	takes	into	account	how
the	sample	means	vary	around	the	population	mean.	If	the	standard
error	is	small,	in	other	words,	if	we	expect	the	sample	means	to
have	relatively	little	variation	around	the	population	mean,	then
we	expect	the	confidence	interval	to	be	small	compared	to	the
confidence	interval	where	the	standard	error	is	large.	Secondly,	we
must	consider	the	levels	of	confidence,	with	commonly	used	levels
of	90%,	95%,	and	99%.	In	the	case	of	99%	level	of	confidence,	we
would	arrive	at	a	formula	that	ensures	the	confidence	interval	will
contain	the	true	population	mean	99	times	when	taking	100
random	samples,	whereas	a	level	set	at	95%	ensures	that	the
confidence	interval	will	contain	the	true	population	mean	95	times
out	of	the	100	random	samples.	In	this	case,	you	can	deduce	that
the	99%	confidence	interval	would	be	wider	than	the	95%
confidence	interval;	the	90%	confidence	interval	would	be
narrower	than	both	the	95%	and	99%	confidence	interval,
respectively.

So	how	do	we	arrive	at	the	calculation	of	the	confidence	interval?
Let’s	first	consider	a	95%	confidence	interval.	As	indicated	in
Figure	4.27	Confidence	Intervals	as	Related	to	the	Sampling
Distribution,	we	can	see	that	95%	of	Z-values	are	within	1.96	Z-
scores	of	the	mean.		Given	that	the	sampling	distribution	of	the
mean	is	normal,	this	can	be	translated	to	sample	means;	that	is,	we
can	say	that	95%	of	sample	means	( ’s)	fall	with	1.96	standard
errors	of	the	population	mean,	as	illustrated	in	Figure	4.27
Confidence	Intervals	as	Related	to	the	Sampling	Distribution.	
Figure	4.27	Confidence	Intervals	as	Related	to	the	Sampling	Distribution



In	fact,	consider	the	intervals	in	Figure	4.26	Confidence	Intervals	as
Related	to	the	Sampling	Distribution	where	the	midpoints
correspond	to	sample	means	with	endpoints	at	 .
Notice	that	interval	1	does	not	contain	the	true	population	mean
(µ),	while	interval	2	has	its	upper	limit	exactly	at	µ,	and	interval	3
has	lower	limit	exactly	at	µ.	Intervals	4,	5,	and	7	contain	µ,	while
interval	6	does	not.	Note	specifically	that	any	means	that	fall	in	the
shaded	areas	have	intervals	that	do	not	contain	µ,	while	any	means
that	fall	in	the	unshaded	areas	have	intervals	that	do	contain	µ.	In
other	words,	95%	of	intervals	contain	µ,	whereas	5%	of	the
intervals	do	not	contain	µ.	In	short,	using		 	to
construct	the	interval	ensures	that	95%	of	the	time	we	have
intervals	that	contain	mean.	So	to	calculate	confidence	intervals,
we	would	use	the	formula:

In	general,	a	confidence	interval	has	the	form:	Point	Estimate	±



Margin	of	Error.	It	should	also	be	noted	that	the	use	of	the	formula
is	only	justified	if	the	sampling	distribution	of	the	mean	is	normal;
in	other	words,	the	central	limit	theorem	must	hold.

Example	9:	Consider,	again,	our	restaurant	wait-time	example.
After	implementing	the	video-monitoring	system,	suppose	you
randomly	select	60	customers	and	find	that	the	average	time	to	seat
customers	is	15.5	minutes.		What	is	the	95%	confidence	interval	for
estimating	the	true	population	mean	wait-time?	Assume	that	the
distribution	of	the	wait-times	is	exponentially	distributed	with	a
population	standard	deviation	σ	=	20.0	minutes.	

Solution:		First,	the	sampling	distribution	of	the	mean	is	normal
because	the	sample	size	is	large;	therefore,	it	is	appropriate	to	use
the	formula	for	the	confidence	interval.	At	.05	level	of	significance,
the	formula	has	the	form:

Note	that	for	the	95%	level	of	confidence,	we	are	essentially	using
the	Z-value	for	a	two-tailed	test	at	.05	level	of	significance,	namely,
1.96.	So	the	confidence	interval	becomes:

(10.44,
20.56)

So	when	estimating,	we	have	evidence	that	the	population	mean
wait-time	is	somewhere	between	10.44	and	20.56	minutes	with
95%	level	of	confidence.

In	terms	of	interpreting	the	meaning	of	the	confidence	interval,
consider	a	95%	confidence	interval.	A	95%	confidence	interval
implies	that	we’ve	calculated	a	margin	of	error	such	that	had	we
taken	100	randomly	selected	samples	and	used	that	margin	of
error,	then	95	out	of	100	confidence	intervals	would	contain	the
true	population	mean,	and	5%	would	not.	Many	interpret
confidence	level	as	the	probability	that	the	interval	contains	the
true	population	mean,	when	in	reality,	the	confidence	interval
basically	says	that	of	all	possible	confidence	intervals,	the
probability	that	any	confidence	interval	contains	the	true
population	mean	is	95%.

Effects	of	Level	of	Confidence	and	Sample	Size	on	Confidence



Intervals

How	would	the	confidence	interval	above	change	if	we	changed	the
level	of	significance	to	0.01	or	0.10?		The	level	of	confidence
determines	the	Z-value	used	for	computing	the	margin	of	error.
Specifically,	the	Z-values	for	90%	and	99%	level	of	confidence,
respectively,	are	1.645	and	2.575.	Therefore,	for	our	restaurant
wait-time	example,	the	confidence	intervals	would	be	as	follows:

	(11.25,
19.75)

(8.85,
22.15)

Notice	that	the	99%	level	of	confidence	with	a	6.65	margin	of	error
is	wider	than	both	the	90%	and	95%	confidence	interval	with	4.25
and	5.06	margins	of	error,	respectively.	This	makes	intuitive	sense
as	well;	in	particular,	you	expect	the	99%	confidence	interval	to	be
wider	because	you	are	more	confident	that	it	contains	the	true
population	mean	than	for	the	90%	and	95%	confidence	interval.	In
general,	as	the	level	of	confidence	increases,	the	margin	of	error
increases,	and	the	interval	is	wider;	as	the	level	of	confidence
decreases,	the	margin	of	error	decreases,	and	the	interval	is
narrower.

	

Now—how	would	the	confidence	interval	change	if	we	changed	the
sample	size?		Consider	again	the	wait-	time	example	where	the
analyst	estimates	the	population	mean	using	a	95%	confidence
interval.	Suppose	now	that	the	sample	size	is	100.	The	confidence
interval	is

CI95=15.5 1.96(20/ )=15.5 3.92=
(11.58,19.42)

Notice	that	the	margin	of	error	(3.92)	is	less	than	that	for	a	sample
of	size	60.	In	general,	as	the	sample	size	increases,	the	margin	of
error	decreases	and	the	width	of	the	confidence	interval	decreases;
as	the	sample	size	decreases,	the	margin	of	error	increases	and	the
width	of	the	confidence	interval	increases.



Confidence	Interval	for	the	Population	Mean	(σ
Unknown)
As	you	may	recall,	when	the	population	standard	deviation	(σ)	is
unknown,	the	analyst	can	use	the	sample	standard	deviation(s)	to
estimate	the	standard	error	of	the	mean,	and	consequently	the
reference	distribution	would	be	the	t-distribution.	So	when
estimating	the	population	mean	(μ),	the	formula	for	the	confidence
interval	is	as	follows:

	with	(n-1)	degrees	of	freedom

Example	10:		Consider	the	Diabetic	Care	Management	Case	where
we	are	interested	in	determining	if	the	population	of	diabetic
female	patients	is	not,	as	a	whole,	overweight,	as	measured	by
BMI.		Consider	our	random	sample	of	25	females	with	a	sample
mean	BMI	of	27.4125	and	sample	standard	deviation	of
5.2635.		Let’s	compute	the	90%	confidence	interval	for	the
population	mean	BMI.	

Solution:		First,	because	the	sample	size	of	25	is	considered	small,
we	must	assume	the	population	of	BMI	values	is	normally
distributed	so	that	the	sampling	distribution	of	the	mean	is	normal.
Remember	the	central	limit	theorem	must	apply	in	order	to	use	the
formula	for	the	confidence	interval.		For	a	90%	confidence	level,
the	formula	has	the	form:

	

Second,	in	order	to	find	the	appropriate	t-value,	the	analyst	must
identify	the	degrees	of	freedom	and	the	tail	area	(α/2).	Because	the
tail	area	is	0.10/2,	or	0.05,	and	the	degrees	of	freedom	are	(25-1),
or	24,	the	appropriate	t-value	can	be	found	in	the	.05	column	and
24th	row	of	the	t-table,	found	in	Appendix		D	T-Table.	Therefore,
the	t-value	is	1.711.

(25.61,

29.21)



So	when	estimating,	we	have	evidence	that	the	population	mean
BMI	of	female	diabetics	is	somewhere	between	25.61	and	29.21
units	with	90%	level	of	confidence.

It	should	be	noted	that	in	the	case	where	σ	is	unknown,	the	width
of	the	confidence	interval	is	still	influenced	by	sample	size	and
level	of	confidence.
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Chapter	Quiz
Select	the	best	answer	for	each	of	the	following	questions:

1.						Which	of	the	following	characteristics	is	true	for	any	normal
probability	distribution?

a.						The	mean,	median,	and	mode	are	equal	to	zero.

b.						A	relatively	small	standard	deviation	means	that	the
observations	are	relatively	close	to	the	mean.

c.						Approximately	95.44%	of	the	observations	fall	within	2
standard	deviation	of	the	mean.

d.						All	of	the	above	statements	are	true.

e.						None	of	the	above	statements	are	true.

2.						P(-1.20		≤	Z	≤		+1.50)	=

a.						0.0483

b.						0.4332

c.						0.8181

d.						0.3849

3.						Suppose	a	popular	sports	car	takes	36	hours	to	produce	with
a	standard	deviation	of	2.5	hours.		If	the	production	time	is
normally	distributed,	what	is	the	probability	that	a	sports	car
will	be	produced	in	less	than	32	hours?

a.						0.1096

b.						0.0548

c.						0.9452

d.						0.8904

4.						Suppose	a	local	company	takes	an	average	of	120	days	to
complete	a	small	commercial	building	project.		Assume	that
completion	times	are	normally	distributed	with	a	standard
deviation	of	9	days.		Consider	also	that	projects	taking	more
than	140	days	are	assessed	a	penalty.			What	proportion	of
projects	are	assessed	a	penalty	for	not	being	completed	within



140	days?
a.						0.0166

b.						0.0132

c.						0.9452

d.						0.0150

5.						Suppose	the	grades	on	an	exam	are	left	skewed	with	a	mean
of	45	minutes	and	a	standard	deviation	of	5	minutes.		If	you
randomly	select	25	students,	which	of	the	following
statements	is	true?

a.						The	mean	of	the	sampling	distribution	is	45	minutes.

b.						The	standard	error	of	the	sampling	distribution	is	5
minutes.

c.						The	shape	of	the	sampling	distribution	is	normally
distributed.

d.						As	the	sample	size	increases	the	standard	error	increases.

6.						Suppose	the	price	per	gallon	of	unleaded	gasoline	in	the
southeast	region	of	the	United	States	is	normally	distributed
with	a	mean	of	$2.75	and	standard	deviation	of
$0.40.		Suppose	you	take	a	random	sample	of	50	gas	stations
in	that	area.		What	is	the	probability	that	the	average	price
per	gallon	is	between	$2.60	and	$2.90?

a.						0.0112

b.						0.0056

c.						0.0080

d.						0.0040

In	general,	the	time	customers	spend	online	purchasing	sporting
goods	is	normal	with	an	average	of	11.85	minutes	with	a
population	standard	deviation	of	4.0	minutes.		Suppose	that	the
web	designer	updates	the	site	and	you	want	to	show	that	the
average	purchase	time	has	now	decreased.		You	take	a	random
sample	of	100	purchases	and	find	that	the	average	time	spent
online	purchasing	products	is	10.99	minutes.		Answer	questions
7	–	9	in	order	to	test	the	following	hypothesis	at	0.10	level	of



significance:

H0:	μ	≥	11.85						versus					H1:	μ	<	11.85

7.						What	is	the	test	statistic?

a.						1.96

b.						2.85

c.						2.15

d.						1.75

8.						What	is	the	critical	value?

a.						±	1.645

b.						-1.28

c.						±	1.96			

d.						-2.33					

9.						The	p-value	for	the	hypothesis	test	is	_____________________.

a.						0.0158

b.						0.0316

c.						0.0401

d.						0.0802

10.				Suppose	you	monitor	quality	assurance	for	a	local	hospital
and	want	to	estimate	the	average	length	of	stay	(LOS)	at	your
hospital.		You	take	a	random	sample	of	30	patients	and	find
that	the	average	LOS	is	3.8	days	with	a	sample	standard
deviation	of	1.2	days.		What	is	the	90%	confidence	interval	for
the	population	average	length	of	stay?

a.						(3.51	,4.09)

b.						(3.20,	4.40)

c.						(3.35,	4.25)

d.						(3.43,	4.17)
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Introduction
Every	day	we	come	across	statements	of	association:	students	living
on	campus	are	more	likely	to	graduate	from	college,	obesity	is
associated	with	sleep	apnea,	females	are	more	likely	to	wear	seat
belts,	employees	who	telecommute	are	more	likely	to	be	loyal	to
their	employers,	to	name	a	few.	Specifically,	in	Chapter	2,
“Summarizing	Your	Data	with	Descriptive	Statistics,”	we	looked	at
descriptive	statistics	and	data	visualization	as	ways	to	show	that
those	in	our	study	with	uncontrolled	diabetes	were	more	likely	to
have	renal	disease.	In	this	chapter,	we	will	use	hypothesis	testing
procedures,	in	conjunction	with	descriptive	statistics	and	data
visualization,	as	a	way	to	establish	evidence	that	associations
among	categorical	variables	exist	in	the	population.

In	this	chapter,	you	will	learn	how	to:

	interpret	a	contingency	table	for	two	categorical	variables

	use	the	chi-square	test	of	independence	for	two	categorical
variables

	generate	the	output	for	the	chi-square	test	of	independence
using	the	CHISQ	option	within	the	TABLES	statement	of	the
FREQ	procedure

	interpret	Cramer’s	V,	the	phi	coefficient,	and	odds	ratios	as
measures	of	strength	of	association

	check	the	assumptions	for	conducting	a	chi-square	test	of

●					

●					

●					
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●					



independence	and	the	use	of	Fisher’s	exact	test	for	small
samples

	use	the	chi-square	test	as	a	preliminary	test	before
conducting	predictive	analytics

Testing	the	Independence	of	Two	Categorical	Variables
In	Chapter	3,	“Data	Visualization,”	we	discussed	the	use	of
crosstabulations	for	describing	and	visualizing	the	association
between	two	categorical	variables.	For	the	Diabetic	Care
Management	Case,	the	crosstabulation	in	Output	3.4	Crosstabs	and
Frequency	Plots	of	Diabetes	Status	and	Renal	Disease	indicated	that
there	was	a	relationship	between	the	two	categorical	variables,
diabetes	status	and	renal	disease.	Recall	that,	for	those	patients
whose	diabetes	is	not	controlled,	13.24	percent	have	renal	disease,
whereas	for	those	patients	whose	diabetes	is	controlled,	3.13
percent	have	renal	disease.		

If	the	data	had,	instead,	indicated	that	10%	of	those	with	controlled
diabetes	have	renal	disease	and	10%	of	those	with	uncontrolled
diabetes	have	renal	disease,	then	we	could	say,	in	general,	that
10%	of	all	patients	have	renal	disease	regardless	of	their	diabetes
status.	In	this	case,	renal	disease	is	not	associated	with	diabetes
status;	in	other	words,	we	would	say	diabetes	status	is	independent
of	renal	disease.	In	this	section,	we	will	use	tools	from	hypothesis
testing	to	see	if	there	is	enough	evidence	from	our	sample	to
conclude	an	association	in	the	population	between	two	categorical
variables.

Hypothesis	Testing	and	the	Chi-Square	Test
As	discussed	in	Chapter	4,	“The	Normal	Distribution	and
Introduction	to	Inferential	Statistics,”	hypothesis	testing	is	a	way	to
make	inferences	about	the	population	by	providing	a	standardized
measure	of	the	difference	between	what	you

	

observe	from	your	sample	and	what	you	expect	in	the	population	if
your	initial	claim	(Ho)	is	true.	So	we	must	first	state	the	null	and
alternative	hypotheses	as	follows:

●					



Ho:	Two	categorical	variables	are	independent	(variables
are	not	related).

H1:	Two	categorical	variables	are	not	independent
(variables	are	related).

Consider	the	following	example	along	with	the	rationale	for
constructing	the	hypothesis	test	-	Suppose	an	analyst	wants	to
investigate	the	relationship	between	two	categorical	variables,
gender	and	shopping	preference	(online	versus	not	online).	The
hypotheses	to	be	tested	are:

Ho:	Shopping	Preference	and	Gender	are	independent

H1:	Shopping	Preference	and	Gender	are	not	independent

A	random	sample	of	100	male	and	100	female	shoppers	is	selected,
and	the	shoppers	are	asked	about	their	shopping	preference.
Suppose	that	40	(20%)	of	the	200	people	prefer	online	shopping
whereas	160	(80%)	do	not,	as	recorded	in	a	contingency	table	in
Table	5.1	Expected	Frequency	Count	of	Online	Shopping	by
Gender.
Table	5.1	Expected	Frequency	Count	of	Online	Shopping	by	Gender

	 Male Female Total

Online (20) (20) 40

Not	Online	(In-Store)			 (80) (80) 160

Total 100 100 200

If	shopping	preference	has	nothing	to	do	with	gender	(i.e.,	if	the
null	hypothesis	is	true),	then	the	analyst	would	expect	the
percentage	of	those	who	prefer	online	shopping	to	be	the	same
regardless	of	their	gender.	In	short,	if	the	null	is	true,	the	analyst
would	expect	20%	of	all	males	and	20%	of	all	females	to	prefer
online	shopping;	that	is	equivalent	to	20%	of	all	shoppers
preferring	online	shopping,	regardless	of	gender.	As	a	result,	you
would	get	the	expected	frequencies	as	indicated	in	parentheses.	

Now	that	the	analyst	knows	what	to	expect,	he	or	she	must
compare	those	expected	frequencies	to	the	actual	or	‘observed’



frequencies.	If	the	observed	frequencies	are	relatively	far	from	the
expected	frequencies,	then	the	analyst	must	reject	the	null
hypothesis;	here	the	analyst	has	evidence	to	support	the	alternative
that	shopping	preference	and	gender	are	not	independent.	If	the
observed	frequencies	do	not	deviate	significantly	from	the	expected
frequencies,	then	the	analyst	has	no	evidence	to	reject	the	null.	In
this	case,	the	analyst	must	maintain	the	status	quo.	

The	chi-square	(χ2)	test	of	independence	(introduced	by	Karl
Pearson	in	1900)	is	a	statistical	test	to	determine	if	there	is	an
association	between	two	categorical	variables.	The	chi-square	test
statistic	measures	how	much	the	observed	frequencies	deviate	from
the	expected	frequencies	if	the	null	hypothesis	is	true	and	is
calculated	as	follows:

where	Oij	=	the	observed	frequency	in	row	i,	column	j	and	the
expected	frequency	in	row	i,	column	j	is	calculated	using

where	n	=	the	total	sample	size,	r	=	the	number	of	rows,	c	=	the
number	of	columns,	and	the	degrees	of	freedom	are	(r-1)(c-1).

Now	suppose	we	have	the	observed	frequencies	as	found	in	Table
5.2	Observed	and	Expected	Frequencies	Count	of	Online	Shopping
by	Gender.	Note	that	for	the	sample	data,	32%	of	males	prefer
online	shopping	whereas	8%	of	females	prefer	online	shopping.	The
question	then	is:		Did	these	differences	in	percentages	happen	by
chance	or	do	these	reflect	true	differences	in	the	population?	To
answer	that	question,	the	analyst	calculates	the	χ2-test	statistic	as
follows:

	=	18

Table	5.2	Observed	and	Expected	Frequencies	Count	of	Online	Shopping	by	Gender

	 Male Female Total



Online 32	(20) 8	(20) 40

Not	Online	(In-Store)			 68	(80) 92	(80) 160

Total 100 100 200

With	(2-1)(2-1)	=	1	degree	of	freedom	and	0.05	level	of
significance,	the	critical	value	is	3.841	(see	Chi-Square	in	Appendix
E	Chi-Square).	In	conclusion,	the	test	statistic	is	greater	than	the
critical	value	(18	>	3.841);	therefore,	the	analyst	has	evidence	to
reject	the	null	hypothesis.	In	short,	we	have	sufficient	evidence,
based	upon	data,	to	conclude	that	shopping	preference	and	gender
are	dependent	in	the	population.

From	the	bivariate	bar	graph	in	Figure	5.1	Bivariate	Bar	Charts	of
Gender	and	Online	Shopping,	we	can	see	that,	in	our	sample,	males
are	more	likely	to	shop	online	than	females.
Figure	5.1	Bivariate	Bar	Charts	of	Gender	and	Online	Shopping

The	Chi-Square	Test	Using	the	FREQ	Procedure
As	mentioned	previously,	the	FREQ	procedure	was	covered	in



detail	in	Chapter	3,	“Data	Visualization”	as	a	means	of	providing
both	crosstabulations	for	two	categorical	variables	and	bivariate
bar	charts	to	visualize	that	relationship.	The	FREQ	procedure	can
also	be	used	to	conduct	a	chi-square	test	of	independence	by
adding	options	in	the	TABLE	statement	as	follows:

Procedure	Syntax	for	PROC	FREQ

PROC	FREQ	is	a	procedure	used	to	create	one-way	and	n-way
tabular	summaries	and	has	the	general	form:

PROC	FREQ	DATA=SAS-data-set;

																								TABLES	variable(s)	</options>;

																								RUN;

where	options	include	CHISQ,	RELRISK,	EXPECTED,	and	PLOTS=,
to	name	a	few.

To	illustrate	the	FREQ	procedure	for	tests	of	independence,
consider	the	Ames	Housing	Case	introduced	in	Chapter	1,
“Statistics	and	Making	Sense	of	Our	World.”		Architects	agree	that
the	kitchen	and	baths	are	the	most	expensive	areas	of	the	house
with	respect	to	construction	costs,	not	to	mention	those	are	the
rooms	where	people	spend	the	most	time.	So	in

	

our	example,	let’s	see	if	the	quality	of	the	kitchen	is	related	to
whether	or	not	an	agent	received	a	bonus.	Remember	that
Bonus=1	if	the	agent	earned	a	bonus	by	selling	the	house	at	a
price	greater	than	$175,000.	The	appropriate	hypotheses	are:

Ho:	Bonus	and	Kitchen	Quality	are	independent

H1:	Bonus	and	Kitchen	Quality	are	not	independent

To	conduct	a	chi-square	test	of	independence,	the	analyst	would
use	the	CHISQ	and	other	options	in	the	TABLES	statement	in
Program	5.1	Testing	Association	between	Bonus	and	Kitchen
Quality.
Program	5.1	Testing	Association	between	Bonus	and	Kitchen	Quality

libname	sasba	‘c:\sasba\ames’;

data	ames;



set	sasba.ames300;

run;

	

proc	format;

value	Quality	0=No	1=Yes;

value	YesNo	0=No	1=Yes;

run;

	

proc	freq	data=ames;

tables	Bonus*High_Kitchen_Quality

/chisq	relrisk	expected	plots=freqplot(scale=percent);

format	Bonus	YesNo.	High_Kitchen_Quality	Quality.;

title	‘Test	of	Independence	for	Bonus	and	Kitchen	Quality’;

run;

Note	first	that	the	FREQ	procedure	is	applied	to	the	Ames	data	set.
The	TABLES	statement	then	specifically	defines	the	two	categorical
variables	to	be	tested,	namely	BONUS	and
HIGH_KITCHEN_QUALITY,	where	the	first	variable	listed	will	be
displayed	as	the	rows	and	the	second	variable	will	be	displayed	as
the	columns,	as	illustrated	in	Output	5.1	Testing	Association
between	Bonus	and	Kitchen	Quality.	The	CHISQ	option	requests
that	SAS	provide	the	results	of	the	chi-square	test.	The	RELRISK
and	EXPECTED	options	are	included	to	provide	for	odd-ratios	and
the	expected	frequencies,	respectively.	For	a	visual	representation
of	the	relationship,	the	PLOTS=	option	with	SCALE=PERCENT
requests	that	SAS	provide	the	bivariate	bar	charts	with	percent	on
the	y-axis.	Finally,	the	program	includes	the	FORMAT	procedure
and	the	FORMAT	statement	for	representing	the	bivariate	outcome
values.

From	the	2x2	frequency	table	in	Output	5.1a	Testing	Association
between	Bonus	and	Kitchen	Quality,	you	can	see	that	there	are	300
homes	in	the	study,	where	121	(40.33%)	received	bonuses	(BONUS
=1)	and	179	(59.67%)	did	not.		Furthermore,	122	(40.67%)	were
homes	with	high	kitchen	quality,	whereas	178	(59.33%)	had
kitchens	not	considered	high	kitchen	quality,	as	indicated	in	the
marginal	totals.		
Output	5.1a	Testing	Association	between	Bonus	and	Kitchen	Quality



Test	of	Independence	for	Bonus	and	Kitchen	Quality

	

The	FREQ	Procedure

	

Table	of	Bonus	by	High_Kitchen_Quality

Bonus High_Kitchen_Quality

Frequency
Expected
Percent
Row	Pct
Col	Pct No Yes Total

No 148
106.21
49.33
82.68
83.15

31
72.793
10.33
17.32
25.41

179

59.67

Yes 30
71.793
10.00
24.79
16.85

91
49.207
30.33
75.21
74.59

121

40.33

Total 178
59.33

122
40.67

300
100.00

	

	

Statistics	for	Table	of	Bonus	by	High_Kitchen_Quality

	

Statistic DF Value Prob

Chi-Square 1 100.2674 <.0001

Likelihood	Ratio	Chi-
Square

1 104.8383 <.0001

Continuity	Adj.	Chi-
Square

1 97.8826 <.0001

Mantel-Haenszel	Chi-
Square

1 99.9331 <.0001

Phi	Coefficient 	 0.5781 	



Contingency	Coefficient 	 0.5005 	

Cramer’s	V 	 0.5781 	

	

Fisher’s	Exact	Test

Cell	(1,1)	Frequency
(F)

148

Left-sided	Pr	<=	F 1.0000

Right-sided	Pr	>=	F <.0001

	 	

Table	Probability	(P) <.0001

Two-sided	Pr	<=	P <.0001

	

	

Odds	Ratio	and	Relative	Risks

Statistic Value 95%	Confidence	Limits

Odds	Ratio 14.4817 8.2242 25.5004

Relative	Risk	(Column
1)

3.3348 2.4277 4.5809

Relative	Risk	(Column
2)

0.2303 0.1646 0.3223

For	each	cell,	the	output	provides	the	observed	frequency,	expected
frequency,	cell	percent	of	the	total,	row	percent,	and	column
percent.	When	reviewing	the	upper	left	cell,	for	example,	you	can
see	that	148	(49.33%)	of	the	300	total	homes	did	not	received	a
bonus	(BONUS=0)	and	had	kitchens	that	were	not	rated	as	high
quality.		You	can	also	see	that,	of	the	179	homes	that	did	not
receive	a	bonus,	148	(82.68%)	had	kitchens	that	were	not	high
quality;	of	the	178	homes	with	kitchens	not	rated	as	high	quality,
148	(83.15%)	did	not	receive	a	bonus.

Finally,	let’s	consider	what	the	frequency	table	tells	us	about	the
relationship	between	BONUS	and	HIGH_KITHCEN_QUALITY.
Remember	that,	overall,	40.33%	of	the	homes	received	a	bonus,
whereas	59.67%	did	not.		Now	consider	only	those	122	homes



having	high	quality	kitchens;	74.59%	(91)	received	a	bonus,
whereas	25.41%	(31)	did	not.	For	those	178	homes	with	kitchens
not	rated	as	high	quality,	16.95%	(30)	received	a	bonus,	whereas
83.15%	(148)	did	not.	It	certainly	seems	to	indicate	that	the	bonus
status	depends	upon	kitchen	quality,	and	is	further	illustrated	by
the	bivariate	bar	chart,	as	illustrated	in	Output	5.1b	Testing
Association	between	Bonus	and	Kitchen	Quality:	Bivariate	Bar
Charts	of	Bonus	and	Kitchen	Quality.
Output	5.1b	Testing	Association	between	Bonus	and	Kitchen	Quality:	Bivariate	Bar
Charts	of	Bonus	and	Kitchen	Quality

Now	consider	our	statistical	test	of	independence	for	inferring	to
the	population.	From	the	output	in	Output	5.1	Testing	Association
between	Bonus	and	Kitchen	Quality,	you	can	see	the	chi-square	test
statistic	(100.2674)	with	p-value	<	.0001	and,	therefore,	the
analyst	will	reject	the	null	hypothesis.	In	short,	based	upon	the
data,	there	is	evidence	that	bonus	and	kitchen	quality	are
dependent	in	the	population.	Specifically,	if	the	kitchen	is	rated	as
high	quality,	74.6%	receive	a	bonus;	however,	if	the	kitchen
quality	is	not	rated	as	high	quality,	only	16.9%	receive	a	bonus.		



Assumptions

As	with	all	statistical	tests,	assumptions	must	be	met	to	ensure	their
validity.	For	the	χ2	test	of	independence,	the	analyst	must	make
sure	that	the	sample	size	is	large	enough	such	that	all	expected
frequencies	are	at	least	five.		When	referring	to	Output	5.1	Testing
Association	between	Bonus	and	Kitchen	Quality,	it	should	be	noted
that	all	expected	frequencies	(106.21,	72.793,	71.793,	and	49.207,
respectively)	are	greater	than	5.	Therefore,	the	chi-square	test	is
appropriate.	If	this	condition	is	not	met,	then	Fisher’s	exact	test
should	be	used	instead	(Agresti,	1992).	Of	course,	if	this
assumption	is	violated,	the	analyst	could	combine	two	or	more
columns	(or	rows)	so	that	the	newly	created	categories	have
expected	frequencies	meeting	the	size	requirement.

Measuring	the	Strength	of	Association	between	Two
Categorical	Variables
In	the	previous	section,	we	found	evidence	that	bonus	is	associated
with	kitchen	quality;	however,	the	test	gives	no	indication	of	the
strength	of	association.		Effect	size	gives	an	indication	of	the
practical	association,	in	contrast	to	the	statistical	association	as
measured	by	the	p-value,	and	it	allows	for	comparisons	across
studies.	In	this	section,	we	discuss	two	measures	of	association,
Cramer’s	V	and	the	odds	ratio.

Cramer’s	V
A	common	measure	of	association,	or	effect	size,	for	a	contingency
table	with	r	rows	and	c	columns	(for	r,	c		≥		2)	is	Cramer’s	V
(Sarma,	2013)	and	is	given	by	the	formula:

where	n	is	the	total	sample	size	and	k	is	the	minimum	of	the
number	of	rows	and	columns.	Cramer’s	V	ranges	from	0	to	1,	where
a	value	of	0	indicates	no	association	between	the	categorical
variables,	and	1	indicates	a	perfect	association.	Cohen	(1988)
provided	general	guidelines	for	determining	the	magnitude	of	the
effect	size;	namely,	0.1	is	considered	a	small	effect	size,	0.3	is



considered	medium,	and	0.5	is	considered	large.

It	should	be	noted	that	the	coefficient	is	appropriate	for	variables
measured	at	the	nominal	level	and	will	have	the	same	value
regardless	of	which	variable	is	defined	as	the	row	or	column.
Finally,	when	the	analysis	is	conducted	for	a	2x2	table,	Cramer’s	V
is	equivalent	to	the	Phi	Coefficient	and	is	defined	as:

where	Oij	=	the	observed	frequency	in	row		i,	column	j,	Oi•	is	the
observed	row	total,	and	O•j	is	the	observed	column	total.	For	the
2x2	case,	Cramer’s	V	ranges	from	-1	to	+1.	So,	for	our	Ames
Housing	Case,	as	illustrated	in	Output	5.1a	Testing	Association
between	Bonus	and	Kitchen	Quality:

From	this,	we	can	say	that,	based	upon	our	sample,	there	is	a
relatively	large	association	between	bonus	and	kitchen	quality.

The	Odds	Ratio
The	odds	ratio	is	also	a	measure	of	the	strength	of	association
between	two	categorical	variables.	In	order	to	discuss	odds	ratio,
we	must	first	define	the	odds	of	an	event.	Consider	the	general
form	of	a	2x2	contingency	table	as	provided	in	Table	5.3	General
Form	of	the	2x2	Contingency	Table.
Table	5.3	General	Form	of	the	2x2	Contingency	Table

EVENT	OF

INTEREST GROUP 	

1 2 Total

Yes a b a	+	b

No c d c	+	d

Total a	+	c b	+	d n

Note	that	a	is	the	number	of	observations	in	event	Yes	and	Group	1,



b	is	the	number	of	observations	in	event	Yes	and	Group	2,	c	is	the
number	of	observations	in	event	No	and	Group	1,	and	d	is	the
number	of	observations	in	event	No	and	in	Group	2.
We	define	odds	as	the	probability	that	an	outcome	occurs	divided
by	the	probability	that	an	outcome	does	not	occur.		Suppose	we
define	our	event	of	interest	to	be	Yes;	we	can,	therefore,	calculate
the	odds	of	Yes	for	each	of	the	two	groups,	as	follows:

The	odds	of	Yes	for	Group	1	=	Probability(a)/Probability(c)	=
[a/(a+c)]/[c/(a+c)]	=	a/c

The	odds	of	Yes	for	Group	2	=	Probability(b)/Probability(d)	=
[b/(b+d)]/[d/(b+d)]	=	b/d

The	odds	ratio	for	an	event	is	defined	as	the	odds	of	the	event	for
Group	1	divided	by	the	odds	of	the	event	for	Group	2,	and	specifies
how	much	more	likely	the	event	occurs	in	Group	1	when	compared
to	Group	2.	So	for	the	event	of	interest,	Yes,	the	odds	ratio	of	Group
1	to	Group	2	is	defined	as:

Odds	Ratio(Yes)	=	

Note	that	if	the	probability	of	Yes	for	Group	1	is	a	=	0.50,	then	the
odds	of	Yes	for	Group	1	=	0.50/0.50	=	1.0,	indicating	that	both
outcomes	are	equally	likely.	As	the	probability	of	a	increases,	the
odds	increase	as	well.		This	also	applies	for	the	odds	of	Yes	for
Group	2.	Note	also	that	we	can	represent	the	odds	ratio	of	No	when
comparing	Group	1	to	Group	2	as	(bc/ad)	and	is	simply	the	inverse
of	the	odds	ratio	of	Yes.

Example	1:		Consider	the	results	summarized	in	Table	5.1	Expected
Frequency	Count	of	Online	Shopping	by	Gender.	

The	odds	ratio	for	Online	when	comparing	males	to	females	is
(20*80)/(20*80)	=	1,	and	specifies	that	males	and	females	have
the	same	odds	of	shopping	online.	In	other	words,	there	is	no
difference	in	males	and	females	shopping	preference,	and	is
equivalent	to	a	χ2-test	statistic	and	Cramer’s	V	both	equal	to	zero.

	

Example	2:		Consider	the	results	summarized	in	Table	5.2
Observed	and	Expected	Frequencies	Count	of	Online	Shopping	by



Gender.	

The	odds	ratio	for	Online	when	comparing	males	to	females	is
(32*92)/(8*68)	=	5.41,	and	specifies	that	the	odds	a	male	shops
online	is	5.41	times	the	odds	a	female	shops	online,	with	χ2	=	18
and	Cramer’s	V	=	0.30.

Example	3:	Consider	the	Ames	Housing	analysis	testing	the
association	between	Bonus	and	Kitchen	Quality,	as	illustrated	in
Output	5.1a	Testing	Association	between	Bonus	and	Kitchen
Quality.	The	odds	ratio	of	BONUS	when	comparing
HIGH_KITCHEN_QUALITY	(Yes	versus	No)	is	as	follows:

odds	of	Bonus	(1=Yes)	for	Kitchens	rated	as	High	Quality/odds	of
Bonus	(1=Yes)	for	Kitchens	rated	as	Not	High	
Quality	=

=	(91/31)/(30/148)	=	(91*148)/(31*30)	=	14.4817

The	odds	ratio	indicates	that	the	odds	of	earning	a	bonus	when	the
kitchen	quality	is	rated	as	high	is	14.5	times	the	odds	of	earning	a
bonus	when	the	kitchen	quality	is	not	rated	as	high.	Note	also	that
the	output	includes	the	95%	confidence	interval	for	the	odds	ratio,
namely,	8.22	to	25.50.	In	short,	with	95%	level	of	confidence,	we
estimate	that	the	true	odds	ratio	for	all	homes	in	Ames,	Iowa,	is
between	8.22	and	25.50.

To	generate	the	odds	ratio,	the	analyst	would	add	RELRISK	to	the
TABLES	option	in	the	FREQ	procedure	as	follows:

proc	freq	data=ames;

tables	Bonus*High_Kitchen_Quality

/chisq	relrisk	expected	plots=freqplot(scale=percent);

In	conclusion,	it	should	be	noted	that	an	odds	ratio	of	1.0	indicates
that	the	odds	of	being	in	the	group	of	interest	(for	one	categorical
variable)	are	equal	when	considering	the	outcomes	of	the	second
categorical	variable;	in	other	words,	there	is	no	association
between	the	two	categorical	variables.	In	fact,	the	test	of
independence	is	equivalent	to	testing	that	the	population	odds	ratio
=	1.0.	If	the	odds	ratio	is	greater	than	1.0,	then	group	1	is	more
likely	to	have	the	outcome	of	interest	when	compared	to	group	2.	If
the	odds	ratio	is	less	than	1.0,	then	group	2	is	more	likely	to	have
the	outcome	of	interest.	



Using	Chi-Square	Tests	for	Exploration	Prior	to
Predictive	Analytics
As	seen	in	the	previous	section,	the	chi-square	test	is	used	to
determine	whether	or	not	two	categorical	variables	are	related.	If	it
is	found	that	there	is	a	relationship,	it	is	reasonable	to	use	one
variable	as	a	predictor	of	the	other.	So	in	our	Ames	Housing	Case,
it	seems	reasonable	that	because	bonus	and	kitchen	quality	are
dependent,	the	analyst	could	use	kitchen	quality	as	a	predictor	of
bonus.

In	predictive	modeling,	the	potential	list	of	predictor	variables	is
sometimes	voluminous	and	the	analyst	must	consider	strategies	for
assessing	variable	importance	and	eventually	reducing	the	initial
set	of	predictors.	When	both	the	outcome	variable	and	the
predictors	are	categorical,	the	chi-square	test	of	independence	can
be	used	to	assess	variable	importance	(Sarma,	2013).

Let’s	revisit	our	Ames	Housing	Case	where	the	analyst	may
consider	other	variables	possibly	related	to	bonus.		Many	real
estate	agents	argue	that	homes	located	on	a	corner	lot	can
command	a	higher	sales	price	for	reasons	related	to	curb	appeal,
fewer	neighbors	(one	on	the	side	and	behind),	increased	lot	size.
Others	may	argue	the	contrary	due	to	lack	of	privacy	or	traffic	on
two	sides.	The	hypothesis	of	interest	is:

Ho:	Bonus	and	Corner	Lot	are	independent

H1:	Bonus	and	Corner	Lot	are	not	independent

The	SAS	code	is	identical	to	the	code	provided	previously;	however
now	the	TABLES	statement	includes	the	variables,	BONUS	and
CORNER.	Note	also,	that	there	is	no	specific	variable	for	corner	lot,
so	the	code	includes	a	step	for	creating	that	variable	based	upon
the	lot	configuration,	as	follows:
Program	5.2	Testing	Association	between	Bonus	and	Corner	Lot

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames300;

	

Corner=0;



if	Lot_Config=”	then	Corner=.;

if	Lot_Config=‘Corner’	then	Corner=1;

run;

	

proc	format;

value	Quality	0=No	1=Yes;

value	YesNo	0=No	1=Yes;

run;

	

proc	freq	data=ames;

tables	Bonus*Corner

/chisq	relrisk	expected	plots=freqplot(scale=percent);

format	Bonus	Corner	YesNo.;

title	‘Test	of	Independence	for	Bonus	and	Corner	Lot’;

run;

From	the	output	in	Output	5.2a	Testing	Association	between	Bonus
and	Corner	Lot,	we	can	see	(using	a	p-value	of	0.1537)	that	we	do
not	reject	the	null;	there	is	no	evidence	that	bonus	is	associated
with	the	home	being	on	a	corner	lot.	The	strength	of	association,
0.0824,	indicates	that	the	association	can	be	attributed	only	to
chance.		Furthermore,	the	odds	ratio	of	1.5407	has	a	95%
confidence	interval	ranging	from	0.8486	to	2.7974;	the	confidence
interval	contains	1.0		which	means	there	is	no	evidence	that	the
odd-ratio	differs	from	1.0.	In	short,	the	chance	of	getting	a	bonus	is
equal	when	comparing	homes	on	a	corner	and	homes	not	on	a
corner,	as	illustrated	in	Output	5.2b	Testing	Association	between
Bonus	and	Corner	Lot:	Bivariate	Bar	Charts	of	Bonus	and	Corner
Lot.
Output	5.2a	Testing	Association	between	Bonus	and	Corner	Lot



	

Test	of	Independence	for	Bonus	and	Corner	Lot

	

The	FREQ	Procedure

	

Table	of	Bonus	by	Corner

Bonus Corner

Frequency
Expected
Percent
Row	Pct
Col	Pct No Yes Total

No 152
147.38
50.67
84.92
61.54

27
31.623
9.00
15.08
50.94

179

59.67

Yes 95
99.623
31.67
78.51
38.46

26
21.377
8.67
21.49
49.06

121

40.33

Total 247
82.33

53
17.67

300
100.00

	
Statistics	for	Table	of	Bonus	by	Corner



	

Statistic DF Value Prob

Chi-Square 1 2.0355 0.1537

Likelihood	Ratio	Chi-
Square

1 2.0078 0.1565

Continuity	Adj.	Chi-
Square

1 1.6190 0.2032

Mantel-Haenszel	Chi-
Square

1 2.0287 0.1544

Phi	Coefficient 	 0.0824 	

Contingency	Coefficient 	 0.0821 	

Cramer’s	V 	 0.0824 	

	

Fisher’s	Exact	Test

Cell	(1,1)	Frequency
(F)

152

Left-sided	Pr	<=	F 0.9423

Right-sided	Pr	>=	F 0.1021

	 	

Table	Probability	(P) 0.0444

Two-sided	Pr	<=	P 0.1670

	

Odds	Ratio	and	Relative	Risks

Statistic Value 95%	Confidence	Limits

Odds	Ratio 1.5407 0.8486 2.7974

Relative	Risk	(Column
1)

1.0816 0.9672 1.2095

Relative	Risk	(Column
2)

0.7020 0.4315 1.1420

	
Output	5.2b	Testing	Association	between	Bonus	and	Corner	Lot:	Bivariate	Bar
Charts	of	Bonus	and	Corner	Lot



In	summary,	the	first	chi-square	test	indicates	that	when	trying	to
predict	whether	or	not	an	agent	receives	a	bonus	for	the	sale	of	a
home,	there	is	evidence	that	kitchen	quality	is	related	to	bonus
(p<.0001,	Cramer’s	V=0.5781);	however,	the	second	chi-square
test	indicates	that	corner	lot	is	not	related	to	bonus	(p=.1537,
Cramer’s	V=0.0824).		

It	should	be	noted,	however,	that	these	are	univariate	tests	and	do
not	take	into	account	the	other	variables.	It	is	possible	that	a
predictor	found	to	be	non-significant	in	a	univariate	situation	can
very	well	be	significant	when	considered	within	a	multivariate
model.	Therefore,	we	use	the	results	of	the	chi-square	test	for
ordering	the	predictor	variables	by	importance	using	the	variable
worth	(Sarma,	2013):

Worth	=	-2log(p)

where	p	is	the	p-value	for	the	chi-square	test	of	independence.	For
kitchen	quality,	the	worth	is	45.75,	whereas	for	corner	lot,	the
worth	is	1.63.	Here	we	can	see	that	kitchen	quality	is	more
importance	than	corner	lot	when	looking	at	the	association	with
bonus.

Strategies	for	reducing	the	initial	set	of	predictors	will	be	covered



in	detail	in	Chapter	8,	“Preparing	the	Input	Variables	for
Prediction.”	In	Chapter	10,	“Logistic	Regression,”	we	will	cover
topics	related	to	predicting	a	categorical	outcome;	there,	specific
attention	will	be	given	to	selecting	the	‘best’	set	of	variables	within
the	context	of	the	problem	using	both	statistically	based	strategies
as	well	as	practical	experience	and	common	sense.	Knowing	the
variable	worth	provides	additional	information	to	the	variable
selection	process.

Key	Terms
chi-square	(χ2)	test	of	independence

concordant

confounding

contingency	table

Cramer’s	V

discordant

effect	size

expected	frequency

Fisher’s	exact	test

observed	frequency

odds

odds	ratio

paired-samples	test.

phi	coefficient

repeated	measures	test.

strength	of	association

variable	worth

	



Chapter	Quiz
Select	the	best	answer	for	each	of	the	following	questions:

1.						A	chi-square	test	of	independence	is	used	to	test	the
relationship	between__________and	_____________.

a.						one	categorical	variable,	one	numeric	continuous	variable

b.						one	categorical	variable,	more	than	one	continuous
numeric	variable

c.						one	categorical	variable,	one	categorical	variable

d.						one	categorical	variable,	more	than	one	categorical
variable

2.						Suppose	you	are	trying	to	determine	if	Gender	(GENDER)
and	Political	Party	Affiliation	(PARTY)	are	dependent.		Which
of	the	following	options	would	be	used	in	the	TABLE
statement?

a.						tables

b.						chisq

c.						exact	mcnem

d.						cmh

3.						Which	of	the	following	is	an	assumption	of	the	chi-square
test	of	independence?

a.						The	sample	size	must	be	greater	than	30	per	cell.

b.						The	odds	of	an	event	must	be	at	least	0.50.

c.						All	expected	cell	frequencies	must	be	greater	than	5.

d.						All	of	the	above	statements	are	true.

e.						None	of	the	above	statements	are	true.

Suppose	you	wanted	to	determine	if	bonus	(BONUS)	depends	upon
whether	or	not	a	house	has	two	or	more	full	bathrooms
(FULLBATH_2PLUS).	Use	the	output	provided	below	to	answer
questions	4	through	6:

Test	of	Independence	for	Bonus	and	2	or	More	Full	Bathrooms



	

The	FREQ	Procedure

	

Table	of	Bonus	by	fullbath_2plus

Bonus fullbath_2plus

Frequency
Expected
Percent
Row	Pct
Col	Pct No Yes Total

No 138
85.92
46.00
77.09
95.83

41
93.08
13.67
22.91
26.28

179

59.67

Yes 6
58.08
2.00
4.96
4.17

115
62.92
38.33
95.04
73.72

121

40.33

Total 144
48.00

156
52.00

300
100.00

	



	

Statistics	for	Table	of	Bonus	by	fullbath_2plus

	

Statistic DF Value Prob

Chi-Square 1 150.5152 <.0001

Likelihood	Ratio	Chi-
Square

1 175.0132 <.0001

Continuity	Adj.	Chi-
Square

1 147.6390 <.0001

Mantel-Haenszel	Chi-
Square

1 150.0134 <.0001

Phi	Coefficient 	 0.7083 	

Contingency	Coefficient 	 0.5780 	

Cramer’s	V 	 0.7083 	

	

	



Fisher’s	Exact	Test

Cell	(1,1)	Frequency
(F)

138

Left-sided	Pr	<=	F 1.0000

Right-sided	Pr	>=	F <.0001

	 	

Table	Probability	(P) <.0001

Two-sided	Pr	<=	P <.0001

	

Odds	Ratio	and	Relative	Risks

Statistic Value 95%	Confidence	Limits

Odds	Ratio 64.5122 26.4466 157.3672

Relative	Risk	(Column
1)

15.5475 7.0976 34.0570

Relative	Risk	(Column
2)

0.2410 0.1836 0.3163

Sample	Size	=	300

	

4.						Which	of	the	following	statements	is	true?

a.						The	assumption	for	the	chi-square	test	is	violated	since
one	cell	has	less	than	10	observations	and

Cramer’s	V	is	0.3703	indicating	a	median	effect	size.

b.						Houses	with	less	than	two	full	bathrooms	and	houses	with
two	or	more	full	bathrooms	are	equally

likely	of	having	a	bonus.

c.						The	odds	ratio	of	getting	a	bonus	for	homes	with	two	or
more	full	bathrooms	when	compared	to

homes	that	have	less	than	two	full	bathrooms	that	are	not
of	above	average	quality	is	64.5.

d.						None	of	the	above	statements	is	true.

5.						Which	of	the	following	statements	is	true?

a.						52.00%	of	the	houses	in	the	sample	have	at	least	two	full



bathrooms.

b.						73.72%	of	houses	where	the	agent	earned	a	bonus	have	at
least	two	full	bathrooms.

c.						4.17%	of	houses	that	have	fewer	than	two	full	bathrooms
have	agents	that	earn	a	bonus.

d.						All	of	the	above	are	correct.

e.						only	a	and	c	are	correct

6.						In	assessing	variable	importance	as	it	related	to	the	variable,
BONUS,	the	value	of	Worth	for	the	variable,
FULLBATH_2PLUS,	is:

a.						67.75

b.						45.13

c.						78.42

d.						23.33

7.						How	many	chi-squared	tests	of	independence	are	conducted
using	the	following	PROC	FREQ	statement?

proc	freq	data=ames300;

tables	(bonus	overall_quality)*(high_kitchen_quality
lot_shape)

\chisq	relrisk	expected;

run;

a.						6

b.						4

c.						3

d.						2

8.						When	running	a	chi-square	test	of	independence,	which	of
the	following	TABLES	options	is	required	in	order	to	generate
a	bivariate	bar	chart?

a.						plots=

b.						barchart

c.						trend=

d.						test



e.						contents=

9.						True	or	False:		A	categorical	predictor	with	the	smallest
value	of	worth	is	not	related	to	the	outcome	variable.

	

10.			Which	of	the	following	statements	is	true?

a.						An	odds	ratio	of	1.0	means	that	there	is	a	perfect
relationship	between	the	two	categorical

variables	under	investigation.

b.						If	the	confidence	interval	for	the	odds	ratio	does	not
contain	1.0,	there	is	no	relationship	between

the	two	categorical	variables	under	investigation.

c.						The	range	of	the	odds	ratio	is	-∞	to	+∞.

d.						All	of	the	above	statements	are	true.

e.						None	of	the	above	statements	is	true.



Chapter	6:	Two-Sample	t-Test
Introduction
Independent	Samples
The	Pooled	Variance	t-Test
Assumptions
Procedure	Syntax	of	PROC	TTEST	Procedure
Verifying	the	Assumptions	of	a	Two-Sample	t-Test
Satterthwaite	t-Test	for	Unequal	Variances

Paired	Samples
Assumptions
The	Paired-Sample	t-Test	Using	the	PAIRED	Statement	in	the	TTEST	Procedure

Key	Terms
Chapter	Quiz

	

Introduction
In	Chapter	5,	“Analysis	of	Categorical	Variables,”	you	were
introduced	to	analysis	wherein	both	the	independent	variable	and
the	dependent	variable	were	categorical.	This	type	of	analysis	was
useful	to	determine	relationships	between	only	these	specific	types
of	variables,	such	as	if	shopping	preference	varied	by	gender,	and	if
the	quality	of	the	kitchen	is	related	to	whether	or	not	an	agent
received	a	bonus.	There	are	many	times	when	we	wonder	how	one
variable	is	related	to	another.	This	chapter	will	describe	the	t-test,
which	is	used	to	assess	the	bivariate	relationship	between	a
categorical	independent	variable	and	a	numeric	continuous
dependent	variable.	There	are	two	types	of	t-tests:	independent
samples	t-test	and	dependent	samples	t-test.	This	chapter	will	cover
the	specific	situations	that	warrant	each	of	these	tests,	respectively,
and	will	illustrate	how	these	tests	are	carried	out	using	the	TTEST
procedure.

In	this	chapter,	you	will	learn	about:

	the	TTEST	procedure	for	assessing	the	bivariate	relationship
between	numeric	continuous	and	categorical	data

	the	steps	for	conducting	the	independent	samples	t-test	to	test
differences	in	the	means	when	the	two	populations	under

●					

●					



investigation	are	independent

	the	assumptions	for	ensuring	the	validity	of	the	independent
samples	t-test

	how	to	determine	the	appropriateness	of	the	pooled	variance
t-test	and	the	Satterthwaite	t-test	for	unequal	variances	using
the	folded	F-test

	the	use	of	histograms,	box	plots,	and	Q-Q	plots	to	visualize
and	assess	the	normality	of	the	numeric	continuous	variable
for	each	of	the	two	groups	under	investigation

	the	UNIVARIATE	procedure	and	the	Kolmogorov-Smirnov
test	to	test	the	normality	of	the	numeric	continuous	variable
for	each	of	the	two	groups	under	investigation

	the	sample	size	requirement	when	there	is	evidence	that	one
or	more	populations	are	not	normal

	the	steps	for	conducting	the	paired	samples	t-test	to	test
differences	in	the	means	when	the	two	populations	under
investigation	are	dependent

	the	assumptions	for	ensuring	the	validity	of	the	paired
samples	t-test

	the	use	of	histograms,	box	plots,	and	Q-Q	plots	to	visualize
and	assess	the	normality	of	the	difference	score	when
comparing	paired	groups

	the	UNIVARIATE	procedure	and	the	Kolmogorov-Smirnov
test	to	test	the	normality	of	the	difference	score	when
comparing	paired	groups

	the	interpretation	of	results	based	upon	the	context	of	the
problem

Independent	Samples
As	illustrated	in	Chapter	3,	“Data	Visualization,”	there	are	many
situations	where	a	numeric	variable	may	differ	naturally	across
various	groups,	therefore	warranting	an	analysis	of	that	variable
separately	by	group.	In	particular,	using	the	Diabetic	Care
Management	Case,	we	applied	data	visualization	procedures	to
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investigate	the	characteristics	of	weight	for	both	males	and	females,
separately.	While	it	is	obvious	that	males	and	females	differ	in
weight,	it	is	not	so	obvious	in	many	other	situations;	therefore,
statistical	hypothesis	testing	can	be	applied	to	test	such
differences.	
To	investigate	the	differences	in	means	when	two	populations	of
interest	are	independent,	the	analyst	must	rely	on	the	independent
samples	t-test.	Two	samples	are	independent	when	the	measures
from	one	population	have	no	effect	on	the	measures	selected	from	a
different	population.	Consider	the	Ames	Housing	Case.		Suppose	we
have	this	question,	“Is	earning	a	bonus	on	the	sale	of	a	house
related	to	the	square	footage	of	the	above	ground	living	area?”	Or,
to	put	it	another	way,	“Does	earning	a	bonus	on	the	sale	of	a	house
depend	upon	the	square	footage	of	the	above	ground	living	area?”
Here,	we	are	looking	at	two	populations,	homes	where	agents	earn
a	bonus	and	homes	where	agents	do	not	earn	a	bonus,	and
specifically	asking	the	question	“Do	these	populations	differ	on
their	above	ground	living	area?”		This	form	of	the	question	can	be
answered	through	the	following	hypothesis	test:

H0:	µ0	=	µ1					versus				H1:	µ0	≠	µ1

where	0=No	Bonus	for	the	real	estate	agent	and	1=real	estate
agent	received	a	Bonus.	If	you	do	not	reject	the	null	hypothesis,
then	there	is	no	evidence	of	a	mean	difference;	consequently,	the
answer	to	your	question	is	no—earning	a	bonus	is	not	related	to
square	footage	for	the	population	of	all	homes	in	Ames	County.
However,	if	you	reject	the	null	hypothesis	and	the	answer	to	that
question	is	yes,	then	the	sample	results	provide	some	evidence	that
the	bonus	status	is	related	to	the	square	footage	of	the	above
ground	living	area;	in	other	words,	square	footage	does	matter
when	trying	to	earn	a	bonus.

The	Pooled	Variance	t-Test
When	conducting	a	test	of	hypotheses	for	the	difference	in
unknown	population	means,	it	makes	sense	to	take	a	random
sample	from	each	of	the	populations	under	investigation	in	order	to
assess	the	extent	to	which	the	sample	means	differ;	therefore,	it	is
necessary	to	refer	to	the	sampling	distribution	of	the	difference	of
the	means,	 .	For	statistical	inference,	if	the	sampling



distribution	is	normal,	we	can	use	a	z-test	to	test	our	hypothesis,
and	the	appropriate	z-test	statistic	has	the	form:

where	 	and	 	are	the	sample	means,	μ1	and	μ2	are	the
hypothesized	population	means,	 	and	 	are	population
variances,	and	n1	and	n2	are	the	sample	sizes,	for	populations	1	and
2,	respectively.

Ordinarily,	when	conducting	hypotheses	for	two	unknown
populations’	means,	the	population	variances	are	unknown	as	well,
so	the	common	approach	is	to	conduct	a	two-sample	t-test	using
estimates	of	the	two	populations’	variances,	namely,	 		and	
.		When	it	is	assumed	that	the	two	populations’	variances	are	equal,
the	appropriate	analysis	would	be	the	pooled	variance	t-test.	The
t-test	statistic	is	then	defined	as	follows:

where	the	pool	variance	is	defined	as:

and	degrees	of	freedom	are	( 	+	 	-	2	).	Note	that	the	two
populations’	variances	are	assumed	to	be	equal,	so	that	a	single
estimate	of	variance	is	used,	namely,	the	pooled	variance,	 .

Assumptions
Every	statistical	test	has	a	set	of	assumptions	that	underlie	the	test
statistic.	When	the	assumptions	are	violated,	the	test	results	may	be
invalid,	rendering	improper	conclusions	from	faulty	analyses.	The
assumptions	are	as	follows:

1.						The	observations	are	randomly	selected	from	each	of	the	two
independent	populations.		Remember,	all	inferential	tests	rely
on	random	selection.



2.						The	variances	of	the	dependent	variable,	X,	for	each
population	are	equal.	This	allows	for	calculation	of	the	pool
variance.

3.						The	distributions	of	the	dependent	variable,	X,	are	normal
for	each	of	the	populations.

Because	the	sampling	distribution	of	the	mean	differences,

,	is	derived	from	a	linear	combination	of	two
variables,	 	and	 ,	then	 	and	 	must	originate
from	respective	populations	that	are	normal.

There	are	a	few	exceptions	where	the	assumptions	may	be	violated.
One	such	case	is	the	assumption	that	the	data	is	normally
distributed.	This	assumption	of	the	t-test		can	be	violated	when
each	sample	has	at	least	30	observations.	This	violation	is	possible
because	the	sampling	distribution	of	the	differences	in	means	is
shaped	approximately	like	a	t-distribution.	The	pooled	variance	t-
test		is	robust	and	can	tolerate	deviations	from	normal	when
sample	sizes	are	larger	than	30	and	the	variances	are	equal.	When
these	conditions	are	not	met,	you	must	either	use	another	statistical
procedure,	or	transform	the	data	in	such	a	way	as	to	create	data
that	is	normally	distributed.

Procedure	Syntax	of	PROC	TTEST	Procedure
The	TTEST	procedure	is	employed	for	testing	differences	in
population	means	and	has	the	general	form:

PROC	TTEST	DATA=SAS-data-set	<options>;

CLASS	variable;

PAIRED	variables;

VAR	variables;

RUN;

	

To	illustrate	the	pooled	variance	t-test,	consider	again	the	Ames
Housing	Case	to	answer	the	question	“Is	earning	a	bonus	on	the
sale	of	a	house	related	to	the	square	footage	of	the	above	ground
living	area?”	First,	we	define	the	dependent	variable	to	be	living



area	square	footage,	GR_LIV_AREA,	and	the	independent,	or
grouping,	variable	to	be	whether	or	not	the	real	estate	agent
received	a	bonus,	BONUS.	The	appropriate	hypothesis	is:	

Ho:	µ0	=	µ1	versus	H1:	µ0	≠	µ1

where	real	estate	agents	who	received	a	bonus	are	represented	by	1
and	real	estate	agents	who	did	not	receive	a	bonus	are	represented
by	0.	To	conduct	the	t-test	,	the	analyst	would	use	PROC	TTEST	as
in	Program	6.1	Independent	Samples	t-Test	for	Mean	Differences	in
Above	Ground	Living	Area.
Program	6.1	Independent	Samples	t-Test	for	Mean	Differences	in	Above	Ground
Living	Area

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames300;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	ttest	data	=ames	plots	(only)=qq	alpha=.05	h0=0;					

class	bonus;

var	gr_liv_area;	

format	bonus	yesno.;

title	‘Independent	Samples	t-test	for	Mean	Differences	with	Q-
Q	Plots’;

run;

From	the	program,	you	can	see	that	the	PROC	TTEST	requests	SAS
to	conduct	an	independent	two-sample	t-test		on	the	AMES	data	set
as	indicated	in	the	DATA	=AMES	statement.	The	CLASS	statement
tells	SAS	that	the	variable	BONUS	defines	the	categories	of	the
populations	of	interest,	and	the	VAR	statement	tells	SAS	which
continuous	variable	to	use	to	compute	the	means	for	each	category
of	the	population.	We	included	the	PLOTS(ONLY)=QQ	in	order	to
generate	the	Q-Q	plots	for	visually	assessing	the	normality
assumptions.	We	set	the	significance	level	at	0.05	by	including	the
ALPHA=.05	option	and	we	specify	that	the	hypothesized	mean



difference	(µ1-µ2)	is	zero.	The	defaults	settings	for	PROC	TTEST
provide	for	including	histograms,	box	plots,	and	Q-Q	plots	for
each	independent	populations	of	interest.	If	you	omit	the	(ONLY)
designation,	SAS	will	provide	the	default	plots	for	alternative	ways
to	assess	normality.
The	output	provides,	as	illustrated	in	Output	6.1a	Independent
Samples	t-Test	for	Ames	Housing,	Above	Ground	Living	Area	by
Bonus,	basic	statistics	for	describing	each	of	the	two	samples	with
respect	to	above	ground	living	area.	First,	you	can	see	that	179
realtors	did	not	receive	a	bonus	when	selling	the	home	and	that
those	homes	typically	averaged	1248.6	square	feet,	whereas	the
121	realtors	who	received	a	bonus	did	so	for	homes	averaging
1927.2	square	feet.	Other	statistics	included	the	standard	deviation,
minimums	and	maximum	square	footages	for	each	of	the	two
groups,	respectively.	Notice	specifically,	the	fact	that	the	two
standard	deviations	do	seem	to	differ,	giving	an	indication	that	the
equal	variance	assumption	is	suspect	(we	will	address	that	question
shortly).	

Finally,	the	actual	mean	difference	is	reported	as	-678.7,	which
indicates	that	the	average	square	footage	for	the	first	group
(BONUS=No)	is	678.7	less	than	the	second	group	(BONUS=Yes).
It	is	this	difference	that	we	are	interested	in	testing.	We	want	to
know	if	this	difference	is	large	enough,	statistically,	to	conclude
that	one	population	differs	from	the	other	in	terms	of	average
square	footage.
Output	6.1a		Independent	Samples	t-Test	for	Ames	Housing,	Above	Ground	Living
Area	by	Bonus

The	TTEST	Procedure

	

Variable:		Gr_Liv_Area

	

Bonus N Mean Std	Dev Std	Err Minimum Maximum

No 179 1248.6 340.2 25.4247 520.0 2654.0



Yes 121 1927.2 399.5 36.3197 1152.0 3279.0

Diff	(1-
2)

	 -678.7 365.2 42.9833 	 	

	

Bonus Method Mean 95%	CL	Mean Std	Dev
95%	CL	Std

Dev

No 	 1248.6 1198.4 1298.7 340.2 308.2 379.6

Yes 	 1927.2 1855.3 1999.1 399.5 354.7 457.3

Diff	(1-
2)

Pooled -678.7 -763.3 -594.1 365.2 338.1 397.1

Diff	(1-
2)

Satterthwaite -678.7 -766.0 -591.3 	 	 	

	

	

Method Variances DF t	Value Pr	>	|t|

Pooled Equal 298 -15.79 <.0001

Satterthwaite Unequal 229.3 -15.31 <.0001

	

Equality	of	Variances

Method Num	DF Den	DF F	Value Pr	>	F

Folded	F 120 178 1.38 0.0512

	

Testing	the	Equal	Variance	Assumption	Using	the	Folded	F-
Test

Before	conducting	the	t-test,	however,	we	must	first	test	the
validity	of	using	the	pool	variance	t-test		by	testing	the	equal
variance	assumption.	In	order	to	do	that,	we	must	test	the
following	hypotheses:

Ho:	σ02	=	σ12			versus				H1:	σ02	≠	σ12

where	we	want	to	determine	if	the	variance	of	the	dependent



variable	for	BONUS=0	is	different	from	the	variance	of	the
dependent	variable	for	BONUS=1.	The	folded	F-statistic	is
suitable	to	test	our	hypothesis.	The	folded	F-statistic	is

where	the	degrees	of	freedom	is	calculated	by	the	(sample	size	of
the	larger	group	–	1)	and	the	(sample	size	of	the	smaller	group	–	1).
We	first	calculate	the	maximum	variance	by	squaring	the	standard
deviation	(399.5)	for	BONUS=1,	and	the	minimum	variance	by
squaring	the	standard	deviation	(340.2)	for	BONUS=0	to	calculate
the	folded	F-test	statistic:

As	indicated	in	Output	6.1a	Independent	Samples	t-Test	for	Ames
Housing,	Above	Ground	Living	Area	by	Bonus,	the	p-value	for	the
test	0.0512.	At	.05	level	of	significance,	we	do	not	reject	the	null
hypothesis	and	conclude	that	there	is	no	significant	differences	in
variances	when	comparing	both	groups.		In	short,	we	are	correct	in
using	the	pooled	variance	t-	test	.

The	third	table	in	Output	6.1a	Independent	Samples	t-Test	for	Ames
Housing,	Above	Ground	Living	Area	by	Bonus	contains	information
for	carrying	out	the	t-test.	Because	we	are	justified	in	using	the
pooled	variance	t-test	,	our	attention	is	directed	to	the	row	where
the	method	is	labeled	as	‘Pooled’,	the	variances	are	determined	to
be	‘Equal’	and	the	p-value	for	the	two-tailed	test	is	displayed.
Specifically,	the	t-test		statistic	is	-15.79	with	298	degrees	of
freedom	and	a	p-value	of	<	.0001.	Because	the	p-value	is	less	than
our	cut-off	of	.0.05,	we	can	reject	the	null,	and	conclude	that	the
average	above	ground	living	area	does	differ	across	the	two	groups.
In	other	words,	BONUS	is	related	to	GR_LIV_AREA.

In	addition	to	conducting	a	t-test	for	the	mean	differences,	the
analyst	could	have	used	the	confidence	interval	approach	as
described	in	Chapter	4,	“The	Normal	Distribution	and	Introduction
to	Inferential	Statistics.”	The	TTEST	option,	alpha=.05,	determines
the	level	of	confidence,	so	in	the	second	table	of	Output	6.1a
Independent	Samples	t-Test	for	Ames	Housing,	Above	Ground
Living	Area	by	Bonus,	the	95%	confidence	interval	around	the
mean	difference	is	reported	to	be	-763.3,	-594.1.	In	other	words,



while	the	point	estimate	of	the	mean	difference	is	-678.7,	we
estimate	with	a	95%	level	of	confidence	that	the	average	above
ground	living	area	when	comparing	the	two	groups	differs
anywhere	from	595.1	to	763.3	square	feet.	This	interval	does	not
contain	zero,	which	allows	us	to	reject	the	null	hypothesis	as	well.

Note	that	the	sign	of	t-test	statistic	or	the	mean	difference	(positive
or	negative)	is	irrelevant	to	the	interpretation	of	the	significant
difference.	The	sign	is	simply	related	to	the	order	in	which	the
groups	are	listed	alphanumerically.	Note	further,	that	had	the	p-
value	been	greater	than	our	0.05	cut-off,	we	would	not	have
rejected	the	null	hypothesis,	concluding	that	there	is	no	evidence	to
relate	above	ground	living	area	square	footage	to	bonus	status.

Verifying	the	Assumptions	of	a	Two-Sample	t-Test
The	previous	conclusions	rest	on	the	assumptions	of	the	t-test.
Anytime	the	assumptions	of	a	test	are	violated,	the	analyst	runs	the
risk	of	making	errors	when	making	conclusions	about	the
population.	In	order	to	test	the	normality	assumption,	the	PROC
TTEST	option,	PLOT	(ONLY)	=	QQ,	is	used	to	request	that	SAS
provide	Q-Q	plots	for	each	of	the	two	groups	defined	in	the	CLASS
statement.	Data	that	is	normally	distributed	will	follow	a	line	at	the
45-degree	angle.	Non-normal	data	will	not	have	a	linear	trend
along	the	45-degree	angle.	Remember,	as	mentioned	in	Chapter	3,
“Data	Visualization,”	the	interpretation	of	the	Q-Q	plots	requires
some	judgment,	so	the	closer	the	points	fall	around	a	line,	the
stronger	the	evidence	that	the	data	is	normally	distributed.

The	Q-Q	Plots	of	GR_LIV_AREA	for	each	of	the	two	groups	are
provided	in	Output	6.1b	Normal	Probability	Plots	for	Above
Ground	Living	Area	by	Bonus.	The	left	plot	represents	the	data	for
BONUS=0,	as	indicated	by	the	‘0’	in	the	upper	left	of	the	graphic,
and	the	right	plot	represents	data	for	BONUS=1,	as	indicated	by
the	‘1’	in	the	upper	left	the	graphic.	Our	data	seems	to	deviate
slightly	from	the	45-degree	trend.	Therefore,	our	assumption	of
normality	is	questionable.
Output	6.1b	Normal	Probability	Plots	for	Above	Ground	Living	Area	by	Bonus



Supplemental	Plots	for	Data	Visualization

When	running	PROC	TTEST,	we	illustrated	how	to	get	specific	plots
using	the	PLOTS	(ONLY)	=	QQ	option,	namely	the	Q-Q	plot.	If	the
analyst	had	omitted	the	PLOTS	option,	SAS	would	have	provided
the	histograms	and	box	plots	for	the	variable	defined	in	the	VAR
statement	for	each	level	of	the	CLASS	variable.	In	our	example,
PROC	TTEST	would	have	generated	those	plots	for	the	dependent
variable,	GR_LIV_AREA,	by	both	groups	of	the	independent
variable,	BONUS=0	and	BONUS=1,	respectively,	as	illustrated	in
Output	6.1c	Histograms	and	Box	Plots	for	Above	Ground	Living
Area	by	Bonus.
Output	6.1c	Histograms	and	Box	Plots	for	Above	Ground	Living	Area	by	Bonus



The	first	panel	provides	a	histogram	of	the	above	ground	living
area	for	those	homes	where	a	bonus	is	not	received	(BONUS=0).
The	solid	line	represents	the	normal	curve	having	the	mean	and
standard	deviation	of	the	actual	data;	the	dashed	line	represents	the
kernel	density	curve.	The	second	panel	provides	the	same
information	for	those	homes	where	the	agent	received	a	bonus
(BONUS=1).	Finally,	the	last	panel	provides	the	box-and-whisker
plot	for	both	groups.

From	the	top	two	panels,	it	seems	that	the	distributions	deviate
slightly	from	the	normal	curve	and	there	are	a	few	outliers	in	the
right	tails,	as	shown	in	the	box-and-whisker	plots.	In	fact,
additional	information	can	be	gleaned	from	the	box-and-whisker
plots.	First,	for	BONUS=0,	the	whiskers	are	approximately	equal	in
length	and	notice	that	the	boxes	are	approximately	in	the	middle	of
the	distribution.	However,	the	mean,	represented	by	the	diamond,
is	slightly	to	the	right	of	the	median	indicating	that	it	may	be
influenced	by	the	outliers.	Secondly,	for	BONUS=1,	the	area	of	the
box	to	the	right	of	the	median	is	slightly	larger	than	the	area	to	the
left	of	the	median,	indicating	lack	of	symmetry;	the	mean	is	greater
than	the	median	again,	indicating	some	influence	of	outliers.	All	of



these	patterns	support	the	notion	that	the	data	is	slightly	non-
normal.	Further	investigation	of	outliers	may	be	warranted.	

Testing	the	Normality	Assumption	Using	the	Kolmogorov-
Smirnov	Test

While	visual	plots	are	helpful	in	describing	the	shape	of	the	data,
the	analyst	can	use	the	Kolmogorov-Smirnov	(K-S)	test	to	test	the
normality	assumption.	Specifically,	the	UNIVARIATE	procedure
generates	the	output	containing	the	K-S	test	which	can	be	used	to
test	the	following	hypotheses:

H0:	Data	originates	from	a	population	that	is	normal.

H1:	Data	does	originate	from	a	population	that	is	normal.

In	order	to	test	the	normality	of	GR_LIV_AREA	for	each	group
(BONUS=0	and	BONUS=1),	consider	Program	6.2	Kolmogorov-
Smirnov	Test	of	Normality	for	Above	Ground	Living	Area	by	Bonus.
Program	6.2	Kolmogorov-Smirnov	Test	of	Normality	for	Above	Ground	Living	Area
by	Bonus

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames300;

run;

	

proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	univariate	data	=	ames	normal;					

class	bonus;

var	gr_liv_area;	

format	bonus	yesno.;

title	‘Kolmogorov-Smirnov	Test	of	Normality	Assumption	for
Gr_Liv_Area	by	Bonus’;

run;

In	Program	6.2	Kolmogorov-Smirnov	Test	of	Normality	for	Above
Ground	Living	Area	by	Bonus,	the	UNIVARIATE	procedure	is
applied	to	the	AMES300	data	set	and	the	NORMAL	option	is



included	to	test	the	normality	of	the	GR_LIV_AREA	by	BONUS,	as
defined	by	the	VAR	and	CLASS	statements,	respectively.	The	output
can	be	found	in	Output	6.2	Kolmogorov-Smirnov	Test	of	Normality
for	Above	Ground	Living	Area	by	Bonus.
Output	6.2	Kolmogorov-Smirnov	Test	of	Normality	for	Above	Ground	Living	Area	by
Bonus

Bonus	=	No

Tests	for	Normality

Test Statistic p	Value

Shapiro-Wilk W 0.95815 Pr	<	W <0.0001

Kolmogorov-
Smirnov

D 0.073052 Pr	>	D 0.0201

Cramer-von	Mises W-Sq 0.22885 Pr	>	W-Sq <0.0050

Anderson-Darling A-Sq 1.525645 Pr	>	A-Sq <0.0050

	

Bonus	=	Yes

Tests	for	Normality

Test Statistic p	Value

Shapiro-Wilk W 0.959722 Pr	<	W 0.0011

Kolmogorov-
Smirnov

D 0.087217 Pr	>	D 0.0231

Cramer-von	Mises W-Sq 0.206855 Pr	>	W-Sq <0.0050

Anderson-Darling A-Sq 1.242709 Pr	>	A-Sq <0.0050

Because	the	p-values	for	the	K-S	test	for	each	of	the	two	groups	are
0.0201	and	0.0231,	respectively,	and	are	less	than	0.05,	we	reject
the	null	for	both	groups.		In	short,	there	is	evidence	that
GR_LIV_AREA	is	non-normal	for	both	groups.	

Keep	in	mind	also	that	the	two	group	sample	sizes	are	considered
relatively	large,	at	179	and	121,	respectively;	so	although	we
violated	the	normality	assumption,	the	sampling	distribution	of	the
mean	differences	still	has	the	shape	of	a	t-distribution.	In	other
words,	the	central	limit	theorem	holds	and,	as	a	result,	the	t-test	is
appropriate	for	testing	mean	differences.



Finally,	it	should	be	noted	also	that	the	validity	of	the	folded	F-test
is	questionable	when	the	populations	are	not	normal.	If	that	is	the
case,	the	equal	variance	hypotheses	should	be	tested	using	Levene’s
test,	as	covered	in	Chapter	7,	“Analysis	of	Variance	(ANOVA).”

Satterthwaite	t-Test	for	Unequal	Variances
There	are	times	when	the	population	variances	are	not	equal.	In
short,	the	analyst	may	reject	the	equal	variance	assumption	using
the	folded	F-test.	In	these	instances,	the	pooled	variance	t-test		is
inadequate	for	drawing	conclusions,	and	the	analyst	must,	instead,
use	Satterthwaite’s	separate-variance	t-test	(Satterthwaite,
1946).	The	Satterthwaite	t-test	statistic	is	calculated	using	the
following	equation:

and	the	degrees	of	freedom	are	calculated	using	the	two	sample
variances	and	the	two	sample	sizes.

Consider	the	Ames	Housing	Case	where	the	analyst	is	interested	in
answering	the	question,	“Is	receiving	a	bonus	related	to	the	total
square	footage	of	the	basement	of	the	home?”	In	this	case,	the
analyst	would	define	the	dependent	variable	as	TOTAL_BSMT_SF
and	the	independent	variable	as	BONUS	and	the	hypothesis	test
would	be:

Ho:	µ0	=	µ1	versus	H1:	µ0	≠	µ1

The	program	would	be	identical	to	that	previously	discussed,	with
the	exception	that	TOTAL_BSMT_SF	is	used	in	the	VAR	statement,
as	illustrated	in	Program	6.3	Independent	Samples	t-Test	for	Mean
Differences	in	Total	Basement	Area.
Program	6.3	Independent	Samples	t-Test	for	Mean	Differences	in	Total	Basement
Area

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames300;

run;

	



proc	format;

value	yesno	0=No	1=Yes;

run;

	

proc	ttest	data	=ames	alpha=.05	h0=0;					

class	bonus;

var	total_bsmt_sf;	

format	bonus	yesno.;

title	‘Independent	Samples	t-Test	for	Mean	Differences	with	Q-
Q	Plots’;

run;

The	output	for	this	analysis	is	found	in	Output	6.3	Independent
Sample	t-Test	for	Ames	Housing,	Total	Basement	Area	by	Bonus.
Recall	that,	first,	the	analyst	must	check	to	see	if	the	equal	variance
assumption	is	tenable.	From	the	first	table,	it	is	evident	that	the
standard	deviation	of	basement	area	for	those	homes	earning	a
bonus	(519.6)	is	about	two	times	larger	than	that	for	homes	not
earning	a	bonus	(275.8),	giving	the	analyst	some	descriptive
evidence	that	the	equal	variance	assumption	is	not	reasonable.
From	the	folded	F-test,	found	in	the	fourth	table,	we	can	see	that
the	largest	variance	is	3.55	times	larger	than	the	smallest	variance,
with	a	p-value		<	.0001.	Therefore,	there	is	evidence	that	the
population	variances	of	TOTAL_BSMT_SF	are	not	equal	across	the
two	groups.	As	a	result,	the	analyst	must	test	the	hypothesis	using
Satterthwaite’s	t-Test.	

In	table	1	of	Output	6.3	Independent	Sample	t-Test	for	Ames
Housing,	Total	Basement	Area	by	Bonus,	note	that	the	average
basement	area	of	homes	where	the	agent	receives	a	bonus	is	1237.0
square	feet,	whereas	the	average	basement	area	for	those	homes
where	the	agent	does	not	receive	a	bonus	is	888.9	square	feet,
differing	by	348.1	square	feet.	The	t-test		statistic	for	that	difference
is	-6.76	(df=166.02)	and	has	a	p-value	<.0001,	which	is	less	than
our	0.05	cut-off.	Therefore,	we	reject	the	null	hypothesis	and
conclude	that	there	is	sufficient	evidence	that	the	average	total
basement	area	differs	when	comparing	the	two	groups.	In	other
words,	receiving	a	bonus	is	related	to	the	square	footage	of	the
basement	of	the	home.	Note	also	that	the	95%	confidence	interval
indicates	the	difference	may	lie	somewhere	between	246.4	and
449.9	square	feet,	as	provided	on	the	row	labeled	Satterthwaite



method.
Finally,	it	should	be	notes	from	the	histograms	that	some	homes
where	a	bonus	was	not	earned	had	zero	basement	area,	meaning
that	those	homes	had	no	basements.	This	very	fact	could	play	into
the	idea	that	buyers	are	more	willing	to	pay	higher	values	simply
because	the	home	has	a	basement;	further	investigation	would	be
needed	to	determine	the	details.
Output	6.3	Independent	Sample	t-Test	for	Ames	Housing,	Total	Basement	Area	by
Bonus

Bonus N Mean Std	Dev Std	Err Minimum Maximum

No 179 888.9 275.8 20.6158 0 1740.0

Yes 121 1237.0 519.6 47.2328 384.0 3206.0

Diff	(1-
2)

	 -348.1 392.6 46.2067 	 	

	

	

Bonus Method Mean 95%	CL	Mean Std	Dev
95%	CL	Std

Dev

No 	 888.9 848.2 929.6 275.8 249.9 307.8

Yes 	 1237.0 1143.5 1330.6 519.6 461.3 594.8

Diff	(1-
2)

Pooled -348.1 -439.1 -257.2 392.6 363.5 426.9

Diff	(1-
2)

Satterthwaite -348.1 -449.9 -246.4 	 	 	

	
	

Method Variances DF t	Value Pr	>	|t|

Pooled Equal 298 -7.53 <.0001

Satterthwaite Unequal 166.02 -6.76 <.0001

	
	



Equality	of	Variances

Method Num	DF Den	DF F	Value Pr	>	F

Folded
F

120 178 3.55 <.0001

	
	

	



Finally,	we	must	examine	the	distribution	of	the	dependent
variable	to	evaluate	the	normality	assumption	for	each	group.	The
normality	assumption	appears	to	be	met	when	BONUS=0	because
the	values	on	the	plot	tend	to	follow	the	45-degree	trend	line,	the
whiskers	on	the	box-and-whiskers	plot	are	approximately	equal,
and	the	measures	of	central	tendency	are	approximately	in	the
middle	of	the	box.	However,	the	normality	assumption	is
disputable	for	BONUS=1.	The	overlay	of	the	normal	curve	on	the
values	shows	that	the	distribution	of	values	is	skewed.
Furthermore,	the	box-and-whiskers	plot	shows	that	one	whisker	is
longer	than	the	other,	and	the	measures	of	central	tendency	are
located	to	one	side	of	the	middle	of	the	box.	These	patterns
demonstrate	that	the	normality	assumption	is	questionable.	In	this
case,	because	we	have	a	larger	sample	size,	we	may	proceed	with
Satterthwaite’s	test.	In	short,	the	t-test	is	robust	enough	to	provide
meaningful	results.

	

Summary	of	Steps	for	the	t-Test	of	Two	Independent
Populations

From	the	discussion	of	the	TTEST	procedure,	you	can	see	that	the
following	steps	are	required	for	conducting	a	t-test	of	two
independent	populations:

1.						Define	the	dependent	and	independent	variables,	state	the



hypotheses,	and	run	the	TTEST	procedure.

2.						Assess	the	normality	of	the	dependent	variable	for	each	level
of	the	independent	variable,	using	histograms,	Q-Q	plots,	box
plots,	and	the	Kolmogorov-Smirnov	test.	Use	sample	size
requirements	to	support	the	tenability;	otherwise,	consider
transforming	the	variables	for	further	analysis.	Pay	close
attention	to	outliers.

3.						Once	the	normality	assumption	is	deemed	tenable,	use	the
folded	F-test	to	assess	the	equal	variance	assumption.

4.						If	the	folded	F-test	is	not	rejected,	use	all	output	relative	to
the	pooled	variance	t-test	for	testing	your	initial	hypothesis
and	making	conclusions	about	group	differences.	If	the	folded
F-test	is	rejected,	use	instead	all	output	relative	to
Satterthwaite’s	t-test.

Notice	that,	based	upon	the	design	of	the	studies	discussed,	we
have	assumed	that	the	measures	on	the	dependent	variable	from
one	group	are	independent	of	and	not	connected	to	the	measures
on	the	dependent	variable	from	the	second	group.	If	there	is	reason
to	believe	that	two	populations	are	related	on	the	dependent
variable,	the	analyst	must	conduct	a	paired	samples	t-test,	as
described	in	the	next	section.

Paired	Samples
When	the	analyst	is	investigating	paired	samples,	the	data	across
the	pairs	is	considered	dependent.	There	are	two	primary	situations
where	we	encounter	paired	data.	The	first	is	where	we	have	just
one	sample	with	repeated	measures	on	the	same	dependent
variable.	With	repeated	measures,	the	statistic	of	interest	is	the
difference	between	the	time	1	and	time	2	measures	on	the
dependent	variable.		Here,	the	statistical	analysis	is	conducted	on
the	differences,	as	illustrated	in	the	one-sample	t-test		covered	in
Chapter	4,	“The	Normal	Distribution	and	Introduction	to	Inferential
Statistics,”	and	not	on	the	specific	measures	collected	from	each
group.	We	have	a	treatment	between	time	1	and	time	2.	The	data
represents	the	same	cases	across	time,	where	those	cases	have
undergone	a	treatment.



For	example,	with	housing	data,	the	analyst	may	be	interested	in
the	home	values	before	and	after	remodeling	(adding	a		room	or	a
new	garage,	for	example).	The	paired	t-test		would	assess	the
statistical	difference	between	the	home	value	before	and	after	the
home	improvement.	The	impact	of	the	remodeling	on	home	value
is	determined	by	testing	the	difference	in	those	measures.	Thus,
you	may	find	that	these	tests	are	referred	to	as	paired-samples,
repeated-measures,	or	pre-test	and	post	tests.

Using	data	matched	on	similar	characteristics	from	different
populations	requires	looking	at	the	differences	in	two	samples.	This
second	situation	is	referred	to	as	a	paired-samples	t-test.	For	a
sample	of	n-pairs,	you	are	testing	the	differences,	where	d1=	the
difference	between	X1	and	X2	for	the	first	pair,	d2	=	the	difference
between	X1	and	X2	for	the	second	pair,	…,	and	dn	=	the	difference

between	X1	and	X2	for	the	nth	pair.	So	the	t-test		statistic	is:

with	(n-1)	degrees	of	freedom,	where	 	=	the	average	of	the
sample	differences,	Sd	=	the	sample	standard	deviation	of	the
differences,	and	μ0	is	the	hypothesized	mean	difference.

Assumptions
When	conducting	a	paired-sample	t-test,	the	assumption	is	that	the
difference	scores	are	normally	distributed.	There	are	visual	tests	of
normality	as	discussed	in	the	previous	sections,	including
histograms,	Q-Q	plots,	and	box	plots.	In	addition,	statistical	tests
can	be	applied	to	difference	scores	using	PROC	UNIVARIATE	to
obtain	results	of	the	Kolmogorov-Smirnov	test	for	normality.

The	Paired-Sample	t-Test	Using	the	PAIRED	Statement
in	the	TTEST	Procedure
To	illustrate	the	paired	sample	t-test,	suppose	we	are	interested	in
determining	if	the	assessed	property	tax	value	is	significantly
different	from	the	2012	payment	year	when	compared	to	the	2016
payment	year.	Consider	a	randomly	selected	sample	of	data	from
the	Whitley	County,	Indiana,	property	tax	assessed	values	for	the



2012	and	2016	payment	years,	with	an	excerpt	provided	in	Table
6.1	Whitley	County,	Indiana,	2012	and	2016	Tax	Assessed	Property
Values	Sample	Data.	Notice	that	the	data	set	contains	4	variables
where	OBS	is	the	observation	number,	TOTAL_BASE_VALUE_2012
is	the	2012	property	tax	assessed	value,	TOTAL_BASE_VALUE	is	the
2016	property	tax	assessed	value,	and	the	DIFFERENCE	is	the
amount	of	change	from	the	2012	and	2016	property	tax	assessed
values.
Table	6.1	Whitley	County,	Indiana,	2012	and	2016	Tax	Assessed	Property	Values
Sample	Data

Obs TOTAL_BASE_VALUE_2012 TOTAL_BASE_VALUE difference

1 82200 99230 17030

2 139900 167560 27660

3 93000 114120 21120

4 337300 359200 21900

5 73800 90440 16640

You	might	believe	that	the	tax	assessed	property	values	would
increase	in	a	period	of	4	years,	leading	us	to	test	our	hypotheses:

Ho:	µ1			=			µ2		versus			H1:	µ1	≠	µ2

where	group	1	represents	the	tax	assessed	property	values	in	2012
and	group	2	represents	the	tax	assessed	property	values	of	the	same
houses	in	2016.	The	appropriate	SAS	code	is	in	Program	6.4
Kolmogorov-Smirnov	Test	of	Normality	Assumption	on	the
Difference	Score	Using	the	UNIVARIATE	Procedure.
Program	6.4	Kolmogorov-Smirnov	Test	of	Normality	Assumption	on	the	Difference
Score	Using	the	UNIVARIATE	Procedure

libname	sasba	‘c:\sasba\ames’;

data	alt40;

set	sasba.alt40;

difference=total_base_value_2012-total_base_value;

run;

	



proc	univariate	data=alt40	normal;

qqplot	/	normal;

var	difference;					

title	‘Kolmogorov-Smirnov	Test	Of	Normality	Assumption	On	The
Difference	Score	Using	The	Univariate	Procedure’;

run;

	

proc	ttest	data=sasba.alt40

plots=qq	alpha=.05	h0=0;		

paired	total_base_value_2012*total_base_value;

title	‘Paired	t-test’;

run;																										

First,	Program	6.4	Kolmogorov-Smirnov	Test	of	Normality
Assumption	on	the	Difference	Score	Using	the	UNIVARIATE
Procedure	reads	the	ALT40	SAS	data	set	and	saves	that	data	in	the
temporary	SAS	data	set,	ALT40.	In	order	to	use	the	UNIVARIATE
procedure	for	testing	the	normality	of	the	differences	and
generating	the	Q-Q	plot,	the	analysis	is	conducted	on	the	variable,
DIFFERENCE.	The	results	of	the	PROC	UNIVARIATE	are	found	in
Output	6.4a	Kolmogorov-Smirnov	Test	of	Normality	Assumption	on
the	Difference	Score	Using	the	UNIVARIATE	Procedure.		The
Kolmogorov-Smirnov	test	is	used	to	test	the	following	hypotheses:

	

H0:	Data	originates	from	a	population	that	is	normal.

H1:	Data	does	not	originate	from	a	population	that	is	normal.

Because	the	p-value	for	the	test,	>0.1500,	is	greater	than	the	0.05
level	of	significance,	we	do	not	reject	the	null	hypothesis.	In	short,
there	is	no	evidence	that	the	differences	are	not	normal.	A	visual
inspection	using	the	Q-Q	plot	seems	to	support	that	conclusion	as
well.
Output	6.4a	Kolmogorov-Smirnov	Test	of	Normality	Assumption	on	the	Difference
Score	Using	the	UNIVARIATE	Procedure

Tests	for	Normality

Test Statistic p	Value

Shapiro-Wilk W 0.91966 Pr	<	W 0.0075



Kolmogorov-
Smirnov

D 0.102085 Pr	>	D >0.1500

Cramer-von	Mises W-Sq 0.072363 Pr	>	W-Sq >0.2500

Anderson-Darling A-Sq 0.621684 Pr	>	A-Sq 0.0987

	

Referring	back	to	Program	6.4	Kolmogorov-Smirnov	Test	of
Normality	Assumption	on	the	Difference	Score	Using	the
UNIVARIATE	Procedure,	for	the	paired-sample	t-test,	the	TTEST
procedure	must	include	a	PAIRED	statement	naming	the	two
variables	representing	the	paired	values,	connected	by	an
‘*.’		Notice	that	the	PLOTS	option	is	included	which	directs	SAS	to
provide	a	Q-Q	plot	of	the	differences.	Partial	results	are	found	in
Output	6.4b	Paired	t-Test	Results	for	Differences	in	Tax	Assessed
Property	Values.
Output	6.4b	Paired	t-Test	Results	for	Differences	in	Tax	Assessed	Property	Values

N Mean Std	Dev Std	Err Minimum Maximum

40 -23907.8 4905.0 775.5 -41400.0 -16640.0



	

Mean 95%	CL	Mean Std	Dev
95%	CL	Std

Dev

-23907.8 -25476.4 -22339.1 4905.0 4018.0 6298.2

	

DF t	Value Pr	>	|t|

39 -30.83 <.0001

The	output	first	gives	the	descriptive	statistics	for	the	differences
between	the	tax	assessed	property	values.		There	are	40	homes,
where	the	average	difference	between	the	2012	and	2016	values	is
-23907.8,	meaning	that	the	assessed	values	in	2012	were,	on
average,	$23,097.80	less	than	those	reported	in	2016.	The	standard
deviation	of	the	differences	is	4905.0,	with	a	minimum	difference
of	-41400.0	and	a	maximum	difference	of	-16640.0.	The	second
table	then	reports	the	95%

	

confidence	interval	for	the	mean	difference,	so	while	the	point
estimate	of	the	difference	is	$23,907.80,	it	is	estimated	that	the
difference	may	be	somewhere	between	$22,339.10	and
$25,476.40.00.	Finally,	the	t-test		statistic	is	calculated	as	follows:

	=	-30.83

Notice	that	the	p-value	is	always	reported	for	the	two-tailed	test
only.	Therefore,	we	conclude	that	there	is	evidence	that	the	tax
assessed	property	values	are	significantly	different	in	2012	than	in
2016.

Finally,	the	PLOT	option	is	included	in	the	TTEST	procedure	as	an
alternative	to	testing	the	assumptions.	The	following	plots,	as
illustrated	in	Output	6.4c	Accompanying	Plots	for	the	Paired-
Sample	t-Test,	accompany	the	test	for	a	paired	sample.
Output	6.4c	Accompanying	Plots	for	the	Paired-Sample	t-Test





The	first	plot	displays	the	distribution	of	difference,	along	with	the
normal	distribution	overlay.	By	examining	this	distribution,	it	is
tricky	to	determine	if	the	normal	distribution	of	the	differences
assumption	is	met.	This	is	common	when	using	a	small	data	set.	In
situations	like	this,	where	you	cannot	clearly	determine	if	the
distribution	is	normal,	you	must	do	as	we	did	previously:	run	PROC
UNIVARIATE	and	examine	the	appropriate	normality	test	results.
The	Shapiro-Wilk	and	Kolmogorov-Smirnov	tests	are	not
significant,	nor	are	any	of	the	other	normality	tests,	as	found	in
Output	6.4a	Kolmogorov-Smirnov	Test	of	Normality	Assumption	on
the	Difference	Score	Using	the	UNIVARIATE	Procedure,	all
supporting	the	notion	that	the	distribution	is	normal.

The	second	visual	display	is	the	paired	profiles.	Each	line	connects
the	case	values	for	the	2012	and	2016	tax	assessed	property	values.
The	lines	show	an	overall	increase	from	one	tax	year	to	the	other
for	each	home,	as	the	lines	rise	from	left	to	right.	The	distinct
thicker	line	is	the	mean	values	from	2012	to	2016,	showing	that,
overall,	the	values	increase.

Finally,	the	last	visual	display	is	the	agreement	plot.	Each	smaller
circle	represents	the	ordered	pair	(value	for	year	2012,	value	for
year	2016).	The	clear	pattern	on	this	plot	indicates	that	all	data



points	fall	above	the	45-degree	angle	line	which	is	the	point	where
no	change	would	be	represented.	As	all	data	points	are	above	this
line,	all	data	points	represent	an	increase	in	tax	assessed	property
values	between	2012	and	2016.	If	data	points	fell	on	the	line,	they
would	indicate	no	change	in	tax	assessed	property	values	from
2012	to	2016.	Also,	if	the	data	points	were	below	the	line,	those
points	would	represent	a	decrease	in	tax	assessed	property	values
from	2012	to	2016.	The	larger	circle	represents	the	mean	of	the
2012	and	2016	tax	assessed	property	values.

It	should	be	noted	that	the	PLOTS=QQ	option	in	the	TTEST
procedure	would	have	generated	the	same	Q-Q	plot	as	that	in	the
UNIVARIATE	procedure	and	will	not	be	repeated	here.	It	was
included	in	the	SAS	code	for	illustrative	purposes	only.

Key	Terms
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pooled	variance	t-test

histograms
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Chapter	Quiz
1.						Suppose	you	want	to	see	if	the	amount	owed	on	a	bill	is
related	to	whether	or	not	the	bill	is	paid.	Which	one	of	the
following	would	you	use	to	do	an	independent	samples	t-test?

a.						proc	ttest;

class	paid_bill;

paired;

var	amount_owed	paid_bill;

run;

	

b.						proc	ttest;

class	paid_bill;

var	amount_owed;

run;

	

c.						proc	ttest;

class	amount_owed;

var	paid_bill;

run;

	

d.						proc	ttest;

class	yes;

paired	yes;

var	amount_owed;

run;

2.						Suppose	you	want	to	see	if	the	average	amount	owed	on	a
bill	differs	when	comparing	those	who	paid	their	bill	versus
those	who	have	not.	Given	this	SAS	output,	which	of	the



statements	is	accurate?	(use	0.05	level	of	significance)

Lower	CL		Upper	CL																			Lower	CL		Upper	CL

Variable		DebtAmt					N						Mean									Mean						Mean								Std	Dev						Std	Dev					Std
Dev										Std	Err

paid																0										91				47.975							50.121				52.267									8.9947						10.305						
12.066													1.0803

paid																1								109				53.447							54.991				56.535								
7.1786						8.1337								9.3843													0.7791

paid					Diff	(1-2)																		-7.442						-4.87						-2.298									8.3622						9.1846						
10.188													1.3042

																															t-Tests

Variable				Method														Variances								DF							t	Value				Pr	>	|t|

paid											Pooled																	Equal														198									-3.73						0.0002

paid											Satterthwaite							Unequal										170									-3.66						0.0003

							Equality	of	Variances

Variable				Method						Num	DF				Den	DF				F	Value				Pr	>	F

paid							Folded	F																	90							108													1.61							0.0187

	

a.						The	significant	folded	f	indicates	that	the	variances	for
the	two	groups	are	different.

b.						The	significant	folded	f	indicates	that	the	variances	for
the	two	groups	are	not	different.

c.						The	appropriate	test	statistic	is		t	=	-3.73	(p.0002).

d.						None	of	the	above.

	

3.						Using	the	output	listed	in	#2,	what	conclusion	is
appropriate?

a.						There	is	evidence	that	the	amount	owed	is	different	when
comparing	those	who	paid	their	bill	(paid=1)	and	those
who	did	not	(paid=0).

b.						People	who	did	not	pay	(paid=0)	have	significantly	more



debt.

c.						Amount	owed	is	not	related	to	whether	or	not	people
paid.

d.						None	of	the	above.

4.						Scenario:	The	t-test	statistic	for	the	difference	is	-10.34
(df=85)	and	has	a	p-value	<.01,	which	is	less	than	our	0.05
cut-off.	Given	this	scenario,	what	do	you	conclude?

a.						Accept	the	null	hypothesis	and	conclude	that	there	is
sufficient	evidence	that	the	variable	of	interest	differs	when
comparing	the	two	groups.	

b.						Accept	the	null	hypothesis	and	conclude	that	there	is
insufficient	evidence	that	the	variable	of	interest	differs
when	comparing	the	two	groups.	

c.						Reject	the	null	hypothesis	and	conclude	that	there	is
insufficient	evidence	that	the	variable	of	interest	differs
when	comparing	the	two	groups.	

d.						Reject	the	null	hypothesis	and	conclude	that	there	is
sufficient	evidence	that	the	variable	of	interest	differs	when
comparing	the	two	groups.	

5.						When	using	the	folded	F-test	at	0.05	level	of	significance,	a
p-value	less	than	0.05	indicates	that

a.						the	pooled	variance	t-test	should	be	used.

b.						Satterthwaite’s	t-test	should	be	used.

c.						there	is	a	relationship	between	the	independent	and
dependent	variables.

d.						none	of	the	above.

6.						When	you	want	to	compare	the	means	scores	for	the	same
group	on	two	different	occasions,	you	should	use	the:

a.						F-test.

b.						Levine’s	test.

c.						independent	samples	t-test.

d.						paired	samples	t-test.



7.						Suppose	you	want	to	test	to	see	if	a	weight	loss	program	is
effective	by	taking	the	weight	before	and	after	to	see	if	there
was	a	significant	decrease	in	weight	after	six	weeks.		Which
one	of	the	following	would	you	use	to	conduct	the	test?

a.						proc	ttest;

class	groups;

paired	weight_before*weight_after;

var	weight_before	weight_after;

run;

b.						proc	ttest;

var	weight_before	weight_after;

run;

c.						proc	ttest;

class	weight;

var	before	after;

run;

d.						proc	ttest;

paired	weight_before*weight_after;

run;

8.						Which	of	the	following	is	true	given	a	significant	paired-
samples	t-test	result	from	Time	1	(mean=43.97,	SD=6.12)	to
Time	2	(mean=39.46,	SD=4.95),	with		t(30)=6.01	p<.01?

a.						There	was	no	difference	in	scores	between	Time	1	and
Time	2.

b.						There	was	a	mean	increase	in	scores	from	Time	1	and
Time	2.

c.						There	was	a	mean	decrease	in	scores	from	Time	1	and
Time	2.

d.						None	of	the	above.

9.						When	t=-6.43	and	p<.001	in	an	independent	samples	t-test
you	may	conclude	that



a.						there	is	a	relationship	between	the	independent	and
dependent	variables.

b.						the	folded	F-test	should	be	used.

c.						you	must	use	Satterthwaite’s	t-test.

d.						there	is	no	significant	difference	between	groups.

10.			For	the	research	question:	is	there	a	significant	change	in
home	values	following	$20,000	or	more	in	home
improvements?

a.						An	independent	t-test	will	tell	you	whether	there	is	a
statistically	significant	difference

between	groups.

b.						An	F-test	will	tell	you	whether	there	is	a	statistically
significant	difference	between	Time	1	and	Time	2.

c.						A	paired-samples	t-test		will	tell	you	whether	there	is	a
statistically	significant	difference	in	mean	scores	for	Time	1
and	Time	2.

d.						None	of	the	above.
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Introduction
In	Chapter	6,	“Two	Sample	t-Test,	we	introduced	the	pooled-
variance	t-test	for	testing	the	relationship	between	a	categorical
variable	with	two	levels	and	a	numeric	continuous	variable.		In
particular,	we	analyzed	the	relationship	between	the	variable,
bonus,	namely,	whether	or	not	an	agent	earned	a	bonus	when
selling	a	house,	and	ground	living	area.		In	many	situations,	the
categorical	variable	has	more	than	two	levels.		For	example,	you
may	want	to	see	if	there	is	a	relationship	between	the	overall
quality	of	a	house	(having	three	levels—good,	average,	and	poor)
and	the	average	sale	price.



When	the	outcome	variable	is	continuous	and	the	distribution	of
errors	is	assumed	to	be	normal,	the	General	Linear	Model	can	be
used	to	represent	the	relationship	between	the	predictor	variables
and	the	outcome	variable.		Specifically,	when	the	analyst	is
interested	in	assessing	the	differences	in	a	continuous	numeric
outcome	across	two	or	more	populations,	the	appropriate	statistical
analysis	is	an	Analysis	of	Variance	(ANOVA).	

When	looking	at	the	effects	of	one	predictor,	or	one	factor,	on	the
outcome	of	interest,	the	analysis	is	referred	to	a	one-way	analysis
of	variance.	However,	in	many	situations,	there	may	be	other
factors	that	affect	the	outcome	of	interest	and	we	can	extend	the
general	linear	model	to	include	these	additional
effects.		Specifically,	in	this	chapter,	we	will	illustrate	the	one-way
analysis	of	variance,	followed	by	both	the	randomized	block
design	and	the	two-way	analysis	of	variance	for	investigating
multiple	effects	on	the	outcome	of	interest.

In	this	chapter,	you	will	learn	how	to:

	describe	the	linear	model	for	the	one-factor	analysis	of
variance	(ANOVA),	the	randomized	block	design,	and	the
two-factor	analysis	of	variance	(ANOVA)

	explore	the	data	in	order	to	describe	the	characteristics	of
data	across	the	populations	under	investigation

	use	the	GLM	procedure	to	perform	ANOVA,	including	the
CLASS	and	MODEL	statements

	interpret	the	statistical	output	of	the	GLM	procedure,
including	the	ANOVA	table,	F-test	statistic,	p-value,	and	r-
square

	evaluate	the	null	hypothesis	using	the	GLM	output

	assess	the	equal	variance	assumption	using	the	MEANS
statement	with	the	HOVTEST	option	within	the	GLM
procedure	to	generate	Levene’s	test

	verify	the	assumptions	of	ANOVA	using	diagnostic	fit	plots
generated	by	the	PLOTS=DIAGNOSTICS	option	of	the	GLM
procedure

	interpret	graphical	output	of	the	GLM	procedure
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	generate	predicted	values	and	the	residuals	using	the
OUTPUT	statement

	perform	post	hoc	tests	to	evaluate	treatment	effects

	use	the	LSMEANS	statement	in	the	GLM	procedure	to
perform	pairwise	comparisons

	use	the	PDIFF	option	of	the	LSMEANS	statement	to	generate
p-values	for	each	pairwise	comparison

	use	the	ADJUST=	option	in	the	LSMEANS	statement	to
define	the	adjustment	method	used	for	the	multiple
comparison	procedure

	interpret	the	results	of	the	ADJUST	option	for	both	Tukey
and	Dunnett	approaches	to	pairwise	comparisons

	interpret	diffograms	to	evaluate	pairwise	comparisons

	interpret	control	plots	to	evaluate	pairwise	comparisons

	use	blocking	to	reduce	error	variance	and	how	to	test	the
usefulness	of	blocking

	use	the	MODEL	statement	within	GLM	procedure	to	produce
output	that	will	help	determine	the	significance	of	the
interaction	between	factors

	interpret	the	results	of	a	two-factor	ANOVA	to	identify
interaction	effects	or	main	effects

	understand	when	Type	III	sums-of-squares	should	be	used
versus	Type	I	sums-of-squares

	use	the	LSMEANS	statement	with	the	SLICE=	option	to
interpret	interaction	effects

One-Factor	Analysis	of	Variance
When	the	analyst	is	investigating	differences	in	a	continuous
outcome	across	two	or	more	populations,	the	appropriate	statistical
test	is	the	one-way,	or	one-factor,	analysis	of	variance.		Specifically,
the	statistical	model	of	interest	represents	a	linear	relationship
between	the	outcome	variable	and	a	single	categorical	variable,
where	the	categorical	variable	represents	various	populations,	or
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groups.

The	One-Factor	ANOVA	Model
The	one-factor	ANOVA	model	is	represented	by

Yik	=	µ		+	τi	+	εik
where	Yik	is	the	value	of	the	outcome	variable	for	observation	k	in
group	i,	µ	is	the	overall	mean	for	the	outcome	variable,	τi	is	the
treatment	effect	for	each	observation	in	group	i,	and	εik	is	the	error
in	prediction	for	observation	k	in	group	i.	In	essence	this	equation
means	that	we	expect	the	value	of	Y	to	differ	from	the	mean,	µ,	as	a
function	of	its	group	membership,	i,	and	some	random	error.	If	the
treatment	effect	of	being	in	group	i	is	zero,	then	Y	is	simply	a
function	of	the	overall	mean	and	random	error.

The	general	form	of	the	hypotheses	for	testing	differences	in	g
population	means	(for	i	=	1	to	g)	is:

H0:	µ1	=	µ2		=	…	=	µg							versus									H1:	not	all	µi’s	are	equal

which	is	equivalent	to	testing	whether	or	not	treatment	effects
exist:

H0:	τ1	=	τ2		=	…	=	τ	g	=	0				versus									H1:	not	all	τi’s	equal
zero

Constructing	the	Test	Statistic:	Estimating	Variance
among	Groups	and	Variance	within	Groups
While	our	main	focus	is	on	detecting	differences	in	means,	the
construction	of	the	test	statistic	relies	on	the	estimation	of	two
variances;	the	first	variance	measures	the	variation	among	the
group	means	and	the	second	variance	measures	the	variation	of	the
observations	within	each	group.	Consider	the	six	observations
belonging	to	each	of	two	groups,	respectively,	listed	in	Table	7.1
Deviations	within	and	across	Groups.		Note	that	the	mean	of	all	six
observations,	referred	to	as	the	overall	mean			 ,	has	a	value	of	7
while	the	means	for	groups	1	and	2,	respectively,	are	4	and
10.		Now	let’s	specifically	review	differences	with	respect	to
observation	1.	The	difference	between	its	Y	and	the	overall	mean,	



,	is	-4	as	indicated	in	column	I.	That	difference	can	be
partitioned	into	two	components:		the	difference	due	to	being	in
group	1,	namely,	 ,	which	has	a	value	of	-1	(column	II)	and
the	difference	in	the	group	mean	and	the	overall	mean,		 ,
which	has	a	value	of	-3	(column	III).	It	is	important	to	note	that	the
largest	difference,	in	absolute	value,	is	-3,	meaning	that	the
difference	between	Y	and	 	is	attributed	to	the	fact	that
observation	1	belongs	to	group	1	(i.e.,	group	1	mean	differs	from
the	overall	mean).
Table	7.1	Deviations	within	and	across	Groups

In	fact,	an	inspection	of	column	I	across	all	observations	gives	you
an	idea	of	the	overall	differences	between	the	Y	values	and		 .
This	overall	variation	can	be	attributed,	largely,	to	the	differences
between	the	group	means	and	the	overall	mean	(column	III),
whereas	very	little	variation	exists	between	the	individual
observations	and	the	mean	of	the	group	to	which	they	belong
(column	II).		Consequently,	the	variation	between	the	Y	values
and		 	in	column	I	seems	to	be	driven	by	the	difference	in	group
means,	column	3.	In	other	words,	group	membership	matters	when
explaining	the	outcome	Y;	that	is,	the	independent	variable	as
defined	by	the	grouping	variable	explains	the	variability	in	the
outcome	Y.		In	terms	of	prediction,	you	could	also	say	that	there	is
less	error	in	predicting	the	Y	values	if	you	used	the	group	average,	
,	as	opposed	to	the	overall	mean,	 .

The	goal	of	ANOVA	is	to	determine	if	these	differences	occur	by
chance	or	if	those	differences	are	significantly	large	enough	to
allow	us	to	infer	differences	in	population	means.		In	order	to	test



that,	we	must	first	develop	measures—	representing	the	three
sources	of	variation	found	in	columns	I,	II,	and	III,	respectively,	as
shown	in	Table	7.2	Squared	Deviations	within	and	across	Groups—
which	take	into	account	the	entire	sample.		

Consider	the	variation	between	the	values	of	Y	and	 .	Note	that
adding	the	deviations	in	Table	7.1	Deviations	within	and	across
Groups	is	useless	because	the	positives	and	negatives	cancel	out,
giving	a	total	deviation	of	zero	in	all	situations,	even	those	where
the	data	is	widely	dispersed.	To	eliminate	this	problem,	it	is
common	to	add	the	squared	deviations,	as	seen	in	Table	7.2
Squared	Deviations	within	and	across	Groups	to	get	to	the	Total-
Sums-of-Squares,	SST,

where	Yik	is	the	outcome	of	the	kth		observation	in	the	ith	group,	
is	the	overall	mean,	g	is	the	number	of	groups,	and	ng	is	the	number
of	observations	in	group	g.

The	total-sums-of-squares,	SST,	is	a	single	number	that	represents
the	overall	variability	in	our	outcome	variable.	(Note	that	SST	is
the	numerator	in	the	formula	for	variance	referenced	in	Chapter	2,
“Summarizing	Your	Data	with	Descriptive	Statistics.”)		For	our
data,	as	seen	in	Table	7.2	Squared	Deviations	within	and	across
Groups,	SST	=	(3-7)2	+	(4-7)2	+	(5-7)2	+	(9-7)2	+	(10-7)2	+
(11-7)2	=	58.	Note	that	this	is	the	sums	of	squares	value	in	column
I.
Table	7.2	Squared	Deviations	within	and	across	Groups



The	computational	formula	for	SST	is:

Applying	that	formula	to	our	example,	we	see	that	SST	=	352	–
(42)2/6	=	58.

The	second	source	of	variation	measures	how	the	observations	vary
within	each	group.	This	is	the	random	error	within	each	group	g,
that	is,	the	difference	between	Y	and	 ,	and	is	measured	by	the
Sums-of-Squares-Error,	SSE,

where	Yik	is	the	outcome	of	the	kth		observation	in	the	ith	group,	
		is	the	mean	of	group	i,		g	is	the	number	of	groups,	and	ng	is	the
number	of	observations	in	group	g.	The	sums-of	squares-error	is	a
single	number	that	represents	how	the	observations	vary	within
each	of	their	respective	groups.	For	our	example,	SSE	=	(3-4)2	+
(4-4)2	+	(5-4)2	+	(9-10)2	+	(10-10)2	+	(11-10)2	=	4.	Note	that
this	is	the	sums	of	squares	value	in	column	II.

The	computational	formula	for	SSE	utilizes	the	variances	and	can
be	used	instead:

where	ni	and	 		represent	the	sample	size	and	variances	for	each
of	the	i	groups,	respectively.	For	our	example,	the	sample	size	for
each	group	is	3,	the	variance	of	group	1	values	(3,	4,	and	5)	is	1,
and	the	variance	for	group	2	values	(9,	10,	and	11)	is	1.		So,	SSE	=
(3-1)(1)	+	(3-1)(1)	=	4

Finally,	the	third	source	of	variation	measures	how	the	group
means	vary	from	the	overall	mean	and	is	represented	by	the	Sums-
of-Squares	Among-Groups,	SSA.	It	is	defined	as	follows:



where	 			is	the	mean	of	group	i,		 	is	the	overall	mean,	g	is	the
number	of	groups,	and	ng	is	the	number	of	observations	in	group	g.

The	sums-of	squares-among-groups	is	a	single	number	that
represents	how	the	group	means	vary	from	the	overall	mean.		For
our	example,	SSA	=	(4-7)2	+	(4-7)2	+	(4-7)2	+	(10-7)2	+	(10-7)2

+	(10-7)2	=	54.	Note	that	this	is	the	sums	of	squares	value	in
column	III.

The	computational	formula	for

where	ni	is	the	sample	size	for	group	i.		For	our	example,		SSA	=

3(4-7)2+	3(10-7)2	=	54.

Note	that	if	all	of	the	group	means,	 ,	are	equal,	then	they	are
also	equal	to	the	overall	mean	and	SSA=0,	meaning	that	there	is
no	variation	in	the	group	means.	On	the	other	hand,	as	the	group
means	become	more	dispersed,	the	SSA	increases.		In	our	example,
the	overall	variation	in	Y	is	58,	where	54	of	that	is	derived	or
explained	by	group	mean	differences	and	4	is	a	result	of	random
error	within	each	group.	Here,	it	seems	that	the	group	means	vary
to	the	extent	that	93.1%	(100%	x	54/58)	of	the	overall	variation	is
attributed	to	the	variation	in	the	group	means.	Following	we	will
discuss	how	large	the	variation	in	means	must	be	before	making
inferences	to	the	population.

Let’s	now	consider	these	values	in	terms	of	variances.	Recall	in
Chapter	2,	“Summarizing	Your	Data	with	Descriptive	Statistics,”
that	the	variance	of	Y	is	described	as	an	average	squared	deviation,
or	the	sum-of-squared-deviations	divided	by	(n-1).	The	average
squared	deviation	is	equivalent	to	a	mean	square;	in	fact,	to
calculate	any	mean	square,	you	can	take	sum-of-squares	and	divide
by	degrees	of	freedom.	Therefore,	we	define	the	variance	across
group	means	(MSA)	and	the	variance	within	groups	(MSE)	as
follows:



where	g	=	the	number	of	groups	and	the	variance	within	each
group	and	nT	=	the	total	number	of	observations	in	the	study.
Generally,	you	expect	observations	in	one	group	to	have	similar
values,	thus	having	relatively	small	variance	(i.e.,	relatively	small
MSE);	however,	you	expect	observations	in	different	groups	to	be
dissimilar	and	exhibit	relatively	large	variance	(i.e.,	relatively	large
MSA.)	Therefore,	the	statistic	of	interest	in	measuring	group
differences	is	the	ratio	of	the	variance	across	groups	to	the	variance
within	groups,	which	is	MSA/MSE.	If	there	are	no	group
differences,	we	expect	the	MSA	to	reflect	only	random	variations
around	the	overall	means;	consequently,	MSA	and	MSE	are	equal	so
that	the	ratio	is	approximately	equal	to	1.0.	For	relatively	large
variations	in	group	means,	we	expect	the	ratio	to	be	greater	than
1.0.

For	our	hypothesis	test	for	mean	differences,	we	will	reject	the	null
when	the	test	statistic	(MSA/MSE)	is	significantly	greater	than	1.0
(i.e.,	significantly	large).	Our	benchmark	for	deciding	how	large	the
test	statistic	must	be,	while	minimizing	the	chance	of	making	a
Type	I	error,	relies	on	the	sampling	distribution,	as	introduced	in
Chapter	4,	“The	Normal	Distribution	and	Introduction	to	Inferential
Statistics.”

When	taking	repeated	random	samples	from	g	normal	populations,
the	ratio	of	MSA/MSE	is	calculated	for	each	sample	and,	in	total,
these	ratios	make	up	a	sampling	distribution.	This	sampling
distribution	is	referred	to	as	the	F-distribution	with	numerator
degrees	of	freedom	(g-1)	and	denominator	degrees	of	freedom	(nT	–
g),	and	is	displayed	in	Figure	7.1	The	F-Distribution.
Figure	7.1	The	F-Distribution



The	upper-tail	area	of	the	F-distribution	is	determined	by	the	level
of	significance	and	represents	the	proportion	of	times	the	analyst
would	make	a	Type	I	error	by	rejecting	when,	in	actuality,	the	null
hypothesis	is	true.		Consequently,	the	critical	F-value	that
determines	the	critical	region	can	be	found	using	an	F-table,	as
found	in	Appendix	F	F-Table.

The	analyst	would,	therefore,	conduct	an	analysis	of	variance	using
the	following	steps:				

1.						Determine	the	Critical	F-value	based	on	α	and	(g-1)	and	(nT	-
g)	degrees	of	freedom.	

2.						Using	sample	data,	calculate	the	F-test	statistic.

3.						Make	the	decision:		If	the	F-test	statistic	>	Critical	Value,
then	reject	Ho.;	otherwise,	if	the	F-test	statistic	<	Critical
Value,	then	do	not	reject	Ho	(or	using	the	p-value:	if	the	p-
value	associated	with	the	F-test	statistic	is	less	than	α,	then
reject	Ho).

4.						Interpret	the	results.

When	conducting	an	analysis	of	variance	procedure,	the	results	are
displayed	in	an	ANOVA	table	as	illustrated	in	Table	7.3	General
Form	of	the	Analysis	of	Variance	Table.
Table	7.3	General	Form	of	the	Analysis	of	Variance	Table

Source Degrees Mean



of
Variation

Sums	of
Squares

of
Freedom

Square
(Variance)

F-Test
Statistic

Among
Groups

SSA g-1 MSA MSA/MSE

Within
Groups

SSE nT	-	g MSE 	

Total SST nT	-	1 	 	

When	conducting	an	ANOVA,	there	are	certain	assumptions	that
must	hold	to	ensure	the	validity	of	the	results.	If	any	of	these
assumptions	are	violated,	the	analyst	is	susceptible	to	errors	when
making	inferences	about	the	population.		The	following	are
assumptions	of	analysis	of	variance:

	The	observations	must	be	randomly	selected	from
independent	populations.

	For	each	population,	the	residuals	are	normally	distributed.

	The	variances	of	the	outcome	variable	for	all	populations	are
equal.	

The	GLM	Procedure	for	Investigating	Mean	Differences
The	GLM	procedure	has	the	general	form:

PROC	GLM	DATA=	SAS-data-set	PLOTS=options;

CLASS	variables;

MODEL	dependents=independents	</options>;

MEANS	effects	</options>;

LSMEANS	effects	</options>;

OUTPUT	OUT=SASdataset	<keyword=variable…>;

RUN;

Consider	the	following	application	of	the	analysis	of	variance
(ANOVA)	procedure.	Suppose	an	analyst	in	the	college	of	business
for	a	fictitious	university	wants	to	identify	incoming	freshman
comfortable	with	information	technology	for	purposes	of	career
counseling.	In	short,	the	analyst	wants	to	show	that	computer
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anxiety	differs	across	various	groups	of	incoming	freshmen.	
First,	in	order	to	quantify	computer	anxiety,	suppose	the	analyst
develops	an	8-statement	5-point	Likert	survey	where	the	student	is
asked	to	select	one	of	the	following	five	responses	for	each
statement:	‘Strongly	Disagree,’	‘Disagree,’	‘Neutral,’	‘Agree,’	or
‘Strongly	Agree,’	having	values	of	1	to	5,	respectively.	Examples	of
statements	include	‘I	feel	very	uncomfortable	when	installing
software	on	my	laptop,’	or	‘I	feel	very	uncomfortable
troubleshooting	problems	on	my	laptop.’	Consequently,	if	a	student
answers	‘strongly	agree’	to	all	eight	statements,	each	statement
assigned	a	value	of	5,	then	that	student	would	have	a	total
computer	anxiety	score	of	40,	indicating	very	high	anxiety.	A
student	who	answers	‘strongly	disagree’	to	all	eight	statements,
each	statement	assigned	a	value	of	1,	would	have	a	total	computer
anxiety	score	of	8,	indicating	very	low	anxiety.

Suppose,	in	particular,	the	analyst	wants	to	show	that	the	computer
anxiety	score	(CAS)	is	associated	with	the	freshman’s	declared
academic	major—Management,	Information	Systems,	and
Economics;	therefore,	the	hypothesis	to	be	tested	is:

H0:	µ1	=	µ2	=	µ3						versus							H1:	not	all	µi’s	are	equal

where	1=Management	(MGT),	2=Information	Systems	(IS),	and
3=Economics	(ECON).	

The	analyst	randomly	selects	students	from	each	of	the	three
academic	majors,	administers	the	computer	anxiety	survey	and
records	the	scores.	As	illustrated	in	both	Chapter	2	“Summarizing
Your	Data	with	Descriptive	Statistics”	and	Chapter	3	,	“Data
Visualization,”	the	analyst	first	explores	the	data	to	get	an	overall
description	of	the	data,	including	a	preliminary	view	of	group
mean	differences	and	visuals	of	the	normality	and	equal	variance
assumptions,	as	well	as	outliers.	Program	7.1	Descriptive	Statistics
for	Computer	Anxiety	by	Academic	Major	provides	an	example	of
how	to	generate	the	descriptive	statistics:
Program	7.1	Descriptive	Statistics	for	Computer	Anxiety	by	Academic	Major

libname	cas	‘c:\sasba\data’;

data	one;

set	cas.cas;

run;



	

proc	format;

value	major

1=MGT	2=IS	3=ECON;

proc	sort	data=one;	by	major;

run;

	

proc	means	data=one	maxdec=4;	

format	major.;

var	cas;

class	major;

title	‘Descriptive	statistics	for	computer	anxiety	by	academic
major’;

run;

	

proc	sgplot	data=one;

vbox	cas	/	category=major;

format	major.;

title	‘Box	and	whisker	plots	for	computer	anxiety	by	academic
major’;

run;

	

The	descriptive	statistics	are	displayed	in	Output	7.1	Exploration
of		Computer	Anxiety	by	Academic	Major:
Output	7.1	Exploration	of	Computer	Anxiety	by	Academic	Major

Analysis	Variable	:	CAS

MAJOR
N
Obs N Mean Std	Dev Minimum Maximum

MGT 105 105 30.0095 6.1088 16.0000 40.0000

IS 60 60 22.7500 6.6067 8.0000 36.0000

ECON 75 75 24.4800 5.8963 11.0000 37.0000

	



From	the	output,	the	analyst	can	see	that	management	students
make	up	the	largest	group	having	the	highest	level	of	computer
anxiety,	with	a	sample	size	of	105,	an	average	computer	anxiety
score	of	30.01,	a	minimum	score	of	16,	and	a	maximum	score	of
40.		The	group	of	60	students	intending	to	major	in	information
systems	has	a	lower	anxiety	score	with	an	average	score	of	22.75,	a
minimum	score	of	8	and	a	maximum	score	of	36.		Those	students
declaring	economics	as	a	major	seem	to	have	similar	anxiety	levels
as	information	systems	students,	having	an	average	computer
anxiety	score	of	24.48,	minimum	score	of	11,	and	maximum	score
of	37.

From	the	box	plot,	the	analyst	can	see	that	there	are	no	outliers;
and	while	the	spreads	seem	to	be	similar	across	the	three	groups,
the	distributions	seem	to	be	slightly	skewed.	Visually,	it	seems	that
IS	and	ECON	students	have	very	similar	levels	of	anxiety	and
somewhat	lower	than	the	anxiety	scores	of	MGT	students.		In	order
to	infer	to	differences	in	the	population,	the	analyst	must	test	the
stated	hypothesis	using	Program	7.2	One-Way	ANOVA	for	Testing
Differences	in	Computer	Anxiety.
Program	7.2	One-Way	ANOVA	for	Testing	Differences	in	Computer	Anxiety

libname	cas	‘c:\sasba\data’;

data	one;



set	cas.cas;

run;

	

proc	format;

value	major

1=MGT	2=IS	3=ECON;

run;

	

proc	glm	data=one;

format	major.;

class	major;

model	cas=major;

title	‘One	Way	ANOVA	for	testing	differences	in	computer
anxiety	across	academic	majors’;

run;

In	Program	7.2	One-Way	ANOVA	for	Testing	Differences	in
Computer	Anxiety,	the	permanent	SAS	data	set,	called	CAS,	is
referenced	using	the	LIBNAME	statement	and	saved	in	the
temporary	data	set	called	ONE.		The	FORMAT	procedure	is	used	to
provide	labels	for	each	of	the	three	academic	majors.		The	GLM
procedure	is	applied	to	data	set,	ONE,	to	test	mean	differences
across	groups,	where	the	CLASS	statement	defines	the	categorical
grouping	variable,	MAJOR,	and	the	MODEL	statement	defines	the
numeric	variable,	CAS,	to	be	tested	as	a	function	of	MAJOR.	The
results	are	displayed	in	Output	7.2	One-Way	ANOVA	for	Testing
Differences	in	Computer	Anxiety:
Output	7.2	One-Way	ANOVA	for	Testing	Differences	in	Computer	Anxiety

Class	Level	Information

Class Levels Values

MAJOR 3 ECON	IS	MGT

	

Number	of	Observations
Read

240

Number	of	Observations
Used

240



	

The	GLM	Procedure

Dependent	Variable:	CAS

	

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

Model 2 2442.77286 1221.38643 32.06 <.0001

Error 237 9028.96048 38.09688 	 	

Corrected
Total

239 11471.73333 	 	 	

	
	

R-Square Coeff	Var Root	MSE CAS	Mean

0.212938 23.32091 6.172267 26.46667

	
	

Source DF Type	I	SS
Mean
Square F	Value Pr	>	F

MAJOR 2 2442.772857 1221.386429 32.06 <.0001

	
	

Source DF Type	III	SS
Mean
Square F	Value Pr	>	F

MAJOR 2 2442.772857 1221.386429 32.06 <.0001

The	output	first	includes	the	class	level	information	indicating	that
there	are	three	levels,	or	groups,	of	the	class	variable,	MAJOR,
having	values	ECON,	IS,	and	MGT,	respectively.	The	output	also
provides	both	the	number	of	observations	read	and	used,	namely
240.		Note	that	when	the	observations	read	equals	the	number	of



observations	used,	there	are	no	missing	values	on	any	of	the
variables	included	in	the	analysis.

Next	the	output	displays	the	results	of	the	analysis	in	the	form	of
the	ANOVA	table.	The	analyst	can	see	that	the	degrees	of	freedom
for	the	model	are	equal	to	2,	or	g-1	for	g=3	groups;	the	degrees	of
freedom	for	the	error	are	237,	or	nT	–	g	=	240	–	3,	for	a	total
sample	size	of	240.	Each	mean	square	is	obtained	by	taking	the
sums-of-squares	and	dividing	by	their	respective	degrees	of
freedom.	

Finally,	the	F-test	statistic	of	32.06	is	calculated	by	dividing	the
mean	square	model	(MSA)	by	the	mean	square	error	(MSE);	and
the	F-test	statistic	has	a	p-value	<	.0001.	Suppose	the	analyst	uses
0.05	level	of	significance.	Because	the	p-value,	0.0001,	is	less	than
the	alpha	of	0.05,	the	null	hypothesis	is	rejected.	In	conclusion,
based	upon	our	data,	there	is	evidence	in	the	population	that
computer	anxiety	(CAS)	differs	across	the	academic	majors.

Predicted	Values	and	Residuals	Using	the	OUTPUT
Statement
As	mentioned	earlier,	analysis	of	variance	is	a	way	to	determine
whether	or	not	there	is	a	relationship	between	a	categorical
predictor	variable	and	a	continuous	numeric	outcome	variable.	If	it
is	determined	that	there	is	a	significant	relationship,	the	categorical
variable	is	significant	in	predicting	the	numeric	outcome.	As	a
result,	you	can	obtain	the	predicted	values	and	residuals	for	each
observation.	The	residuals	are	the	errors	in	prediction;	that	is,	the
difference	between	the	actual	Y	and	the	predicted	Y.	For	each
observation	k,	the	residual	is	calculated	using	the	following
equation:

	

The	predicted	values	and	the	residuals	for	each	observation	can
be	obtained	using	Program	7.3	Predicted	Values	and	Residuals	for
Computer	Anxiety	Scores.
Program	7.3	Predicted	Values	and	Residuals	for	Computer	Anxiety	Scores

libname	cas	‘c:\sasba\data’;



data	one;

set	cas.cas;

run;

	

proc	format;

value	major

1=MGT	2=IS	3=ECON;

run;

	

proc	glm	data=one;

format	major.;

class	major;

model	cas=major;

output	out=pred	predicted=pred_cas

residual=res_cas;

run;

	

proc	print	data=pred;

var	student_id	major	cas	pred_cas	res_cas;

title	‘Predicted	Values	and	Residuals	for	Computer	Anxiety
Scores’;

run;

Note	that	the	OUTPUT	statement	is	added	to	the	GLM	procedure	to
create	a	file	(called	PRED)	which	contains	all	of	the	original	data	in
addition	to	the	predicted	values	of	the	computer	anxiety	score
(PRED_CAS)	and	the	residuals	(RES_CAS).	The	PRINT	procedure	is
used	to	display	the	contents	of	PRED	and	an	excerpt	is	displayed	in
Output	7.3	Predicted	Values	and	Residuals	for	Computer	Anxiety
Scores:
Output	7.3	Predicted	Values	and	Residuals	for	Computer	Anxiety	Scores

Obs STUDENT_ID MAJOR CAS pred_cas res_cas

1 1001 MGT 16 30.0095 -14.0095

2 1002 MGT 16 30.0095 -14.0095

3 1003 MGT 17 30.0095 -13.0095

4 1004 MGT 19 30.0095 -11.0095

	 … … … … …



106 1106 IS 8 22.7500 -14.7500

107 1107 IS 9 22.7500 -13.7500

	 … … … … …

239 1239 ECON 37 24.4800 12.5200

240 1240 ECON 37 24.4800 12.5200

Note	that	the	predicted	value	for	each	observation	is	the	mean	of
the	group	in	which	that	observation	belongs.	For	example,
observation	1	represents	a	student	who	has	declared	management
as	a	major	with	an	actual	computer	anxiety	score	of	16;	the
predicted	computer	anxiety	score	is	the	mean	anxiety	score	for	all
management	majors,	namely,	30.0095;	therefore,	the	residual	is	16
minus	30.0095,	or	-14.0095.

Measures	of	Fit
When	conducting	an	analysis	of	variance,	the	primary	goal	is	to
determine	whether	or	not	the	variation	in	the	data	can	be
attributed	to	the	factor	under	investigation.	Once	it	has	been
determined	that	a	factor	is	significant,	the	next	logical	question	to
ask	is	how	well	does	that	model	perform	in	terms	of	explaining	the
total	variation.

A	common	metric	for	assessing	performance	is	the	Coefficient	of
Determination	(R2)	and	is	defined	as	follows:

R2	is	an	index	that	measures	the	proportion	of	the	total	variability
in	the	data	that	can	be	explained	by	the	factor	of	interest.	When
there	is	no	error	in	the	model,	that	is,	when	knowing	an
observation’s	group	membership	allows	you	to	predict	the	outcome
variable	perfectly	(i.e.,	SSE=0),	you	are	explaining	all	of	the
variation	in	the	data	as	a	function	of	the	factor.	Consequently,
SSA=SST,	and	R2=1.	However,	when	you	are	explaining	no
variation	in	the	data	by	using	the	factor,	SSA=0,	and	as	a	result
R2=0.	In	short,	the	larger	the	value	of	R2,	the	more	variation	you
are	explaining	using	that	factor	in	the	model.

In	our	example,	from	Output	7.2	One-Way	ANOVA	for	Testing
Differences	in	Computer	Anxiety,	note	that	SSA=2442.77286	and



SST=11471.73333,	resulting	in	an	R2	value	equal	to	approximately
0.2129.	Subsequently,	we	are	explaining	21.3%	of	the	variation	in
computer	anxiety	(CAS)	by	using	academic	major	in	our	model.	
While	0.2129	may	not	seem	large,	in	some	areas	of	research,
relatively	small	values	of	R2	are	acceptable	in	the	absence	of	any
other	viable	factors.	So	the	performance	of	a	model	most	certainly
depends	upon	the	specific	situation	in	which	the	research	is	being
conducted.	In	fact,	because	academic	major	is	significant	in
explaining	CAS,	R2	is	considered	statistically	large.	Keep	in	mind
also	that	R2	provides	a	mechanism	for	comparing	various	models	in
terms	of	performance	and	will	be	illustrated	in	the	following
sections.							

Another	measure	of	fit	is	the	standard	error	of	the	prediction,
which	measures	the	average	distance	between	the	actual	response
value	(Y)	and	the	predicted	values	( ),	or	the	average	error.	The
standard	error	of	the	prediction	is	defined	as

In	Output	7.2	One-Way	ANOVA	for	Testing	Differences	in
Computer	Anxiety,	the	standard	error	is	referred	to	as	the	root
mean	square	error	(Root	MSE)	as	the	term	under	the	radical	is	the
mean-square-error	(MSE).		In	this	example,

	=	6.172267

In	other	words,	when	we	predict	computer	anxiety	scores	using
academic	major,	on	average,	the	predicted	score	will	be	6.2	units
from	the	actual	score.	

Note	that	as	our	predictor	improves,	our	error	in	prediction	will
decrease,	and	consequently	our	standard	error	will	decrease.		In
fact,	if	our	predictor	is	perfect,	our	predicted	values	will	be
identical	to	our	actual	values,	and	the	standard	error	will	be	zero.
As	our	prediction	worsens,	the	standard	error	increases.	

Now,	like	R-squared,	it	is	a	judgment	as	to	whether	the	standard
error	is	small	enough.	If	there	are	significant	differences	in	our
group	means,	then	our	standard	error	is	considered	significantly
small.	Furthermore,	the	standard	error	can	be	used	to	compare	the



performance	of	linear	models	as	we	will	soon	see	when	we
introduce	additional	factors,	or	predictors.

The	Normality	Assumption	and	the	PLOTS	Option
As	stated	previously,	certain	assumptions	must	hold	in	order	for	the
results	of	the	ANOVA	to	be	valid.	The	assumptions	are	that	the
observations	are	randomly	selected	from	independent	populations
where	the	residuals	are	normally	distributed	and	the	variances	of
the	outcome	variable	are	equal	across	those	populations.

The	first	assumption	dealing	with	the	random	selection	of
observations	has	more	to	do	with	how	the	study	was	designed.		The
analyst	can	easily	assess	whether	or	not	some	type	of
randomization	process	has	been	incorporated	into	the	study.	In
terms	of	independence,	the	analyst	must	be	confident	that	the
occurrence	of	numeric	values	for	one	population	does	not	affect	the
probability	of	occurrence	for	numeric	values	in	the	other
populations.	

Consider	now	the	normality	assumption.	In	order	to	assess	the
normality	of	the	errors,	the	analyst	can	produce	diagnostic	plots	by
adding	the	PLOTS	option	to	the	GLM	procedure	as	follows:

proc	glm	data=one	plots=diagnostics;

In	the	diagnostics	panel,	as	displayed	in	Output	7.4	Fit	Diagnostics
for	the	One-Way	Analysis	of	Variance,	there	are	two	plots	of
interest;	the	normal	quantile	plot	and	the	histogram	of	residuals.	If
data	originates	from	a	population	that	is	normal,	the	points	for
each	observation	would	fall	directly	on	the	reference	line.	A	visual
inspection	of	the	normal	quantile	plot	illustrates	that	the	points	are
relatively	close	to	the	reference	line,	so	the	assumption	of
normality	is	reasonable.	Further	inspection	of	the	histogram
illustrates	that	the	errors	are	normally	distributed.	The	analyst
could	also	conduct	a	Kolmogorov-Smirnov	test,	as	illustrated	in
Chapter	6,	“Two-Sample	t-Test,”	in	order	to	obtain	a	p-value	for
testing	the	normality	of	the	residuals.
Output	7.4	Fit	Diagnostics	for	the	One-Way	Analysis	of	Variance



Levene’s	Test	for	Equal	Variances	and	the	MEANS
Statement
The	last	assumption	of	ANOVA	requires	that	the	variances	of	the
outcome	variable	must	be	equal	for	all	populations.		For	g	groups,
the	hypothesis	of	interest	has	the	general	form:

H0:	σ1	=	σ	2		=	…	=	σg							versus									H1:	not	all	σi’s	are	equal

and	can	be	tested	using	Levene’s	test	for	equal	variances
(Levene,	1960).	Before	conducting	the	test,	the	analyst	must
determine	the	median	of	the	outcome	variable	for	each	of	the	g
groups	and	compute	the	difference	between	the	outcome	variable
and	the	group	median	for	each	observation.		The	ANOVA
procedure	is	then	conducted	using	the	absolute	value	of	the



differences.
Suppose	for	the	computer	anxiety	example,	using	0.05	level	of
significance,	the	analyst	wants	to	test	the	hypothesis	that	the
variances	of	the	anxiety	scores	are	equal	for	all	three	academic
majors:

H0:	σ1	=	σ	2	=	σ3							versus									H1:	not	all	σi’s	are	equal

The	analyst	would	include	the	MEANS	statement	and	the
HOVTEST=LEVENE	option	within	the	GLM	procedure	as
illustrated	in	Program	7.4	The	MEANS	Statement	for	Additional
Tests	of	Computer	Anxiety	Scores.

	

Program	7.4	The	MEANS	Statement	for	Additional	Tests	of	Computer	Anxiety	Scores

libname	cas	‘c:\sasba\data’;

data	one;

set	cas.cas;

run;

	

proc	format;

value	major

1=MGT	2=IS	3=ECON;

run;

	

proc	glm	data=one;

format	major	major.;

class	major;

model	cas=major;

means	major/tukey	hovtest=levene;

title	‘One	Way	ANOVA	for	testing	differences	in	computer
anxiety	across	academic	majors’;

run;

	

The	partial	output	is	displayed	in	Output	7.5	Levene’s	Homogeneity
of	Variance	Test	for	Computer	Anxiety	Scores.		Note	that	the	p-
value	of	0.5454	is	greater	than	0.05;	therefore,	the	null	hypothesis
is	not	rejected.		In	conclusion,	there	is	no	evidence	that	the	equal
variance	assumption	is	violated.		Consequently,	the	ANOVA	results



can	be	used	to	test	mean	differences	in	computer	anxiety	scores.
	
Output	7.5	Levene’s	Homogeneity	of	Variance	Test	for	Computer	Anxiety	Scores

Levene’s	Test	for	Homogeneity	of	CAS	Variance
ANOVA	of	Squared	Deviations	from	Group	Means

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

MAJOR 2 2556.6 1278.3 0.61 0.5454

Error 237 498396 2102.9 	 	

It	should	be	noted	that	the	HOVTEST	option	is	available	only	when
there	is	one	grouping	variable	(i.e.,	MAJOR).			When	there	is	more
than	one	grouping	variable,	as	discussed	later	in	this	chapter,	the
analyst	can	use	the	plot	of	the	residuals	by	the	predicted	values	to
inspect	the	variance	across	the	groups.	That	plot	can	be	found	in
the	upper	left	corner	of	Output	7.4	Fit	Diagnostics	for	the	One-Way
Analysis	of	Variance;	here	it	seems	that	the	spread	of	the	residuals
is	constant	across	the	three	groups,	supporting	the	equal	variance
assumption.

When	the	sample	sizes	for	the	groups	are	all	equal,	the	effects	of
violating	the	equal	variance	assumption	are	minimal	and	the
analyst	can	use	the	ANOVA	results	to	making	conclusions	about	the
means.	However,	when	the	equal	variance	assumption	is	violated
and	the	group	sample	sizes	are	unequal,	the	ANOVA	results	are	not
valid.	In	this	case,	the	analyst	can	transform	the	data	and	use	the
transformed	data	to	carry	out	the	ANOVA	procedures.	Finally,	if
data	transformation	does	not	remedy	the	problem,	the	analyst	can
instead	use	nonparametric	procedures	(Conover,	2000).

Post	Hoc	Tests:		The	Tukey-Kramer	Procedure	and	the
MEANS	Statement
When	an	ANOVA	is	conducted	and	the	null	hypothesis	is	rejected,
the	analyst	has	evidence	only	of	mean	differences;	however,	there
is	no	information	about	which	pairs	of	means	are	not	equal.
Consequently,	post	hoc	tests	must	be		conducted	to	determine
where	the	differences	exist.	

When	the	analyst	conducts	a	single	hypothesis	test,	he	or	she	sets	a



level	of	significance	(α)	that	represents	the	maximum	risk	he	or	she
is	willing	to	take	when	rejecting	the	null	hypothesis.	This	error	rate
is	referred	to	as	a	comparison-wise	error	rate.		As	the	number	of
comparisons	increases,	as	is	the	case	with	comparing	pairwise
means,	the	chance	of	rejecting	the	null	for	at	least	one	of	the
comparisons	increases,	even	if	no	real	differences	exist.	In	fact,	for
C	comparisons	which	make	up	an	entire	system	of	hypothesis	tests,
the	probability	of	making	a	Type	I	error	is	αe	=	1	–	C(1-α)		and	is
referred	to	as	the	experiment-wise	error	rate.	Hence,	for	the
computer	anxiety	example,	if	we	were	to	compare	all	pairwise
means	as	three	single	tests	with	an	alpha	of	0.05,	that	experiment-
wise	error	rate	would	be	1	–	3(1-0.05)	=	0.1426,	clearly	more	than
the	desired	0.05	level.
To	ensure	that	the	error	rate	for	the	entire	system	of	tests	remains
at	a	constant	level	of	significance	(α),	the	analyst	must	use
approaches	that	control	the	experiment-wise	error	rate.	There	are
many	options	available	in	SAS	for	conducting	multiple	comparisons
which	control	for	this	error	rate.	Here	we	will	illustrate	the	Tukey-
Kramer	procedure,	also	referred	to	as	Tukey’s	Honest	Significant
Difference	(HSD),	followed	by	a	review	of	the	SAS	output.		The	set
of	hypotheses	to	be	tested	has	the	form:

H0:	μi	=	μi՛								for	i=1,2,…g		for	i≠i՛

H1:	μi	≠	μi՛

When	investigating	g	groups,	there	are	g(g-1)/2	possible	pairwise
comparisons;	therefore,	for	the	computer	anxiety	example	with
three	academic	majors,	there	are	3(3-1)/2	=	3	pairwise
comparisons.	The	three	pairs	of	means	to	be	compared	can	be
tested	using	the	following	hypotheses:

H0:	μ1	=	μ2				versus				H1:	μ1	≠	μ2							(MGT	vs	IS)

H0:	μ1	=	μ3				versus				H1:	μ1	≠	μ3						(MGT	vs	ECON)

H0:	μ2	=	μ3				versus				H1:	μ2	≠	μ3						(IS	vs	ECON)

In	order	to	test	differences	among	pairs	of	population	means,	the
analyst	must	first	compute	the	differences	in	the	sample	means.
These	are	the	observed,	or	actual,	mean	differences.	For	each
hypothesis	set,	observed	mean	differences	have	the	general	form:



							for	i	=	1,	2,	…,	g				and	i	≠	i՛

For	the	computer	anxiety	example,	having	three	sets	of	hypotheses
requires	computing	three	observed	mean	differences:

		=	 		=	7.2595

		=	 		=	5.5295

		=	 		=	1.7300

where	1	=	MGT,	2	=	IS,	and	3	=	ECON.		When	comparing	IS
majors	to	ECON	majors,	the	average	computer	anxiety	scores	differ
by	1.73,	whereas	the	differences	in	computer	anxiety	scores	are
relatively	large	when	comparing	MGT	majors	to	IS	majors	(7.2595)
and	MGT	majors	to	ECON	majors	(5.5295).	

In	order	to	make	inferences	to	the	population,	the	analyst	must
determine	if	the	actual	mean	differences	are	sufficiently	large;
therefore	the	next	step	is	to	calculate	a	critical	mean	difference.
This	critical	mean	difference,	referred	to	as	the	critical	range,	is
calculated	using:

where	Q	=	upper	tail	critical	value	from	a	studentized	distribution
with	g	and	nT	-	g	degrees	of	freedom	for	level	of	significance	equal
to	α.	MSE	is	the	mean-square-error	within	the	groups	from	the
analysis	of	variance	table,	with	ni	and	ni՛	representing	the	sample
sizes	associated	with	the	pair	of	means	being	compared	from
groups	i	and	i’,	respectively.	The	Q-value	is	provided	in	the	SAS
output	or	can	be	found	using	any	standard	Q-table.	

To	test	the	hypotheses,	the	rejection	rule	is:		If	the	observed	mean
difference	is	greater	than	the	critical	range,	then	reject	Ho.			In
short,

if		 >			CR,			then	reject	Ho		for	i=1,2,
…g		and	i	≠	i’

When	determining	the	critical	range,	note	that	there	are	two



numbers	that	remain	the	same	for	each	comparison.	The	first	is	the
Mean-Square-Error	from	the	ANOVA	table	in	Output	7.2	One-Way
ANOVA	for	Testing	Differences	in	Computer	Anxiety;	that	value	is
38.09688.	The	second	is	the	value	of	Q	with	3	and	237	degrees	of
freedom.	At	0.05	level	of	significance,	the	Q	value	is	3.34	as	found
in	Output	7.6	Tukey-Kramer	for	Testing	Pairwise	Differences	in
Computer	Anxiety.

Using	the	value	of	MSE	and	Q,	the	critical	ranges	are	calculated	for
each	hypothesis	as	follows:

For	comparing	computer	anxiety	scores	for	1=MGT	majors	and
2=IS	majors,	with	n1	=	105	and	n2	=	60,	the	hypothesis	to	be
tested	is		H0:	μ1	=	μ2				versus			H1:	μ1	≠	μ2.	The	critical	range	is

For	comparing	computer	anxiety	scores	for	1=MGT	majors	and
3=ECON	majors,	with	n1	=	105	and	n3	=	75,	the	hypothesis	to	be
tested	is		H0:	μ1	=	μ3				versus			H1:	μ1	≠	μ3.	The	critical	range	is

For	comparing	computer	anxiety	scores	for	2=IS	major	and
3=ECON	majors,	with	n2	=	60	and	n3	=	75,	the	hypothesis	to	be
tested	is		H0:	μ2	=	μ3				versus			H1:	μ2	≠	μ3.	The	critical	range	is

The	critical	range	for	comparing	MGT	and	IS	majors,	for	example,
indicates	that	the	observed	mean	difference	in	anxiety	must	be
larger	than	2.359	points	in	order	to	reject	the	null	and	control	for
0.05	level	of	significance.

	For	comparing	computer	anxiety	scores	for	1=MGT	and
2=IS	majors,	H0:	μ1	=	μ2				versus			H1:	μ1	≠	μ2,	
the	observed	mean	difference	of	7.2595	>	CR=2.359;
therefore	the	null	hypothesis	is	rejected.

	For	comparing	computer	anxiety	scores	for	1=MGT	and
3=ECON	majors,	H0:	μ1	=	μ3				versus			H1:	μ1	≠	μ3,	

●					

●					



the	observed	mean	difference	of	5.5295	>	CR=2.204;
therefore	the	null	hypothesis	is	rejected.

	For	comparing	computer	anxiety	scores	for	2=IS	and
3=ECON	majors,	H0:	μ2	=	μ3				versus			H1:	μ2	≠	μ3,	the
observed	mean	difference	of	1.7300		<		CR=2.525;	therefore
the	null	hypothesis	is	not	rejected.

In	conclusion,	the	overall	ANOVA	test	indicates	evidence	of	mean
differences.	Using	the	Tukey-Kramer	procedure,	there	is	sufficient
evidence	to	support	specifically	that	the	computer	anxiety	scores
differ	when	comparing	MGT	and	IS	majors	and	MGT	and	ECON
majors,	respectively.	There	is	no	evidence	to	support	a	difference	in
computer	anxiety	between	IS	and	ECON	majors.

When	calculating	critical	range,	note	that	the	formula	allows	for
comparing	groups	with	differing	sample	sizes,	resulting	in	different
critical	ranges	for	different	pairwise	comparisons.	Note	also	that
when	the	group	sample	sizes	are	all	equal,	there	is	only	one	critical
range	for	the	entire	set	of	comparisons.

To	generate	output	for	the	Tukey-Kramer	procedure,	consider
Program	7.4	The	MEANS	Statement	for	Additional	Tests	of
Computer	Anxiety	Scores.	Note	specifically	that	the	MEANS
statement	includes	the	TUKEY	option.	The	partial	output	is
displayed	in	Output	7.6	Tukey-Kramer	for	Testing	Pairwise
Differences	in	Computer	Anxiety:
Output	7.6	Tukey-Kramer	for	Testing	Pairwise	Differences	in	Computer	Anxiety

Note: This	test	controls	the	Type	I	experiment	wise	error	rate.

	

Alpha 0.05

Error	Degrees	of	Freedom 237

Error	Mean	Square 38.09688

Critical	Value	of	Studentized
Range

3.33547

	

Comparisons	significant	at	the	0.05	level	are

●					



indicated	by	***.

MAJOR
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Limits 	

MGT		-	ECON 5.5295 3.3286 7.7304 ***

MGT		-	IS 7.2595 4.9036 9.6154 ***

ECON	-	MGT -5.5295 -7.7304 -3.3286 ***

ECON	-	IS 1.7300 -0.7914 4.2514 	

IS			-	MGT -7.2595 -9.6154 -4.9036 ***

IS			-	ECON -1.7300 -4.2514 0.7914 	

In	the	output,	note	the	studentized	Q	value	3.33547	for	0.05	level
of	significance,	along	with	the	Mean-Square-Error	of	38.09688,
used	to	calculate	the	critical	range.	If	the	sample	sizes	had	been	the
same	for	all	academic	majors,	the	output	would	also	have	included
the	value	of	the	critical	range.	

Note	also	that	the	output	provides	duplicate	information	for	the
three	multiple	comparisons	twice	(taking	into	account	the	reversal
in	the	order	of	comparison).	For	example,	the	difference	in	average
computer	anxiety	scores	for	MGT	and	ECON	majors	is	+5.5295
indicating	that	MGT	has	the	higher	computer	anxiety	score;	on	the
other	hand,	the	difference	in	average	computer	anxiety	scores	for
ECON	and	MGT	majors	is	-5.5295	indicating	that	ECON	has	the
lower	computer	anxiety	score.

To	detect	differences	in	average	computer	anxiety	scores,	the	three
asterisks	(***)	indicate	those	differences	that	are	significant	at	the
stated	level	of	significance	(0.05).	For	example,	MGT	and	ECON,
along	with	MGT	and	IS,	have	significant	mean	differences	as
indicated	by	***.	For	the	IS	and	ECON	comparison,	there	are	no
asterisks	indicating	that	there	are	no	mean	differences	when
comparing	those	two	groups	of	majors.	These	results	are	identical
to	the	conclusions	made	using	the	calculations	previously
illustrated.	

Other	Post	Hoc	Procedures,	the	LSMEANS	Statement,
and	the	Diffogram
The	analysis	discussed	in	the	previous	section	concentrates	on	the



actual	mean	differences	and	the	threshold	difference,	or	critical
range,	needed	in	order	to	reject	the	null	hypothesis.	The	analyst
can	request	other	types	of	output	in	order	to	address	multiple
comparisons	by	including	options	after	a	slash	(/)	in	the	LSMEANS
statement	within	the	GLM	procedure.	
For	example,	the	PDIFF=	option	requests	p-values	for	each	of	the
paired	comparisons.	The	ADJUST=	option	defines	the	adjustment
method	used	for	the	multiple	comparison	procedure.	In	order	to
generate	all	p-values	using	Tukey’s	method	of	adjustment,	you
would	include	the	following	LSMEANS	statement	in	place	of	the
MEANS	statement	within	PROC	GLM,	resulting	in	Output	7.7
LSMEANS	Statement	for	Testing	Pairwise	Differences	in	Computer
Anxiety.

lsmeans	major/pdiff=all	adjust=tukey;

Output	7.7	LSMEANS	Statement	for	Testing	Pairwise	Differences	in	Computer
Anxiety

MAJOR CAS	LSMEAN
LSMEAN
Number

ECON 24.4800000 1

IS 22.7500000 2

MGT 30.0095238 3

	
	

Least	Squares	Means	for	effect	MAJOR
Pr	>	|t|	for	H0:	LSMean(i)=LSMean(j)

Dependent	Variable:	CAS

i/j 1 2 3

1 	 0.2399 <.0001

2 0.2399 	 <.0001

3 <.0001 <.0001 	

	



	

First	note	the	table	of	p-values	for	testing	all	pairwise	comparisons.
There	are	no	significant	differences	when	comparing	ECON	and	IS
majors	(having	LSMEAN	number	equal	to	1	and	2,	respectively)	as
indicated	by	a	p-value	of	0.2399.	However,	there	are	significant



differences	when	comparing	groups	having	LSMEAN	number	1	and
3	(ECON	vs	MGT)	and	groups	having	LSMEAN	number	2	and	3	(IS
vs	MGT),	both	with	p-values	<.0001.	These	differences	are
displayed	in	the	LSMEAN	plot.

The	diffogram	provides	a	graphical	approach	to	conducting
pairwise	comparisons.	Each	downward	sloping	segment	represents
each	pairwise	comparison,	where	the	midpoint	is	the	ordered	pair
for	the	sample	means	of	the	two	groups	being	compared,	and	the
length	of	the	segment	represents	the	confidence	interval	of	the
mean	differences.	For	example,	the	segment	in	the	lower-left
quadrant	has	coordinates	(22.75,	24.48)	representing	the	group
means	for	IS	and	ECON	majors,	respectively.	

The	dotted	diagonal	line	increases	at	a	45-degree	angle,	indicating
the	points	where	the	X	and	Y	coordinates	are	equal,	that	is,	where
the	pairs	of	sample	means	are	equal.	In	short,	the	diagonal	line
represents	the	conditions	where	there	are	no	mean	differences.	If
the	segment	for	a	paired	difference	crosses	the	dotted	line,	this
indicates	that	the	confidence	interval	includes	zero,	and,	as	a	result,
the	mean	differences	are	statistically	nonsignificant.	On	the	other
hand,	when	the	segment	does	not	cross	the	dotted	line,	you	can
conclude	that	there	are	significant	mean	differences.

In	our	example,	the	segment	illustrating	the	comparison	IS	and
ECON	majors	crosses	the	dotted	line;	therefore,	we	conclude	that
there	are	no	significant	differences	when	comparing	those	two
groups.	The	two	remaining	segments	do	not	cross	the	dotted	line;
therefore,	we	conclude	that	there	are	significant	differences	when
comparing	both	ECON	and	MGT	majors	and	IS	and	MGT	majors,
respectively.

If	the	ADJUST=	option	is	not	specified,	the	Tukey	method	will	be
used	by	default,	whereas	the	ADJUST=T	option	requests	that	no
adjustments	be	made.	Other	methods	include	the	Bonferroni
(ADJUST=BON),	Nelson	(ADJUST=NELSON),	Scheffe
(ADJUST=SCHEFFE),	and	Sidak	(ADJUST=SIDAK)	adjustments,
to	name	a	few.

If	the	analyst	is	interested	in	comparing	experimental	groups	to	a
control	group,	then	the	Dunnett’s	method	of	adjustment	is
recommended	and	the	LSMEANS	statement	would	have	the
following	general	form:



lsmeans	/	pdiff=control(‘control	level’)
adjust=dunnett;

To	illustrate	this	type	of	comparison,	let’s	consider	our	computer
anxiety	example	and	assume	that	the	MGT	major	is	defined	as	the
control	group.	We	would	use	the	following	LSMEANS	statement
within	PROC	GLM:

lsmeans	major/pdiff=control(‘MGT’)	adjust=dunnett;

to	get	the	following	partial	Output	7.8	Dunnett	Adjustment	for
Testing	Pairwise	Differences	in	Computer	Anxiety.
Output	7.8	Dunnett	Adjustment	for	Testing	Pairwise	Differences	in	Computer
Anxiety

MAJOR CAS	LSMEAN

H0:LSMean=Control

Pr	>	|t|

ECON 24.4800000 <.0001

IS 22.7500000 <.0001

MGT 30.0095238 	

	

When	reviewing	the	output	for	the	Dunnett	adjustment,	note	first
that	the	control	group	is	that	group	which	has	no	reported	p-value,
namely	the	MGT	major.	Next,	inspect	the	p-values	using	0.05	level



of	significance.	Note	that	the	p-value	for	testing	differences	in	mean
computer	anxiety	score	between	both	ECON	and	MGT	majors	and
IS	and	MGT	majors	is	<	.0001.	That	value	is	less	than	0.05.
Therefore,	we	reject	the	null.

The	LSMEANS	statement	also	provides	a	visual	analysis	of	the
means.	When	reviewing	the	chart,	note	that	the	horizontal	line
corresponds	to	the	mean	computer	anxiety	score	for	the	control
group,	30.01	for	MGT	majors,	along	with	the	shaded	confidence
limits.	Each	bold	vertical	line	represents	the	difference	between	the
control	group	and	each	of	the	remaining	groups,	namely	ECON	and
IS,	respectively.	Because	the	segments	for	both	ECON	and	IS	extend
beyond	the	confidence	limit,	there	is	evidence	of	mean	differences
when	comparing	each	of	the	groups	to	the	control	group,	MGT
majors.

In	this	section,	we	discussed	many	issues	that	must	be	considered
in	conducting	a	one-factor	analysis	of	variance.	When	you
aggregate	all	SAS	procedures,	statements,	and	options	discussed,
the	entire	code	is	in	Program	7.5	Complete	Analysis	of	Difference
in	Computer	Anxiety	Scores	Across	Academic	Majors.
Program	7.5	Complete	Analysis	of	Difference	in	Computer	Anxiety	Scores	Across
Academic	Majors

libname	cas	‘c:\sasba\data’;

data	one;

set	cas.cas;

run;

	

proc	format;

value	major

1=MGT	2=IS	3=ECON;

run;

	

proc	glm	data=one	plots=diagnostics;

format	major	major.;

class	major;

model	cas=major;

output	out=pred	predicted=pred_cas

residual=res_cas;



means	major/tukey	hovtest=levene;

lsmeans	major/pdiff=all	adjust=tukey;

lsmeans	major/pdiff=control(‘MGT’)	adjust=dunnett;

title	‘One	Way	ANOVA	for	testing	differences	in	computer
anxiety	across	academic	majors’;

run;

	

proc	print	data=pred;

var	student_id	major	cas	pred_cas	res_cas;

title	‘Predicted	Values	and	Residuals	for	Computer	Anxiety
Scores’;

run;

The	Randomized	Block	Design
As	you	may	well	know,	when	considering	variations	in	any
measure,	there	are	potentially	many	factors,	or	predictors,
involved.	While	a	one-factor	analysis	of	variance	may	indicate	that
differences	exist	as	a	function	of	the	factor	under	investigation,
other	sources	of	variation	are	unaccounted	for	and	are	erroneously
considered	random	variation.	For	example,	you	would	expect,	as
we	saw	in	the	one-factor	ANOVA	example,	that	the	computer
anxiety	scores	differ	when	comparing	academic	majors;	but	there
are	other	factors	or	variables	that	should	be	taken	into	account	as
well.	

Consider	a	general	measure	of	college	preparedness	in	the	area	of
mathematics,	namely	the	ACT	quantitative	score.	It	makes	sense
that	those	who	score	relative	high	on	the	ACT	test	have	had
relatively	more	exposure	to	the	mathematical	sciences,	thus
exhibiting	less	anxiety	towards	computers,	regardless	of	academic
major.	In	fact,	those	declaring	economics	as	a	major	may	have
lower	anxiety	strictly	because	they	have	had	more	math	classes	and
not	necessarily	because	they	have	chosen	to	major	in	the	economics
field.	In	this	case,	the	relationship	between	computer	anxiety	scores
and	academic	major	may	be	interfered	with	or	confounded	by	ACT
quantitative	scores;	that	is,	ACT	quantitative	scores	may	be	related
to	both	computer	anxiety	and	academic	major	so	that	the
relationship	between	computer	anxiety	and	academic	major	is	not
clear.



While	you	may	not	be	particularly	interested	in	the	differences	in
computer	anxiety	as	a	function	of	math	preparedness,	you	certainly
want	to	take	into	account	the	possibility	that	the	variation	does
exist.	Factors	that	affect	the	dependent	variable	but	are	not	of
interest	to	the	researcher	are	called	nuisance	factors.	

When	a	researcher	wants	to	take	into	account	variations	attributed
to	nuisance,	or	confounding,	factors,	the	analyst	may	utilize	a
research	design,	referred	to	as	a	Randomized	Block	Design.	The
idea	is	to	arrange	the	observations	into	homogenous	groups,	or
blocks,	where	there	is	little	or	no	variation	in	the	nuisance	factor
but	where	the	factor	under	investigation	is	allowed	to	vary.	In	this
type	of	design,	once	the	blocks	are	created,	the	observations	are
randomly	assigned	to	the	treatment	groups	under	investigation.

The	ANOVA	Model	for	the	Randomized	Block	Design
The	Randomized	Block	Design	is	represented	by	the	linear	model

Yijk	=	µ	+	τi+	βj+	εijk
where	Yijk	is	the	value	of	the	outcome	variable	for	observation	k	in
group	i	and	block	j	,	µ	is	the	overall	mean	for	the	outcome	variable,
τi	is	the	treatment	effect	for	each	observation	in	group	i,	βj	is	the
effect	of	belonging	to	block	j,	and	εijk	is	the	error	in	prediction	for
observation	k	in	group	i	and	block	j.		

In	essence,	the	variability	in	the	outcome	variable	as	a	function	of
the	blocking	variable	is	estimated	and,	therefore,	is	partitioned
from	the	random	error.	Consequently,	this	produces	better
estimates	of	the	treatment	effects.	Note	also	that	if	the	block	effect
is	zero,	then	the	model	reduces	to	a	one-factor	analysis	of
variance.		

The	general	form	of	the	GLM	procedure	is:

PROC	GLM	DATA=	SAS-data-set	PLOTS=options;

CLASS	variables;

MODEL	dependents=independents	</options>;

MEANS	effects	</options>;

LSMEANS	effects	</options>;



OUTPUT	OUT=SASdataset	<keyword=variable…>;

RUN;

Note	that	the	general	syntax	for	conducting	a	randomized	block
design	is	the	same	as	that	for	the	one-factor	analysis	of	variance.
However,	it	is	repeated	here	to	illustrate	that	the	blocking	variable
should	be	listed	in	the	CLASS	statement	as	a	variable	and	in	the
MODEL	statement	as	an	independent	effect.

Example	and	Interpretation	of	the	Randomized	Block
Design
In	our	example,	we	created	blocks	of	students	that	are	similar	on
mathematics	college	preparedness	but	vary	on	declared	academic
major.		Specifically,	we	created	groups	based	upon	ACT
quantitative	scores	consistent	with	rules	that	determine	college
placement	into	either	algebra,	pre-calculus,	and	calculus	courses,
respectively.	Those	students	scoring	less	than	20	were	assigned	to
block	0,	corresponding	to	algebra	placement;	those	scoring	from	20
to	24	were	assigned	to	block	1,	corresponding	to	pre-calculus
placement;	those	scoring	more	than	24	were	assigned	to	block	2,
corresponding	to	calculus	placement.	

In	our	study,	we	are	interested	in	answering	two	questions:		First,
should	we	be	blocking	in	the	first	place?	In	other	words,	are	we
correct	in	assuming	that	the	computer	anxiety	score	(CAS)	differs
across	the	three	blocks	as	defined	by	ACT	scores?	Second,	if	our
decision	to	block	is	correct	and	we	are	able	to	separate	the	effects
of	ACT	and	MAJOR	on	CAS,	does	CAS	differ	across	academic
majors?		In	other	words,	when	we	take	into	account	ACT	scores,	or
blocks,	can	we	still	attribute	differences	in	computer	anxiety	scores
to	a	student’s	declared	academic	major?

Before	addressing	those	questions,	the	analyst	must	conduct
exploratory	analyses	using	Program	7.6	Exploration	of	Computer
Anxiety	by	Academic	Major	and	Block.
Program	7.6		Exploration	of	Computer	Anxiety	by	Academic	Major	and	Block

libname	cas	‘c:\sasba\data’;

data	one;

set	cas.cas;

run;



	

proc	format;

value	major

1=MGT	2=IS	3=ECON;

value	act

0=Algebra	Placement	1=Precalculus	Placement	2=Calculus
Placement;

run;

	

proc	means	data=one	mean	var	std	nway;

format	major	major.	block	act.;

class	major	block;

var	cas;

title	‘Descriptive	Statistics	for	computer	anxiety	across
academic	majors	and	ACT	blocks’;

run;

	

proc	sgplot	data=one;

vline	major	/group=block	stat=mean	response=cas	markers;

format	major	major.	block	act.;

run;

	

Notice	that	in	the	PROC	MEANS	statement,	the	statistics	of	interest
are	the	mean,	variance,	and	standard	deviation.		Notice	also	that
the	NWAY	option	is	included	which	specifies	that	the	statistics
should	be	reported	for	the	combinations	of	groups	defined	in	the
CLASS	statement,	namely	MAJOR	and	BLOCK.	The	VAR	statement
indicates	that	the	statistics	will	be	generated	for	the	variable	CAS,
Computer	Anxiety	Score.	

These	statements,	in	essence,	request	that	SAS	produce	the	mean,
standard	deviation,	and	variance	for	the	variable	CAS	for	the
combinations	of	nine	groups	(each	of	the	three	academic	majors
crossed	with	each	of	the	three	blocks	as	defined	by	the	quantitative
ACT	scores).	Upon	inspection	of	Output	7.9	Exploration	of
Computer	Anxiety	by	Academic	Major	and	Block,	note,	for
example,	that	there	are	28	students	who	have	declared	MGT	as
their	major	placed	in	algebra,	averaging	32.39	on	CAS	with
variance	45.51	and	standard	deviation	6.75.



Initially,	the	numbers	in	the	table	are	quite	cumbersome,	and
interpretation,	while	possible,	takes	some	in-depth	review.		In	this
case,	a	visual	plot	of	cell	means	is	very	helpful	to	facilitate
inspection.	In	PROC	SGPLOT,	the	VLINE	statement	basically
requests	the	plot	on	the	vertical	axis	of	the	response	variable
(RESPONSE=CAS)	across	all	BLOCKS,	as	defined	on	the	horizontal
axis,	for	each	of	the	GROUPS,	as	defined	by	the	variable	MAJOR.
The	MARKER	option	includes	‘circles’	on	the	plotted	lines	which
correspond	to	the	group	means.

When	inspecting	the	mean	plots,	it	seems	that	the	trend	of
computer	anxiety	scores	is	similar	for	each	of	the	block	levels.		In
particular,	when	we	ignore	the	blocks	(levels	of	math	placement),
we	can	make	a	general	statement	that	computer	anxiety	is	highest
for	MGT	majors,	followed	by	a	significant	decrease	in	IS	majors	and
then	a	slight	leveling	off	for	ECON	majors.	Further	inspection
seems	to	indicate	that	computer	anxiety	is	highest	for	those	who
place	into	algebra,	followed	by	pre-calculus	and	then	calculus,	and
that	the	relative	differences	are	similar	when	viewing	across	each
of	the	declared	academic	majors.
Output	7.9	Exploration	of	Computer	Anxiety	by	Academic	Major	and	Block

Analysis	Variable	:	CAS

MAJOR BLOCK
N
Obs Mean Variance Std	Dev

MGT Algebra	Placement 28 32.3928571 45.5066138 6.7458590

Precalculus
Placement

47 31.2978723 25.8658649 5.0858495

Calculus	Placement 30 25.7666667 23.6333333 4.8614127

IS Algebra	Placement 16 26.4375000 19.8625000 4.4567365

Precalculus
Placement

22 24.2727273 32.3982684 5.6919477

Calculus	Placement 22 18.5454545 44.7359307 6.6884924

ECON Algebra	Placement 22 27.1818182 39.1082251 6.2536569

Precalculus
Placement

38 24.1842105 25.4516358 5.0449614

Calculus	Placement 15 21.2666667 35.0666667 5.9217115

	



The	analyst	will	use	the	randomized	block	design	to	answer	two
questions:		First,	is	blocking	effective	in	explaining	the	variation	in
computer	anxiety?	In	other	words,	should	we	use	blocking
(controlling	for	differences	in	math	placement)	when	investigating
differences	in	computer	anxiety	(CAS)?

And	second,	if	we	are	correct	in	our	decision	to	block	and	control
for	differences	in	math	placement,	is	there	evidence	of	differences
in	computer	anxiety	when	comparing	academic	major?

To	answer	these	two	questions,	consider	the	general	form	of	the
ANOVA	table	as	seen	in	Table	7.4	The	ANOVA	Table	for	the
Randomized	Block	Design.
Table	7.4	The	ANOVA	Table	for	the	Randomized	Block	Design

Source
of
Variation

Sums	of
Squares

Degrees
of
Freedom

Mean
Square
(Variance)

F-Test
Statistic

Among
Groups

SSA g-1 MSA MSA/MSE



Blocks SSB b-1 MSB MSB/MSE

Error SSE nT	–	g	–	b	+
1

MSE 	

Total SST nT	–	1 	 	

Specifically,	to	test	for	significant	differences	in	block	means,	the
appropriate	hypothesis	set	is

H0:	β1	=	β2	=	…	=	βb

H1:	not	all	βj’s	are	equal							for	j	=	1	to	b
blocks

and	the	F-test	statistic	of	interest	is	F	=	MSB/MSE	with	(b-1)	and
(nT–g–b+1)	degrees	of	freedom.	To	test	for	significant	differences
among	treatment	means,	the	appropriate	hypothesis	set	is

H0:	µ1	=	µ2	=	…	=	µi

H1:	not	all	µi’s	are	equal						for	i	=	1	to	g	groups

And	the	F-test	statistic	of	interest	is	F	=	MSA/MSE	with	(g-1)	and
(nT–g–b+1)	degrees	of	freedom.

Program	7.7		Randomized	Block	Design	for	Testing	Differences	in
Computer	Anxiety	will	produce	the	output	necessary	in	answering
the	two	questions	associated	with	the	two	sets	of	hypotheses.

	

Program	7.7	Randomized	Block	Design	for	Testing	Differences	in	Computer	Anxiety

libname	cas	‘c:\sasba\data’;

data	one;

set	cas.cas;

run;

	

proc	format;

value	major

1=MGT	2=IS	3=ECON;

value	act

0=Algebra	Placement	1=Precalculus	Placement	2=Calculus



Placement;

run;

	

proc	glm	data=one	plots=diagnostics;

format	major	major.	block	act.;

class	major	block;

model	cas=major	block;

title	‘Testing	differences	in	computer	anxiety	scores	across
academic	majors	using	a	block	design’;

run;

	

Note	that	the	only	difference	between	this	code	and	the	code	for
the	one-factor	analysis	of	variance	is	the	addition	of	the	blocking
variable,	BLOCK,	in	both	the	CLASS	and	MODEL	statements.	The
results	are	displayed	in	Output	7.10	Randomized	Block	Design	for
Testing	Differences	in	Computer	Anxiety.
Output	7.10	Randomized	Block	Design	for	Testing	Differences	in	Computer	Anxiety

Class	Level	Information

Class Levels Values

MAJOR 3 ECON	IS	MGT

BLOCK 3 Algebra	Placement	Calculus	Placement	Precalculus
Placement

Number	of	Observations
Read

240

Number	of	Observations
Used

240

	
Dependent	Variable:	CAS

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

Model 4 4123.29691 1030.82423 32.97 <.0001

Error 235 7348.43642 31.26994 	 	

Corrected
Total

239 11471.73333 	 	 	



	

R-Square Coeff	Var Root	MSE CAS	Mean

0.359431 21.12829 5.591953 26.46667

	

Source DF Type	I	SS
Mean
Square F	Value Pr	>	F

MAJOR 2 2442.772857 1221.386429 39.06 <.0001

BLOCK 2 1680.524057 840.262029 26.87 <.0001

	

Source DF Type	III	SS
Mean
Square F	Value Pr	>	F

MAJOR 2 2432.055734 1216.027867 38.89 <.0001

BLOCK 2 1680.524057 840.262029 26.87 <.0001

	



The	first	page	of	the	output	lists	the	two	classes	(MAJOR	for	the
grouping	variable	and	BLOCK	for	the	blocking	variable)	and	the
number	and	description	of	the	levels	in	each	class,	in	addition	to
the	number	of	observations	read	for	analysis	purposes.



The	second	page	of	the	output	provides	the	analysis	of	variance
results	and	various	fit	statistics.	The	first	effect	to	be	tested	is	that
of	the	blocking	variable;	this	is	to	ensure	that	we	are	correct	in
using	a	blocking	variable	in	our	analysis	design.	Remember,
blocking	is	to	explain	or	eliminate	effects	on	computer	anxiety	that
are	not	attributed	to	our	factor	of	interest,	namely	declared	major.
If	there	is	no	evidence	of	differences	in	the	blocks	(math
placement),	then	our	initial	assumption	that	blocking	matters	is
erroneous	and	we	should	eliminate	that	blocking	variable	from	our
design.		

The	hypothesis	of	interest	is	as	follows:

H0:	β1	=	β2	=	β3

H1:	not	all	βj’s	are	=

From	the	output,	note	that	the	F-test	statistic	for	the	effects	of
blocking	is	26.87	with	a	p-value	<	0.0001;	therefore,	we	reject	the
null	and	conclude	that,	based	upon	our	sample	data,	there	is
evidence	that	the	population	computer	anxiety	scores	(CAS)	differ
by	math	placement.	In	other	words,	we	are	correct	in	blocking	by
math	placement.	

	

Consequently,	we	are	able	to	partition	out	the	effects	of	math
placement	and	subsequently	test	for	differences	in	CAS	a	function
of	academic	major	as	follows:

H0:	µ1	=	µ2	=	µ3

H1:	not	all	µi’s	are	=

In	Output	7.10	Randomized	Block	Design	for	Testing	Differences	in
Computer	Anxiety,	note	that	the	test	statistic	for	testing	differences
by	academic	major	is	38.89	with	a	p-value	<	0.0001;	therefore,	we
reject	the	null	and	conclude	that	there	are	significant	differences	in
computer	anxiety	across	the	three	academic	majors.	(Note:	when	an
analysis	is	unbalanced—that	is,	the	sample	sizes	are	different	for
each	of	the	cells	under	investigation—the	appropriate	test	statistic
is	based	upon	Type	III	Sum-of-Squares.	This	will	be	discussed	at	the
end	of	this	section	on	Randomized	Block	Design.)



Finally,	recall		that	in	the	one-factor	ANOVA,	the	analyst
determined	that	computer	anxiety	is	related	to	academic	major
with	R2	equal	to	0.212938.		For	the	block	design,	there	was	an
improvement	in	fit	as	measured	by	an	R2	equal	to	0.359431.		In
fact,	the	standard	error	of	the	prediction	for	the	block	design	is	5.6,
which	means	when	we	predict	computer	anxiety	scores	using
academic	major	and	blocking	on	mathematics	placement,	on
average,	the	predicted	score	will	be	5.6	units	from	the	actual	score,
compared	to	6.2	for	the	one-factor	ANOVA.

Post	Hoc	Tests	Using	the	LSMEANS	Statement
As	seen	in	the	one-factor	analysis	of	variance,	once	you	find
evidence	of	differences	in	academic	major	in	the	presence	of
blocking,	you	must	follow	up	with	statistical	tests	that	investigate
differences	in	pair-wise	means	controlling	for	experiment-wise
error	level.

In	order	to	conduct	the	Tukey-Kramer	procedure,	the	analyst	can
include	the	LSMEANS	statement	within	the	GLM	procedure	as
follows:

lsmeans	major/pdiff=all	adjust=tukey;

An	excerpt	of	the	results	is	displayed	in	Output	7.11	LSMEANS
Statement	for	Testing	Pairwise	Differences	in	Computer	Anxiety
When	Blocking.
Output	7.11	LSMEANS	Statement	for	Testing	Pairwise	Differences	in	Computer
Anxiety	When	Blocking

MAJOR CAS	LSMEAN
LSMEAN
Number

ECON 23.9090415 1

IS 23.0465985 2

MGT 29.9107311 3

	

Least	Squares	Means	for	effect	MAJOR
Pr	>	|t|	for	H0:	LSMean(i)=LSMean(j)

Dependent	Variable:	CAS



i/j 1 2 3

1 	 0.6526 <.0001

2 0.6526 	 <.0001

3 <.0001 <.0001 	

	

Notice	that	the	comparisons	involve	the	unweighted	means	which
take	into	account	the	unbalanced	nature	of	the
study.		Furthermore,	using	0.05	level	of	significance,	when	we
control	for	math	placement,	there	is	evidence	that	computer
anxiety	scores	differ	when	comparing	both	IS	and	MGT	and	ECON
and	MGT,	with	p-values	less	than	0.0001.	However,	when
comparing	ECON	and	IS,	with	p-value	=	0.6526,	there	is	no
evidence	that	ECON	and	IS	majors	differ	on	computer	anxiety
scores.	These	results	are	also	supported	when	interpreting	the
diffogram.

Assessing	the	Assumptions	of	a	Randomized	Block
Design	Using	the	PLOTS	Option
There	are	assumptions	when	conducting	a	Randomized	Block



Design;	namely,	(1)	the	random	errors	εijk	are	independent	and
normally	distributed,	(2)	the	effects	of	each	level	of	the	blocks	are
normally	distributed	with	equal	variances,	(3)	the	differences
across	the	levels	of	factor	A	are	the	same	for	all	block	levels;	in
other	words,	there	are	no	interactions	effects	of	Factor	A	and
blocks.

As	stated	previously	when	addressing	the	validity	of	the	analyses,
the	first	assumption	has	more	to	do	with	how	the	study		was
designed	in	terms	of	ensuring	a	randomization	process.	Similarly,
in	terms	of	independence,	the	analyst	must	be	confident	that	the
occurrence	of	numeric	values	for	one	population	does	not	affect	the
probability	of	occurrence	for	numeric	values	in	the	other
populations.		

In	assessing	the	normality	of	the	errors,	note	that	the	SAS	code	for
the	randomized	block	design	includes	the	PLOTS=	option	within
PROC	GLM	for	producing	diagnostic	plots:

proc	glm	data=one	plots=diagnostics;

A	visual	inspection	of	the	normal	quantile	plot	in	Output	7.10
Randomized	Block	Design	for	Testing	Differences	in	Computer
Anxiety	illustrates	that	the	points	are	relatively	close	to	the
reference	line,	so	the	assumption	of	normality	is	reasonable.
Further	inspection	of	the	histogram	illustrates	that	the	errors	are
normally	distributed.	To	test	statistically,	we	could	conduct	a
Kolmogorov-Smirnov	test	on	the	residuals	in	order	to	obtain	a	p-
value	for	testing	the	normality.	In	addition,	the	residual	by
predicted	value	plot	indicates	that	the	variances	are	similar	across
the	groups	under	investigation.

Unbalanced	Designs,	the	LSMEANS	Statement,	and
Type	III	Sums	of	Squares
When	conducting	a	one-factor	analysis	of	variance,	you	may	have
noticed	that	the	statistical	tests	using	either	Type	I	or	Type	III	sums
of	squares	are	identical.	However,	once	an	additional	source	of
variation	is	introduced	into	the	model,	as	is	the	case	with	the
addition	of	a	blocking	variable,	the	results	of	the	statistical	tests
differ	when	comparing	Type	I	versus	Type	III	sums	of	squares.	This
occurs	when	the	analysis	involves	an	unbalanced	design,	that	is,	a



design	where	the	sample	sizes	differ	across	all	of	the	treatment-
block	combinations.
Consider	a	randomized	block	design	as	applied	to	the	totally
fabricated	data	illustrated	in	Table	7.5	Cell	Means	and	Sample	Sizes
for	Computer	Anxiety	Scores.
Table	7.5	Cell	Means	and	Sample	Sizes	for	Computer	Anxiety	Scores

	 Block 	

	
Major

	
Algebra

Pre-
Calculus

	
Calculus

Weighted
Mean

Unweighted
Mean

MGT 32	(8) 30	(1) 25	(1) 31.1 29

IS 27	(1) 24	(1) 18	(8) 19.5 23

ECON 28	(1) 25	(8) 22	(1) 25.0 25

A	review	of	the	table	illustrates	that	there	are	nine	factor-block
combinations	(Major	by	Math	Placement)	where,	in	the	first	cell,
there	are	eight	students	majoring	in	MGT	and	placed	into	algebra,
averaging	32	points	on	the	computer	anxiety	scale	(CAS),	and	in
the	ninth	cell,	there	is	one	student	majoring	in	ECON	and	placed
into	calculus,	averaging	22	points	on	the	computer	anxiety	scale
(CAS).

Now,	consider	the	two	types	of	mean	anxiety	scores	for	the	three
academic	majors,	namely,	the	weighted	and	unweighted	means.
The	weighted	mean	anxiety	score	for	MGT	majors	is	obtained	by
taking	each	of	the	ten	scores,	adding	them	together,	and	then
dividing	by	the	ten	students	in	that	group.	The	weighted	means	are
also	calculated	for	IS	and	ECON	as	follows:

	=	[32(8)	+	30(1)	+
25(1)]/10	=	31.1

	=	[27(1)	+	24(1)	+
18(8)]/10	=	19.5

	=	[28(1)	+	25(8)	+
22(1)]/10	=	25.0



The	unweighted	mean	anxiety	score	is	simply	the	mean	of	the	cell
means	across	the	three	blocks:

	=	(32	+	30	+	25)/3	=	29

	=	(27	+	24	+	18)/3	=	23

	=	(28	+	25	+	22)/3	=	25

Notice	that	the	weighted	means	ignore	the	effects	of	math
placement	(blocks).	In	fact,	notice	that	for	the	weighted	mean
anxiety	score	of	MGT	majors,	the	mean	is	derived	from	eight	(of	10
total)	students	placed	into	algebra	who	exhibit	a	relatively	high
anxiety	score;	as	a	result,	the	mean	may	be	artificially	high	because
it’s	made	up	of	students	who	place	lowest	out	of	the	three	possible
math	placements.	Notice	also	that	the	weighted	mean	anxiety	score
for	IS	majors	is	derived	from	eight	(of	10	total)	students	placed	into
calculus	who	exhibit	a	relatively	low	anxiety	score;	as	a	result,	the
mean	may	be	artificially	low	because	it’s	made	up	of	students	who
place	highest	out	of	the	three	possible	math	placements.	

The	unweighted	mean	anxiety	scores,	on	the	other	hand,	control
for	the	effects	of	the	block	by	eliminating	the	effects	of	the	differing
sample	sizes	by	giving	each	cell	mean	an	equal	weighting.	Consider
the	difference	in	anxiety	when	comparing	MGT	and	IS	majors	using
weighted	means.	The	difference	is	11.6	(31.1	minus	19.5)	and
ignores	the	fact	that	most	MGT	majors	have	relatively	low	math
placement	and	most	IS	majors	have	relatively	high	math
placement.	However,	when	considering	the	difference	in	their
unweighted	means,	IS	majors	average	6	points	lower	than	MGT
majors—almost	half	the	difference	when	using	weighted	means.

In	conclusion,	for	unbalanced	designs,	you	must	test	for	mean
differences	using	the	unweighted	(marginal)	means.	In	order	to
obtain	the	appropriate	output,	you	must	use	the	statistical	tests
associated	with	Type	III	sums	of	squares	and	use	the	LSMEANS
statement	in	PROC	GLM	to	conduct	pairwise	tests	of	the
unweighted	means.	If	the	design	is	balanced,	then	Type	I	and	Type
III	sums	of	squares	will	be	identical.

	



Two-Factor	Analysis	of	Variance
In	the	case	of	one-factor	analysis	of	variance,	we	investigated	the
relationship	between	two	variables,	namely	one	numeric
continuous	outcome	variable	and	one	categorical	predictor	variable
having	two	or	more	levels.	In	our	coverage	of	a	randomized	block
design,	we	extended	our	investigation	of	the	effects	of	a	single
factor	by	controlling	the	effects	of	other	nuisance	factors	using	a
blocking	variable.

In	this	section,	we	will	consider	the	effects	of	two	or	more
unknown	sources	of	variation	on	our	outcome	variable	of	interest.
In	fact,	we	would	expect	that	the	numeric	continuous	outcome	of
interest	can	be	explained	by	two	or	more	categorical	predictor
variables.	In	this	case,	the	analyst	would	conduct	an	n-way	analysis
of	variance	to	investigate	the	simultaneous	effects	of	the	n-factors.	

The	Two-Factor	ANOVA	Model
Here,	we	will	consider	the	specific	case	of	two	predictors,	as
investigated	by	a	Two-Way	Analysis	of	Variance	(ANOVA)	with
interaction.	The	Two-Way	ANOVA	Model	is	represented	by

Yijk	=	µ		+	αi	+	βj	+	(αβ)ij	+εijk
where	Yijk	is	the	value	of	the	outcome	variable	for	observation	k	in
group	i	of	factor	A	and	group	j	of	factor	B,	µ	is	the	overall	mean	for
the	outcome	variable,	αi	is	the	effect	of	belonging	to	group	i	of
Factor	A,	βj	is	the	effect	of	belonging	to	group	j	of	Factor	B,	αβij		is
the	interaction	effect	of	factors	A	and	B,	and	εijk	is	the	error	in
prediction.

We	will	illustrate	how	to	conduct	a	two-way	analysis	of	variance	to
answer	three	questions.	The	first	two	questions	have	to	do	with
testing	main	effects,	that	is,	the	unique	effect	of	each	Factor	A	and
Factor	B	on	the	outcome	variable;	the	third	question	addresses
unique	interaction	effects.

First,	is	Factor	A	significant	in	explaining	the	differences,	or
variation,	in	the	outcome	variable,	in	the	presence	of	factor	B	and



interaction	effects?	Second,	is	Factor	B	significant	in	explaining	the
variation	in	the	outcome	variable,	in	the	presence	of	Factor	A	and
interaction	effects?	Third,	is	the	interaction	of	Factors	A	and	B
significant	in	explaining	the	variation	of	the	outcome	variable,	in
the	presence	of	Factors	A	and	B?	

To	answer	these	three	questions,	consider	Table	7.6	General	Form
of	the	Two-Factor	ANOVA	Table.
Table	7.6	General	Form	of	the	Two-Factor	ANOVA	Table

Source
of
Variation

Sums	of
Squares

Degrees
of
Freedom

Mean
Square
(Variance)

F-Test
Statistic

Factor	A SSA a	-	1 MSA MSA/MSE

Factor	B SSB b	-	1 MSB MSB/MSE

Interaction SSAB (a-1)(b-
1)

MSAB MSAB/MSE

Error SSE nT	-	ab MSE 	

Total SST nT	-	1 	 	

where	a	=		the	number	of	levels	of	Factor	A,	b	=	the	number	of
levels	of	Factor	B,	and	nT	=		the	total	number	of	observations	in
the	study.

To	test	for	significant	differences	in	means	as	a	function	of	Factor
A,	the	appropriate	hypothesis	set	is

H0:	µ1.	=	µ2.	=	…	=	µi.

H1:	not	all	µi.’s	are	equal											for	i
=	1	to	a

	

and	the	F-test	statistic	of	interest	is	FA	=	MSA/MSE	with	(a-1)	and
(nT	–	ab)	degrees	of	freedom.		To	test	for	significant	differences	in
means	as	a	function	of	Factor	B,	the	appropriate	hypothesis	set	is



H0:	µ.1	=	µ.2	=	…	=	µ.j

H1:	not	all	µ.j’s	are	equal												for	j
=	1	to	b

and	the	F-test	statistic	of	interest	is	FB	=	MSB/MSE	with	(b-1)	and
(nT	-	ab)	degrees	of	freedom.		Finally	to	test	for	significant
differences	in	means	as	a	function	of	the	interaction	of	both	Factor
A	and	Factor	B,	the	appropriate	hypothesis	set	is

H0:	µ11	=	µ12	=	µ21	=	µ22	…	=	µij

H1:	not	all	µij’s	are
equal																						for	i	=	1	to	a;		j
=	1	to	b

and	the	F-test	statistic	of	interest	is	FAB	=	MSAB/MSE	with	(a-1)(b-
1)	and	(nT	-	ab)	degrees	of	freedom.

The	general	form	of	the	GLM	procedure	is:

PROC	GLM	DATA=	SAS-data-set	PLOTS=options;

CLASS	variables;

MODEL	dependents=independents	</options>;

MEANS	effects	</options>;

LSMEANS	effects	</options>;

OUTPUT	OUT=SASdataset	<keyword=variable…>;

RUN;

Note	again	that	the	general	syntax	for	conducting	a	two-factor
analysis	of	variance	is	the	same	as	that	for	both	the	one-factor
analysis	of	variance	and	the	randomized	block	design.	However,	it
is	important	to	note	that	the	two	factor	variables	should	be	listed	in
the	CLASS	statement	corresponding	to	Factor	A	and	Factor	B.	Three
terms	should	be	listed	in	the	MODEL	statement	as	independent
effects,	namely	Factor	A,	Factor	B,	and	the	interaction	term.

Example	and	Interpretation	of	the	Two-Factor	ANOVA
Let’s	revisit	the	one-factor	analysis	of	variance	example	where	we



found	evidence	that	computer	anxiety	scores	(CAS)		differed	across
declared	academic	major.	While	this	model	may	be	deemed
adequate,	in	reality,	the	analyst	is	interested	in	improving	the
model	by	incorporating	other	factors	that	may	affect	anxiety—for
example,	gender.
Consider	now	the	effects	of	two	factors	on	computer	anxiety;
namely,	declared	academic	major	and	gender.	As	always,	the
analyst	explores	the	data	in	order	to	get	a	preliminary	view,	as
illustrated	in	Program	7.8	Exploration	of	Computer	Anxiety	by
Academic	Major	and	Gender.
Program	7.8	Exploration	of	Computer	Anxiety	by	Academic	Major	and	Gender

libname	cas	‘c:\sasba\data’;

data	one;

set	cas.cas;

run;

	

proc	format;

value	major

1=MGT	2=IS	3=ECON;

value	gender

0=Females	1=Males;

run;

	

proc	means	data=one	mean	var	std	nway;

format	major	major.	gender	gender.;

class	major	gender;

var	cas;

title	‘Descriptive	statistics	for	computer	anxiety	across
academic	majors	and	gender’;

run;

	

	

proc	sgplot	data=one;

vline	major	/group=gender	stat=mean	response=cas	markers;

format	major	major.	gender	gender.;

run;

The	results	are	displayed	in	Output	7.12	Descriptive	Statistics	for



Computer	Anxiety	by	Academic	Major	and	Gender.
Output	7.12		Descriptive	Statistics	for	Computer	Anxiety	by	Academic	Major	and
Gender

Analysis	Variable	:	CAS

MAJOR GENDER
N
Obs Mean Variance Std	Dev

MGT Females 54 32.4074074 30.5478686 5.5270126

Males 51 27.4705882 32.4541176 5.6968516

IS Females 40 22.9250000 48.8916667 6.9922576

Males 20 22.4000000 34.9894737 5.9151901

ECON Females 43 23.8372093 32.9966777 5.7442735

Males 32 25.3437500 36.9425403 6.0780375

	

Notice	that	there	are	54	females	majoring	in	MGT,	having	a	mean
anxiety	score	of	32.41,	a	variance	of	30.55,	and	a	standard
deviation	of	5.53;	ending	with	32	males	majoring	in	ECON,	having
a	mean	anxiety	score	of	25.34,	a	variance	of	36.94,	and	a	standard
deviation	of	6.08.	The	mean	plot	provides	an	additional	mechanism
for	description.	For	example,	the	biggest	difference	in	anxiety	when



comparing	males	and	females	exists	for	MGT	majors	with	females
exhibiting	a	higher	level	of	anxiety	than	males.	The	smallest
difference	between	males	and	females	is	among	IS	majors	(although
possibly	an	insignificant	difference).	Note	also	that	for	ECON
majors,	males	now	have	a	slightly	higher	level	of	anxiety	than
females,	but	this	difference	may	be	insignificant	as	well.	

Finally,	when	differences	across	one	factor	(say	Gender	here)	are
not	the	same	for	all	levels	of	the	second	factor,	(Major),	we	may
suspect	that	an	interaction	between	the	two	factors	exists—which
seems	to	be	the	case	here,	but	we	must	test	statistically.	In	short,
remember	that	a	visual	inspection	alone	is	not	sufficient	for
determining	statistically	significant	differences.

Before	conducting	our	statistical	tests,	let’s	look	more	deeply	at	two
hypothetical	examples	to	get	a	better	idea	of	what	interaction
means:	(1)	a	two-way	analysis	of	variance	without	interaction	and
(2)	a	two-way	analysis	of	variance	with	interaction.	Consider	the
same	two	factors,	Gender	and	Academic	Major,	and	the	outcome
variable	computer	anxiety	as	illustrated	in	Figure	7.2	Mean
Computer	Anxiety	Scores	by	Academic	Major	and	Gender
Figure	7.2	Mean	Computer	Anxiety	Scores	by	Academic	Major	and	Gender

Notice	in	the	first	figure,	that	females	have	an	average	anxiety
score	7	more	than	males	for	each	of	the	three	majors:		MGT,	IS,	and
ECON.	Because	these	differences	are	uniform	across	all	three
majors,	we	could	make	a	single	statement	that,	on	average,	females
score	7	more	than	males,	regardless	of	major.	In	fact,	we	can	ignore
major	altogether.	When		you	can	make	a	conclusion	about
differences	using	one	factor	(Gender)	while	ignoring	the	second
factor	(Major),	you	can	say	that	interaction	between	the	two	factors



does	not	exist.

Notice	in	the	second	figure,	when	interpreting	differences,	you
must	take	into	account	BOTH	factors.	For	example,	when	looking	at
MGT	majors,	males	and	females’	average	anxiety	scores	differ	by	9,
while	the	difference	in	gender	is	2	when	looking	at	IS	majors	and	5
for	ECON	majors.	In	other	words,	the	difference	between	the
genders	depends	upon	major;	that	is,	the	interpretation	must	take
into	account	both	factors,	gender	and	major.	Consequently,	there	is
interaction	between	gender	and	major.	When	interaction	exists,	we
cannot	make	conclusions	about	mean	differences	when	looking	at	a
single	factor	alone.	By	definition,	when	interaction	effects	exist,	we
cannot	look	at	the	single	effects	of	one	factor	or	another.	However,
if	statistical	tests	indicate	that	interaction	effects	do	not	exist,	then
we	are	free	to	move	forward	and	test	for	main	effects.

In	general,	parallel	lines	indicate	that	no	interaction	exists	among
the	two	factors,	whereas	a	significant	deviation	from	parallel	lines
indicates	that	interaction	does	exist.	Note	that	these	effects	can	be
tested	statistically	in	order	to	make	inferences	to	the	population.

In	order	to	determine	what	factors	affect	computer	anxiety,	at	.05
level	of	significance,	consider	the	two-way	analysis	of	variance	in
Program	7.9	Two-Factor	ANOVA	for	Testing	Differences	in
Computer	Anxiety.
Program	7.9	Two-Factor	ANOVA	for	Testing	Differences	in	Computer	Anxiety

libname	cas	‘c:\sasba\data’;

data	one;

set	cas.cas;

run;

	

proc	format;

value	major

1=MGT	2=IS	3=ECON;

value	gender

0=Females	1=Males;

run;

	

proc	glm	data=one	plots=diagnostics;

format	major	major.	gender	gender.;



class	major	gender;

model	cas=major	gender	major*gender;

lsmeans	major*gender	/	diff	slice=major		slice=gender;

title	‘Testing	differences	in	computer	anxiety	across	academic
major	and	gender	with	interaction’;

run;

The	form	of	PROC	GLM	is	identical	to	that	when	conducting	a	one-
factor	analysis	of	variance	and	a	randomized	block	design	in	terms
of	the	CLASS	and	MODEL	statements.	Note,	however,	in	the
MODEL	statement,	an	interaction	term	is	included
(MAJOR*GENDER).	The	LSMEANS	statement	provides	output	for
testing	each	of	the	mean	pairs,	and	the	DIFF	and	SLICE	options	for
each	factor	provide	a	visual	output	of	the	mean	differences.	

The	results	are	displayed	in	Output	7.13a	Two-Factor	ANOVA	for
Testing	Differences	in	Computer	Anxiety	through	Output
7.13d		Analysis	of	Simple	Effects	in	the	Presence	of	Interaction.
Output	7.13a	Two-Factor	ANOVA	for	Testing	Differences	in	Computer	Anxiety

Class	Level	Information

Class Levels Values

MAJOR 3 ECON	IS	MGT

GENDER 2 Females
Males

	

Number	of	Observations
Read

240

Number	of	Observations
Used

240

	

The	GLM	Procedure

Dependent	Variable:	CAS

	

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F



Model 5 3127.33620 625.46724 17.54 <.0001

Error 234 8344.39713 35.65982 	 	

Corrected
Total

239 11471.73333 	 	 	

	

R-Square Coeff	Var Root	MSE CAS	Mean

0.272612 22.56266 5.971584 26.46667

	
	

Source DF Type	I	SS
Mean
Square F	Value Pr	>	F

MAJOR 2 2442.772857 1221.386429 34.25 <.0001

GENDER 1 204.587840 204.587840 5.74 0.0174

MAJOR*GENDER 2 479.975502 239.987751 6.73 0.0014

	
	

Source DF Type	III	SS
Mean
Square F	Value Pr	>	F

MAJOR 2 2292.681008 1146.340504 32.15 <.0001

GENDER 1 93.324732 93.324732 2.62 0.1071

MAJOR*GENDER 2 479.975502 239.987751 6.73 0.0014

	



The	first	page	of	the	output	provides	the	two	classes,	Major	and
Gender,	with	the	numbers	of	levels	for	each	and	their
corresponding	labels.	The	first	page	also	provides	the	number	of
observations	read,	namely	240.	The	second	page	provides	the
analysis	of	variance	tables	with	the	various	fit	statistics;	the	third



and	fourth	pages	provide	the	diagnostics	panel	and	the	interaction
plot,	respectively.

When	reviewing	the	second	page	of	the	output	for	inference
purposes,	you	should	always	survey	the	output	for	significant
interactions	effects	first.	Remember,	if	there	are	significant
interaction	effects,	you	should	not	test	for	the	main	effects	because
the	unique	effects	of	one	factor	are	not	constant	across	levels	of	the
second	factor.	The	test	statistic	for	interaction	(using	Type	III	sums
of	squares)	is	6.73,	with	a	p-value	of	0.0014.	The	p-value	is	less
than	α	of	0.05;	therefore,	the	null	hypothesis	is	rejected.		In
conclusion,	there	is	evidence,	based	upon	our	data,	that	mean
computer	anxiety	scores	are	affected	by	the	interaction	of	both
academic	major	(Factor	A)	and	gender	(Factor	B).	This	is	further
supported	by	the	interaction	plot	of	the	mean	computer	anxiety
scores	(CAS).

Note	that	for	the	two-factor	ANOVA,	there	was	an	improvement	in
fit	as	measured	by	an	R2	equal	to	0.272612,	compared	to	0.212938
for	the	one-factor	ANOVA.		Furthermore,	the	standard	error	of	the
prediction	for	the	two-factor	ANOVA	is	5.97,	compared	to	6.17	for
the	one-factor	ANOVA.

Because	it	is	inappropriate	to	test	for	main	effects,	the	analyst
must,	instead,	interpret	the	interaction	effects	of	both	academic
major	and	gender	as	displayed	in	Output	7.13b	Least	Squares
Means	for	Major	by	Gender	Interaction	Effects.
Output	7.13b	Least	Squares	Means	for	Major	by	Gender	Interaction	Effects

MAJOR GENDER CAS	LSMEAN
LSMEAN
Number

ECON Females 23.8372093 1

ECON Males 25.3437500 2

IS Females 22.9250000 3

IS Males 22.4000000 4

MGT Females 32.4074074 5

MGT Males 27.4705882 6

	



Least	Squares	Means	for	effect	MAJOR*GENDER
Pr	>	|t|	for	H0:	LSMean(i)=LSMean(j)

Dependent	Variable:	CAS

i/j 1 2 3 4 5 6

1 	 0.2810 0.4875 0.3748 <.0001 0.0036

2 0.2810 	 0.0890 0.0851 <.0001 0.1156

3 0.4875 0.0890 	 0.7485 <.0001 0.0004

4 0.3748 0.0851 0.7485 	 <.0001 0.0015

5 <.0001 <.0001 <.0001 <.0001 	 <.0001

6 0.0036 0.1156 0.0004 0.0015 <.0001 	

	

Output	7.13b	Least	Squares	Means	for	Major	by	Gender	Interaction
Effects	provides	a	list	of	ls-means	for	each	of	the	six	combinations
of	effects	(two	genders	crossed	with	three	majors).	For	example,	it
is	evident	that	male	IS	majors	with	ls-mean	number	of	4,	exhibit
the	lowest	average	anxiety	(22.40),	whereas	female	MGT	majors
with	ls-means	number	of	5,	exhibit	the	highest	average	anxiety
(32.41).	A	visual	inspection	of	the	plot	of	ls-means	for
MAJOR*GENDER	illustrates	the	magnitude	of	the	differences
between	all	six	mean	computer	anxiety	scores	(CAS).



Remember	the	total	number	of	paired	comparisons	is	g(g-1)/2
where	g	=	number	of	groups	being	compared.	In	this	example,
there	are	6(6-1)/2	=	15	paired	comparisons.	To	test	for	significant
differences	in	the	means	across	the	combinations	of	major	and
gender,	note	the	table	of	p-values	for	comparing	all	possible	pairs
of	means,	for	the	ls-means	numbered	1	through	6.

For	example,	the	p-value	in	column	I	and	row	2	(0.2810)	is	used	to
test	female	ECON	majors	to	male	ECON	majors.		Because	the	p-
value	is	greater	than	0.05	level	of	significance,	we	can	conclude
that	there	is	no	evidence	that	mean	anxiety	scores	differ	when
comparing	the	two	groups.	In	all,	we	can	see	that	there	is	no
evidence	of	differences	for	seven	of	the	fifteen	comparisons;	namely
1	versus	2,	3,	and	4	(female	ECON	majors	do	not	differ	from	male
ECON,	female	IS,	and	male	IS	majors)	with	means	23.84,	25.34,
22.93,	and	22.40,	respectively;	2	versus	3,	4,	and	6	(male	ECON
majors	do	not	differ	from	IS	females,	IS	males,	and	MGT	males),
with	means	25.34,	22.93,	22.40,	and	27.47,	respectively;	and	3
versus	4	(female	IS	majors	do	not	differ	from	male	IS	majors)	with
means	22.93	and	22.40,	respectively.	

Again	the	analyst	can	rely	on	the	interaction	plot	of	LSMEANS	for
MAJOR*GENDER	which	illustrates	the	insignificant	differences	in
those	seven	pairs	of	mean	computer	anxiety	scores	(CAS).	These
nonsignificant	differences	are	also	evident	in	the	Output	7.13c
Diffogram	of	MAJOR	by	GENDER	Means.	Note	that	seven	of	the
confidence	intervals	(or	segments)	cross	the	45-degree	dotted
diagonal	line,	where	the	X	and	Y	coordinates	are	equal,	indicating
that	the	pairs	of	sample	means	are	equal.	

With	respect	to	the	eight	significant	interactions,	notice	that	the
largest	difference	is	between	4	and	5	(IS	males	and	MGT	females,
with	means	22.40	and	32.41,	respectively)	and	is	also	depicted	in
both	the	interaction	plot	and	the	diffogram.		Specifically	note	that,
in	the	diffogram,	the	segment	representing	IS	males	and	MGT
females	is	at	the	top	rightmost	corner	indicating	that	the	midpoint
of	the	segment	is	farthest	from	the	45-degree	line.	In	short,	that
segment	represents	the	largest	mean	difference.	In	fact,	the	upper-
most	five	segments	show	that	MGT	females	have	computer	anxiety
scores	significantly	different	from	the	other	five	groups,
respectively;	this	is	further	illustrated	in	the	interaction	plot.



Output	7.13c		Diffogram	of	MAJOR	by	GENDER	Means

Analyzing	Simple	Effects	When	Interaction	Exists
Using	the	LSMEANS	Statement	with	the	SLICE	Option
When	the	analyst	wants	to	provide	additional	information	for
interpreting	interaction	effects,	the	LSMEANS	statement	with	the
SLICE	option	can	be	used.	This	option	provides	tests	of	simple
effects.	In	other	words,	when	interaction	exists,	you	can	test	the
effect	of	Factor	A	within	each	level	of	Factor	B.		Note	that	in
Program	7.9	Two-Factor	ANOVA	for	Testing	Differences	in
Computer	Anxiety,	the	following	LSMEANS	statement	is	included
within	PROC	GLM:
lsmeans	major*gender	/	diff	slice=major	diff	slice=gender;

The	first	table,	MAJOR*GENDER	sliced	by	MAJOR,	displayed	in
Output	7.13d	Analysis	of	Simple	Effects	in	the	Presence	of
Interaction,	provides	a	test	for	differences	in	GENDER	when



looking	across	MAJORS.	Because	the	p-value	for	MGT	is	less	than
.05	level	of	significance,	we	can	conclude	that	differences	in	mean
computer	anxiety	scores	exist	between	males	and	females	when
looking	at	MGT	majors.	We	can	also	see	this	in	the	interaction	plot,
where	the	points	(or	means)	for	each	gender	are	close	for	IS	and
ECON	majors	but	deviate	significantly	for	MGT	majors.	A	similar
interpretation	can	be	made	when	slicing	by	gender.
Output	7.13d		Analysis	of	Simple	Effects	in	the	Presence	of	Interaction					

MAJOR*GENDER	Effect	Sliced	by	MAJOR	for	CAS

MAJOR DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

ECON 1 41.640785 41.640785 1.17 0.2810

IS 1 3.675000 3.675000 0.10 0.7485

MGT 1 639.247557 639.247557 17.93 <.0001

	

MAJOR*GENDER	Effect	Sliced	by	GENDER	for	CAS

GENDER DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

Females 2 2672.969834 1336.484917 37.48 <.0001

Males 2 380.129737 190.064868 5.33 0.0055

	

Assessing	the	Assumptions	of	a	Two-Factor	Analysis	of
Variance
So	far,	much	attention	has	been	paid	to	interpreting	the	results	of
two-factor	analysis	of	variance.	Remember,	the	analyst	must	always
check	the	assumptions	to	ensure	the	results	of	the	analysis	are
valid;	otherwise,	there	is	the	risk	of	making	a	mistake	when
attempting	to	make	conclusions	about	the	population	of	interest.
The	assumptions	of	two-way	analysis	of	variance	are	identical	to
those	of	the	one-factor	analysis.	These	assumptions	are	as	follows:

	The	observations	must	be	randomly	selected	from
independent	populations.

●					



	The	residuals	are	normally	distributed	for	each	of	the
populations	under	investigation.

	The	variances	of	the	residuals	are	equal	across	all	populations
under	investigation.	

As	stated	previously,	the	first	assumption	has	more	to	do	with	how
the	study	was	designed	in	terms	of	ensuring	a	randomization
process.	In	terms	of	independence,	the	analyst	must	be	confident
that	the	occurrence	of	numeric	values	for	one	population	does	not
affect	the	probability	of	occurrence	for	numeric	values	in	the	other
populations.		

In	assessing	the	normality	of	the	errors,	note	that	Program	7.9	Two-
Factor	ANOVA	for	Testing	Differences	in	Computer	Anxiety
included	the	PLOTS=	option	within	PROC	GLM	for	producing
diagnostic	plots:

proc	glm	data=one	plots=diagnostics;

A	visual	inspection	of	the	normal	quantile	plot	on	the	diagnostics
panel	of	Output	7.13a	Two-Factor	ANOVA	for	Testing	Differences
in	Computer	Anxiety	illustrates	that	the	points	are	relatively	close
to	the	reference	line,	so	the	assumption	of	normality	is	reasonable.
Further	inspection	of	the	histogram	illustrates	that	the	errors	are
normally	distributed.	To	test	statistically,	we	could	conduct	a
Kolmogorov-Smirnov	test	on	the	residuals	in	order	to	obtain	a	p-
value	for	testing	the	normality	as	well.	Also	the	residual	by
predicted	value	plot	indicates	that	the	variances	are	similar	across
all	six	treatment	combinations.

	

Key	Terms
analysis	of	variance	(ANOVA)

coefficient	of	determination	(R2)

comparison-wise	error	rate

critical	range

diffogram

●					

●					



Dunnett’s	method	of	adjustment

experiment-wise	error	rate

F-distribution

general	linear	model

interaction

Kolmogorov-Smirnov	test

Levene’s	test	for	equal	variances

main	effects

one-way	analysis	of	variance

post	hoc	tests

predicted	values

randomized	block	design

residual

standard	error	of	the	prediction

studentized	Q

sums-of-squares	among-groups	(SSA)

sums-of-squares-error	(SSE)

total-sums-of-squares	(SST)

Tukey-Kramer	procedure

two-way	analysis	of	variance

unbalanced	design

unweighted	mean

variance	across	group	means	(MSA)

variance	within	groups	(MSE)

weighted	mean

	



Chapter	Quiz
1.						Which	of	the	following	statements	is	an	assumption	of	one-
factor	analysis	of	variance?

a.						The	outcome	variable	is	categorical.

b.						The	sample	size	is	greater	than	30.

c.						The	variances	of	predictor	for	each	level	of	the	outcome
are	independent.

d.						The	error	terms	are	normally	distributed.

2.						For	a	one-factor	ANOVA,	if	all	of	the	treatment	means	are
equal,	which	of	the	following	statements	is	true?

a.						R2	=	0

b.						SSA	=	0

c.						F	=	0

d.						All	of	the	above	statements	are	true.

e.						None	of	the	above	statements	are	true.

3.						When	testing	differences	in	job	performance	(variable	name
=	JOBPERF)	across	three	training	programs	(variable	name
=	TRAINING),	the	appropriate	SAS	code	is:

a.						proc	glm;	class	jobperf;	model	training=jobperf;

b.						proc	glm;	class	training;	model	jobperf=training;

c.						proc	glm;	class	jobperf;	model	jobperf=training;

d.						proc	glm;	class	training;	model	training=jobperf;

4.						When	assessing	the	equal	variance	assumption	when	testing
differences	in	job	performance	(variable	name	=	JOBPERF)
across	three	training	programs	(variable	name	=	TRAINING),
the	appropriate	SAS	code	is:

a.						proc	glm;

class	training;

model	jobperf=training;



means	training	/	hovtest=levene;

b.						proc	glm	hovtest=levene;

class	jobperf;

model	training=jobperf;

c.						proc	glm;

class	jobperf;

model	jobperf=training	/	hovtest=levene;

d.						proc	glm;

class	training	/hovtest=levene;

model	training=jobperf;

5.						You	are	testing	differences	in	job	performance	(variable
name	=	JOBPERF)	across	three	training	programs	(variable
name	=	TRAINING).		Suppose	you	find	mean	differences.
Then,	the	appropriate	SAS	code	for	conducting	a	Tukey-
Kramer	post	hoc	analysis	is:

a.						proc	glm;	diff=jobperf/tukey;

b.						proc	glm;	means	jobperf/tukey;

c.						proc	glm;	means	training/tukey;

d.						proc	glm;	diff=training/tukey;

6.						When	testing	differences	in	job	performance	(variable	name
=	JOBPERF)	across	three	training	programs	(variable	name
=	TRAINING,	with	values	PRG1,	PRG2,	and	PRG3),	the
following	pairwise	comparisons	are	provided.		Based	upon	the
output,	there	is	evidence	that:

a.						Performance	differs	between	program	1	and	2.

b.						Performance	differs	between	program	1	and	3.

c.						Performance	differs	between	program	2	and	3.

d.						All	programs	differ	in	performance.

Comparisons	significant	at	the	0.05	level	are
indicated	by	***.

Difference
Simultaneous

95%



TRAINING
Comparison

Between
Means

Confidence
Limits 	

PRG1	-	PRG2 1.5295 -0.7304 4.3286 	

PRG1	–	PRG3 7.2595 4.9036 9.6154 ***

PRG2	–	PRG1 -1.5295 -4.3286 0.7304 	

PRG2	–	PRG3 1.7300 -0.7914 4.2514 	

PRG3	-	PRG1 -7.2595 -9.6154 -4.9036 ***

PRG3	-	PRG2 -1.7300 -4.2514 0.7914 	

7.						Suppose	you	are	testing	differences	in	job	performance
(variable	name	=	JOBPERF)	across	three	training	programs
(variable	name	=	TRAINING),	and	blocking	on	IQ	(defined	as
high,	average,	or	low).		The	appropriate	SAS	code	is:

a.						proc	glm;

class	training	iq;

model	jobperf	=	training	iq;

b.						proc	glm;

class	training	iq;

model	jobperf	=	training	iq	training*iq;

c.						proc	glm;

class	training;

model	jobperf	=	training	iq;

d.						proc	glm;

class	training;

model	jobperf	=	training	iq	training*iq;

8.						Suppose	you	conduct	a	two-factor	analysis	of	variance	and
find	significant	interaction	effects.	What	should	you	do	to	aid
in	further	explanation	of	mean	differences?

a.						Conduct	tests	for	main	effects.

b.						Use	the	SLICE	option	to	review	simple	effects.

c.						Use	PLOTS=DIAGNOSTICS	to	generate	p-values	for	post
hoc	tests.



d.						Rerun	with	the	analysis	without	the	interaction	term.

	

9.						In	a	two-factor	ANOVA	with	3	levels	of	factor	A	and	4	levels
of	factor	B,	conducted	on	as	sample	of	size	200,	the	degrees	of
freedom	for	interaction	are:

a.						6

b.						188

c.						2

d.						3

10.			Suppose	a	real	estate	agent	wants	to	determine	if	the
saleprice	of	a	home	is	related	to	the	overall	condition	(good,
average,	or	poor)	or	high	kitchen	quality	(yes	or	no)	or	a
combination	of	the	two.		She	randomly	selects	300	houses	and
collects	data	to	generate	the	results	of	the	ANOVA.		Using	the
output	below,	which	of	the	following	statements	is	true?

a.						The	error	degrees	of	freedom	are	295.

b.						There	is	a	significant	interaction	effect	on	saleprice.

c.						There	are	no	main	effects	due	to	overall	condition.

d.						There	are	no	main	effects	due	to	high	kitchen	quality.

	

Source DF Type	I	SS
Mean
Square

F
Value Pr	>	F

Overall_Condition 2 56201600134 28100800067 35.06 <.0001

High_Kitchen_Quality 1 61479010913 61479010913 76.70 <.0001

Overall_Condition*High_Kitchen_Quality 2 11339760599 5669880299 7.07 0.0010

	

Source DF Type	III	SS
Mean
Square

F
Value Pr	>	F

Overall_Condition 2 36012410379 18006205190 22.46 <.0001

High_Kitchen_Quality 1 1692878754 1692878754 2.11 0.1472

Overall_Condition*High_Kitchen_Quality 2 11339760599 5669880299 7.07 0.0010



Chapter	8:	Preparing	the	Input	Variables	for
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Chapter	Quiz

Introduction			
Predictive	modeling	consists	of	various	statistical	and	machine
learning	techniques	aimed	at	establishing	the	relationship	between
an	outcome	variable	and	various	predictor	variables	for	purposes	of
predicting	and/or	explaining	a	future	outcome.		Two	of	these
techniques,	linear	regression	and	logistic	regression,	will	be
covered	in	detail	in	Chapter	9,	“Linear	Regression	Analysis”	and
Chapter	10,	“Logistic	Regression	Analysis.”

Very	rarely	is	the	data	in	a	usable	form—ready	for	predictive
modeling.	Therefore,	the	analyst	must	first	take	great	care	in
exploring,	understanding,	and	preparing	or	‘cleaning’	the	data.	As
stated	in	Chapter	1,	“Statistics	and	Making	Sense	of	Our	World,”
the	information	gleaned	from	predictive	modeling	is	only	as	good
as	the	data	employed	and,	accordingly,	the	data	preparation
phase	ordinarily	takes	about	80%	of	a	project’s	time	and	effort.
Furthermore,	this	process	should	also	incorporate	the	aid	of	a
subject	matter	expert	to	make	sure	that	any	changes	to	the	data	are
done	in	the	context	of	the	specific	business	environment	and	with	a
clear	business	understanding.



Before	preparing	the	input	variables	for	predictive	modeling,	the
analyst	must	first	take	measures	to	prevent	overfitting	of	the
predictive	model.	When	a	predictive	model	is	constructed	and	its
performance	is	then	assessed	using	the	same	data	on	which	the
classifier	was	constructed,	there	is	an	inherent	overestimate	in	its
performance;	consequently,	it	is	unlikely	that	the	model	will
perform	as	well	when	applied	to	the	population	of	interest.

To	avoid	overfitting,	the	analyst	must	split	the	data	into	two	data
sets—the	training	data	set	and	the	validation	data	set	(or	hold
out	data	set).	This	topic	is	described	in	detail	in	Chapter	11,
“Measure	of	Model	Performance,”	but	it	must	be	addressed	before
preparing	the	input	data	for	modeling	in	order	to	avoid
information	leakage.	

Information	leakage	occurs	when	any	information	from	a	holdout
data	set	‘leaks’	into	the	training	data	set	(Wujek,	Hall,	and	Günes,
2016).	Therefore,	the	entire	process	of	preparing	input	variables,	as
discussed	in	this	chapter,	should	be	carried	out	on	the	training	data
only.	Once	the	input	variables	are	prepared	using	the	training	data,
those	same	preparation	steps	should	be	applied	to	the	validation
data	set.

Keep	in	mind	that	if	the	target	of	interest	is	considered	a	rare
event,	the	analyst	must	consider	oversampling	to	account	for	the
rarity.	This	has	implications	for	the	training	and	validation	data
sets,	so	oversampling,	as	well,	should	be	done	before	the	input
variables	are	prepared	for	modeling.	Oversampling	of	rare	events	is
also	discussed	in	detail	in	Chapter	11,	“Measure	of	Model
Performance.”

Once	the	data	preparation	stage	begins,	there	are	many	challenges
to	consider.	For	example,	as	mentioned	in	Chapter	1,	“Statistics	and
Making	Sense	of	Our	World,”	outliers	can	have	very	negative
effects	on	parameter	estimates	and	inferential	conclusions.	For	a
relatively	small	data	set,	a	very	large	value	for	a	single	observation
will	greatly	inflate	the	mean	and	variance	and	have	serious
consequences	on	any	conclusions.	However,	when	data	sets	are
relatively	large,	say	100,000+,	it	is	very	unlikely	that	outliers	will
affect	parameter	estimates	and	conclusions.

In	the	data	preparation	stage,	univariate	statistics	and	data
visualization	techniques	can	be	used	to	identify	outliers	for



purposes	of	finding	errors	in	data	coding.	While	the	analyst	should
be	cognizant	of	outliers	at	every	phase	of	predictive	modeling,	we
will	investigate	their	influence	when	discussing	diagnostic
procedures	in	the	following	chapters	on	predictive	modeling.

In	this	chapter,	we	will	discuss	the	major	challenges	in	a	specific
order	and	suggest	remedies	for	those	challenges	in	an	attempt	to
present	a	process	for	creating	a	final	data	set	ready	for	the
modeling	stage.	First,	we	will	discuss	missing	data	and	how	to
impute	missing	values,	including	a	rationale	and	method	for
creating	new	missing	value	indicator	variables	aimed	at	addressing
the	missing	value	problem.	

Once	variables	have	been	imputed	and	new	missing	value	indicator
variables	are	created,	those	variables,	along	with	all	other	input
variables	to	be	considered	in	the	modeling	stage,	will	be	reviewed
for	redundancy.		Redundant	variables	are	those	variables	whose
inclusion	adds	no	information	to	the	predictive	modeling	problem.
Therefore,	we	will	discuss	how	to	screen	variables	for	inclusion	and
drop	those	variables	that	are	redundant,	thereby	creating	a	reduced
set	of	input	variables.	

Next,	using	the	reduced	set	of	input	variables,	we	will	illustrate
screening	methods	to	determine	which	input	variables	are	relevant
to	the	target	variable—the	variable	we	want	to	predict.	Any
variables	that	are	deemed	irrelevant	will	be	dropped	from	all
subsequent	analyses;	the	remaining	variables	will	make	up	the	final
set	of	input	variables	for	modeling.

Last,	once	the	final	set	of	input	variables	is	determined,	we	will
screen	those	variables	for	non-linearity	using	the	empirical	logit
plot	and	provide	suggestions	for	addressing	violations	to	the
linearity	assumption.

In	this	chapter,	you	will	learn	how	to:

	describe	a	process	for	preparing	input	variables	for	predictive
modeling

	understand	complete	case	analysis	and	its	limitations

	identify	problems	in	predictive	modeling	due	to	missing
values

	use	arrays,	DO	loops,	and	output	statements	when	creating
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missing	value	indicators

	do	median	value	imputation	for	missing	values

	score	new	observations	which	have	missing	values

	explain	problems	caused	when	categorical	variables	have
numerous	levels

	explain	quasi-complete	separation	and	recognize	its
consequences	to	predictive	modeling

	explain	Greenacre’s	methods	for	combining	levels	of	a
categorical	variable

	use	the	CLUSTER	procedure	to	carry	out	Greenacre’s	method,
including	the	METHOD=WARD	option,	the	FREQ,	VAR,	and
ID	statements,	and	ODS	OUTPUT	to	create	an	output	data	set

	interpret	the	results	of	Greenacre’s	method

	based	upon	the	results	from	Greenacre’s	method,	create
dummy	variables	to	represent	the	reduced	levels	of	the
categorical	variable

	use	the	VARCLUS	procedure	and	interpret	the	results	in	order
to	identify	redundant	input	variables

	use	the	1-R2	ratio	to	identify	the	variable	that	best	represents
a	cluster

	explain	the	Spearman’s	correlation	coefficient	and
Hoeffding’s	D	statistic	and	how	they	are	used	to	detect
irrelevant	variables	and	non-linear	associations

	use	the	CORR	procedure,	including	the	VAR	and	WITH
statements,	to	create	the	Spearman’s	correlation	and
Hoeffding’s	D	statistic		

	create	and	interpret	a	scatter	plot	of	the	ranks	of	the
Spearman’s	correlation	and	Hoeffding’s	D	statistic	in	order	to
screen	for	irrelevant	variables	and	non-linear	associations

	bin	an	input	variable,	calculate	the	empirical	logit	for	each
bin,	and	produce	an	empirical	logit	plot	to	assess	the
relationship	between	the	input	variable	and	the	target
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Missing	Values
A	missing	data	value	occurs	when	an	observation	has	no	value	for
a	variable.	Missing	information	can	arise	from	various	situations.
When	data	is	collected	by	way	of	a	survey,	respondents	can	refuse
to	answer	a	question	or	they	may	not	have	the	information	at	hand.
In	many	data	collection	situations,	a	variable	may	be	blank	simply
because	the	scenario	does	not	apply	to	that	customer,	business
transaction,	or	hospital	encounter,	for	example.	In	the	Ames
Housing	Case,	the	variable,	Lot_Frontage,	defined	as	the	linear	feet
of	street	connected	to	the	property,	has	missing	data,	possibly
because	the	home	is	on	a	property	that	has	no	connection	to	a
street.	In	any	event,	analysis	with	complete	data	is	rare,	so
handling	missing	data	is	imperative!

Suffice	it	to	say	that	most	statistical	procedures	assume	that	the
data	source	is	complete,	that	is,	all	information	is	known	for	all
observations	in	the	data	set.		So,	what	should	the	analyst	do	when
that	is	not	the	case?	There	are	two	strategies,	complete-case
analysis	and	imputation,	both	of	which	will	be	discussed	in	this
section.

Complete-Case	Analysis
Most	SAS	procedures,	by	default,	utilize	listwise	deletion.	Here	an
observation	is	deleted	from	the	analysis	if	it	is	missing	data	on	any
one	variable	used	in	that	analysis,	thereby	resulting	in	a	complete-
case	analysis.	A	complete-case	analysis	is	acceptable	if	the
percentage	of	missing	values	is	small	and	occurs	for	very	few
variables.	

However,	there	are	some	situations	where	complete-case	analysis	is
unacceptable.	First,	when	the	analysis	involves	a	large	number	of	k
predictors,	or	high	dimensionality,	the	analyst	should	expect
missing	data	to	be	an	even	bigger	problem.	Specifically,	the
expected	proportion	of	complete	cases	is	(1-α)k,	where	α	is	the
proportion	of	missing	observations	for	each	predictor.	For	example,
if	a	data	set	has	5%	missing	on	each	of	50	variables,	a	complete-
case	analysis	would	be	conducted	on	only	7.7%	of	the	original
sample.	



Also,	in	cases	where	the	percentage	of	missing	observations	on	a
single	input	variable	is	relatively	large,	a	complete-case	analysis	is
obviously	not	acceptable.	An	alternative	approach	would	be	to
utilize	a	subject	matter	expert	to	verify	that	either	the	variable	is
not	important	to	the	business	case	or	that	there	are	proxy	variables
with	complete	data	which	can	be	used	in	the	analysis	instead.

Using	Imputation	with	a	Missing	Value	Indicator
An	alternative	to	the	complete-case	approach	is	imputation.
Imputation	methods	employ	statistical	strategies	for	replacing	the
missing	values	with	representative	non-missing	values.	As	a	result,
all	observations	have	complete	(or	imputed)	values	and	are
retained	for	analyses.

In	order	to	consider	imputation	approaches,	the	analyst	must	first
consider	the	‘pattern	of	missingness’	as	mentioned	in	Chapter	1,
“Statistics	and	Making	Sense	of	Our	World.”		If	observations	are
either	(1)	missing	completely	at	random	(MCAR),	which	is	rarely
the	case,	or	(2)	missing	at	random	(MAR),	where	the	reason	for
missing	is	not	related	to	the	outcome	variable,	it	is	an	acceptable
practice	to	use	imputation	methods.		Remember,	when	observations
are	not	missing	at	random	(NMAR)	and	are	omitted	from
analyses,	the	results	will	be	biased	and	should	not	be	used	for
descriptive	nor	inferential	purposes	(see	Chapter	1	,	“Statistics	and
Making	Sense	of	Our	World,”	for	more	information	on	missing
data).

When	conducting	predictive	modeling,	a	big	concern	exists	when
the	pattern	of	missingness	is	related	to	the	target	variable,	the
variable	to	be	predicted.	One	solution	to	this	problem	is	to	consider
both	imputation	and	a	missing	value	indicator	variable.	For
example,	if	the	variable	having	missing	values	is	numeric
continuous,	the	analyst	would	create	a	missing	value	indicator
variable	associated	with	that	variable,	where	the	indicator	variable
would	be	assigned	a	value	of	1	if	the	observation	has	a	missing
value	on	the	variable	of	interest,	or	0	otherwise.	At	the	same	time,
the	analyst	would	then	replace	the	value	of	the	missing	variable
with	a	representative	value,	say	the	median.			

If	the	variable	having	missing	values	is	a	binary	categorical
variable,	coded	0	for	‘No’	and	1	for	‘Yes,’	the	analyst	would	still	use



the	median	for	imputation,	which	is	equivalent	to	assigning	the
value	that	occurs	most	often	in	place	of	the	missing	value.	A
missing	value	indicator	variable	would	be	created	as	well.
Consider	the	Ames	Housing	data	and	the	29	potential	numeric	and
binary	inputs	variables	considered	for	modeling	in	this	book.	Only
one	of	the	29	input	variables	(EXCELLENT_HEAT_QC)	has	missing
values	and	for	only	one	of	the	1389	houses.	As	a	result,	we	have
created	a	version	of	AMES300	SAS	data	set	(called	AMES300MISS)
for	illustrative	purposes,	where	missing	values	were	randomly
assigned	on	these	numeric	variables:	above	ground	living	area
(GR_LIV_AREA)	and	total	basement	area	(TOTAL_BSMT_SF)	and	the
binary-coded	kitchen	quality	variable	(HIGH_KITCEN_QUALITY).

Program	8.1	Ames	Housing	Data	with	Missing	Values	reads	the
AMES300MISS	SAS	data	set	and	saves	it	in	the	temporary	data	set
called	AMESMISS.	The	PRINT	procedure	is	applied	to	the
AMESMISS	data	set	and	provides	a	listing	of	the	first	24	values	as
seen	in	Output	8.1	Ames	Housing	Data	with	Missing	Values.				
Program	8.1	Ames	Housing	Data	with	Missing	Values		

libname	sasba	‘c:\sasba\ames’;

data	amesmiss;

set	sasba.ames300miss;

run;

	

proc	print	data=amesmiss(obs=24);

var	Total_Bsmt_SF	Gr_Liv_Area	High_Kitchen_Quality;

title	‘Ames	Housing	with	Missing	Data’;

run;

From	Output	8.1	Ames	Housing	Data	with	Missing	Values,	you	can
see	that	there	is	missing	data	on	the	variables,	TOTAL_BSMT_SF	for
observations	7	and	21,	GR_LIV_AREA	for	observations	14,	17,	and
19,	and	HIGH_KITCHEN_QUALITY	for	observations	13,	21,	and	24.
Output	8.1	Ames	Housing	Data	with	Missing	Values

Obs Total_Bsmt_SF Gr_Liv_Area High_Kitchen_Quality

1 864 864 0

2 1829 1829 0

3 1328 1328 0



4 1056 1063 0

5 1947 2207 0

6 972 972 0

7 . 912 0

8 1978 1978 1

9 1501 1801 0

10 2002 2018 1

11 882 882 0

12 1090 1370 0

13 1064 1350 .

14 3094 . 1

15 1566 1600 1

16 2020 2020 1

17 3206 . 1

18 2452 2452 1

19 2458 . 1

20 1114 1114 1

21 . 864 .

22 1740 1740 1

23 1048 1728 0

24 1313 1313 .

Program	8.2	Ames	Housing	with	Imputed	Data	creates	a	dummy
variable	for	each	of	the	three	variables	having	missing	values	and
then	replaces	those	missing	values	on	each	of	the	variables	with	the
median.
Program	8.2	Ames	Housing	with	Imputed	Data

data	amesmi;

set	amesmiss;

array	mi{*}	MI_Total_Bsmt_SF	MI_Gr_Liv_Area
MI_High_Kitchen_Quality;

array	x_impute{*}	Total_Bsmt_SF	Gr_Liv_Area
High_Kitchen_Quality;

	

do	i=1	to	dim(mi);



mi{i}=(x_impute{i}=.);

end;

run;

	

proc	stdize	data=amesmi

reponly

method=median

out=med_impute;

var	Total_Bsmt_SF	Gr_Liv_Area	High_Kitchen_Quality;

run;

	

proc	print	data=med_impute(obs=24);

var	Total_Bsmt_SF	MI_Total_Bsmt_SF

Gr_Liv_Area	MI_Gr_Liv_Area

High_Kitchen_Quality	MI_High_Kitchen_Quality;

title	‘Ames	Housing	with	Imputed	Data’;

run;

From	Program	8.2	Ames	Housing	with	Imputed	Data,	we	can	see
that	a	new	temporary	data	set,	called	AMESMI,	is	created	which
will	contain	all	missing	indicator	information.	Within	that	new	data
set,	two	data	arrays	are	created.	The	first	array	statement	creates
an	array	called	MI	which	groups	the	three	new	missing	value
indicator	variables,	MI_TOTAL_BSMT_SF,	MI_GR_LIV_AREA	,	and
MI_HIGH_KITCHEN_QUALITY.	The	second	array	statement	creates
an	array	called	X_IMPUTE	which	groups	the	original	variables,
TOTAL_BSMT_SF,	GR_LIV_AREA,	and	HIGH_KITCHEN_QUALITY.
Note	that	because	each	array	has	three	elements,	the	dimension	of
each	array	is	three.

Next,	the	DO	loop	populates	each	of	the	three	the	missing	value
indicator	variables,	as	i	is	incremented	from	1	to	DIM(MI),	where
DIM(MI)=3.	So,	for	example,	when	i	=	1,	MI(1),	which	represents
MI_TOTAL_BSMT_SF,	is	set	to	1	if	X_IMPUTE(1)	is	missing,	in	other
words,	where	the	first	element	of	the	array,	TOTAL_BSMT_SF,	is
missing;	otherwise	MI_TOTAL_BSMT_SF	is	set	to	0.	This	process	is
done	for	all	observations,	and	then	i	is	incremented	to	2.		Here,
MI(2),	which	represents	MI_GR_LIV_AREA,	is	set	to	1	if
X_IMPUTE(2)	is	missing,	or	0	otherwise.	Finally,	the	same	process
is	carried	out	when	i	=	3,	for	MI_HIGH_KITCHEN_QUALITY.



The	STDIZE	procedure	is	ordinarily	used	to	standardize	values	on
variables	named	in	the	VAR	statement.	Here,	we	use	the	REPONLY
option	which	requests	that	the	only	operation	to	be	invoked	is	the
replacement	of	missing	values;	data	is	not	standardized.	The
METHOD=MEDIAN	requests	that	missing	values	on	a	variable	are
replaced	by	the	median	value	of	that	variable.	The	results	of	the
procedure	are	saved	in	the	temporary	SAS	data	set,	called
MED_IMPUTE.	Finally,	the	PRINT	procedure	is	used	to	illustrate	the
values	of	the	newly	created	variables,	as	displayed	in	Output	8.2
Ames	Housing	with	Imputed	Data.
Output	8.2		Ames	Housing	with	Imputed	Data

Obs Total_Bsmt_SF MI_Total_Bsmt_SF Gr_Liv_Area MI_Gr_Liv_Area High_Kitchen_Quality

1 864 0 864 0

2 1829 0 1829 0

3 1328 0 1328 0

4 1056 0 1063 0

5 1947 0 2207 0

6 972 0 972 0

7 915 1 912 0

8 1978 0 1978 0

9 1501 0 1801 0

10 2002 0 2018 0

11 882 0 882 0

12 1090 0 1370 0

13 1064 0 1350 0

14 3094 0 1434 1

15 1566 0 1600 0

16 2020 0 2020 0

17 3206 0 1434 1

18 2452 0 2452 0

19 2458 0 1434 1

20 1114 0 1114 0

21 915 1 864 0



22 1740 0 1740 0

23 1048 0 1728 0

24 1313 0 1313 0

From	Output	8.2	Ames	Housing	with	Imputed	Data,	first	note
observations	7	and	21,	which	originally	had	missing	values	on	the
numeric	continuous	variable	TOTAL_BSMT_SF,	now	have	their
missing	values	set	to	915,	the	median;	the	missing	value	indicator
variable,	MI_TOTAL_BSMT_SF,	is	assigned	a	value	of	1,	indicating
that	TOTAL_BSMT_SF	has	been	assigned	the	median	value	for	that
observation.	All	other	observations,	where	the	values	on
TOTAL_BSMT_SF	are	non-missing,	are	assigned	a	value	of	0	for	the
missing	value	indicator.		

Similarly,	median	value	imputation	is	applied	to	the	numeric
continuous	variable,	GR_LIV_AREA,	where	the	median	of	1434	is
assigned	for	observations	14,	17,	and	19.	The	missing	value
indicator,	MI_GR_LIV_AREA	is	set	to	1	for	those	observations	as
well.

Finally,	for	the	categorical	dummy	variable,
HIGH_KITCHEN_QUALITY,	the	median	value	is	equal	to	0,
indicating	that	at	least	50%	of	the	houses	were	coded	as	‘0’	for	high
kitchen	quality;	therefore,	all	houses	with	missing	values	on	this
variable	are	assigned	as	value	of	0;	again,	the	missing	value
indicator,	MI_HIGH_KITCHEN_QUALITY	is	set	to	1,	as	seen	for
observations	13,	21,	and	24.

All	six	variables,	the	three	imputed	variables	and	the	three
indicator	variables,	can	be	used	in	subsequent	predictive	modeling;
however,	there	are	some	considerations	before	doing	so:

First,	if	a	variable	has	a	very	large	proportion	of	missing	values
(say,	more	than	0.50),	then	the	imputed	values	are	based	upon	a
reduced	sample	size,	and	therefore,	may	be	inaccurate.	Also,	in	that
case,	a	large	number	of	missing	values	are	assigned	the	imputed
value,	resulting	in	a	reduced	(and	biased)	variance	for	that	variable
and	making	the	imputed	variable	worthless;	in	this	case,	the
missing	value	indicator	can	still	be	considered.

Second,	if	a	variable	has	a	very	small	proportion	of	missing,	say
less	than	0.01,	then	the	missing	indicator	variable	has	little	value	in



predictive	modeling;	however,	the	imputed	variable	will	have	little,
if	any,	bias.

Finally,	it	is	imperative	that	the	analyst	know	the	sample	size	for
analysis	and	the	deletion	method	used	by	the	software	in	order	to
adequately	assess	the	effects	of	missing	data	and	apply	these
techniques	where	appropriate.

While	the	approach	described	here	is	relatively	simple,	there	are
some	advantages.	As	stated	earlier,	imputation	allows	the	analyst	to
utilize	all	observations	under	investigation.	Furthermore,	it	allows
for	scoring	future	cases	which	may	also	have	missing	data.		In	this
case,	the	analyst	can	simply	code	the	missing	value	indicator	as	1
and,	at	the	same	time,	substitute	the	missing	value	with	the	median
of	the	data	used	to	build	the	predictive	model	(note	that	scoring
will	be	covered	in	detail	in	Chapter	11,	“Measure	of	Model
Performance”).

Categorical	Input	Variables
In	predictive	modeling,	the	analyst	can	use	both	numeric	and
categorical	input	variables.	Each	type	of	variable	poses	different
kinds	of	problems.	In	this	section,	we	consider	only	categorical
variables,	paying	specific	attention	to	sparse	events	and	quasi-
complete	separation.	We	discuss	Greenacre’s	method	as	a	possible
remedy.

Sparse	Events	and	Quasi-Complete	Separation
While	there	are	many	problems	that	can	arise	when	using
categorical	input	variables	for	predictive	modeling,	the	analyst
should	pay	close	attention	to	the	most	common	issues.	Those	occur
when:	(1)	there	are	numerous	outcomes,	or	levels,	of	the
categorical	input	variable,	(2)	a	categorical	input	variable	has	a
level	that	rarely	occurs,	or	(3)	a	categorical	input	variable	has	a
level	that	almost	always	occurs.	

Consider,	first,	the	problem	of	having	numerous	levels	for	a
categorical	input.	Ordinarily,	when	using	a	categorical	input,	the
analyst	will	create	a	dummy	variable.	For	example,	when	using
gender	as	an	input	for	predictive	modeling,	the	analyst	would



create	the	dummy	variable,	GENDER,	which	is	coded	as	‘1’	for
Males	and	‘0’	for	Females.	Specifically,	there	are	k=2	levels	(male
and	female),	thereby	warranting	one	dummy	variable.	As	the
number	of	levels,	k,	increases,	the	number	of	dummy	variables	(k-
1)	increases.	Here	the	analyst	must	then	be	concerned	with	the
curse	of	dimensionality	(Bellman,	1957),	where	more	data	is
needed	to	ensure	that	a	sufficient	number	of	observations	exist	for
the	combinations	of	variables	under	investigation.

Consider	the	Ames	Housing	Case	where	the	analyst	interested	in
predicting	BONUS	possibly	using	the	categorical	input	variable,
NEIGHBORHOOD,	with	twenty	possible	levels,	as	shown	in	Table
8.1	Contingency	Table	of	Bonus	by	Neighborhood.	This	categorical
variable	would	then	warrant	creating	19	dummy	variables.	With
the	large	number	of	categories,	note	that	the	dummy	variables
representing	the	four	smallest	neighborhoods	(SWISU,	Somerset,
Stone	Brooke	and	Veenker)	account	for	less	than	4.5%	of	the	entire
data	set.	

Furthermore,	when	considering	the	frequency	of	bonus	by
neighborhood,	there	are	four	levels,	or	neighborhoods	(North
Ridge,	North	Ridge	Heights,	Sommerset,	and	Stone	Brooke)	where
100%	of	the	houses	have	BONUS=1	(and	no	houses	have
BONUS=0).	This	scenario	is	referred	to	as	quasi-complete
separation,	where	the	target	(BONUS)	occurs	either	always	or
never	for	a	specific	level	of	the	categorical	input	variable.	When
there	is	little	or	no	variation	in	an	input	variable,	as	is	the	case	for
rare	and	frequent	events,	that	input	variable	serves	as	a	poor
discriminator.	In	fact,	as	will	be	seen	in	Chapter	10,	“Logistic
Regression	Analysis,”	when	there	is	quasi-complete	separation
exists,	the	odds-ratios	for	the	target	will	be	infinity	and	prevent
interpretation.

Note	that	having	many	levels	for	a	categorical	variable	is	directly
related	to	the	problems	of	rare	or	frequent	events.	In	fact,	as	the
number	of	levels	for	a	variable	increases,	the	chance	of	sparse	cells
increases.		Furthermore,	it	is	entirely	possible	that	if	the	analyst
considers	a	third	variable	in	combination	with	bonus	and
neighborhood,	many	more	cells	would	be	sparse.	In	any	of	these
situations,	there	is	not	enough	information	to	model	that
combination	of	events.



In	the	case	where	the	number	of	levels	is	relatively	small,	however,
there	is	still	the	possibility	that	rare	(or	frequent)	events	occur.
Consider,	again,	the	Ames	Housing	Case.	One	variable,	UTILITIES,
describes	whether	or	not	the	home	had	direct	access	to	electricity,
gas,	water,	or	sewerage.	All	homes	except	one	(99.95%)	had	the
value	of	‘AllPub’	while	a	single	home	had	access	to	all	but
sewerage,	coded	as	‘NoSewr.’	In	this	case,	UTILITIES	would	not	be
used	in	predictive	modeling.	

To	remedy	the	problem,	the	analyst	may	attempt	to	collect	more
data	to	fill	in	the	empty	cells,	but	that	can	sometimes	be	impossible
or	impractical.	An	alternative	solution	is	to	collapse	levels	of	the
categorical	variable.	

The	next	section	will	describe	Greenacre’s	method,	which	is	a	way
to	collapse	levels	of	a	categorical	input	variable	measured	at	the
nominal	level.	

Greenacre’s	Method	Using	the	CLUSTER	Procedure
In	the	absence	of	a	subject	matter	expert,	the	analyst	may	want	to
use	a	more	autonomous	remedy	for	the	quasi-complete	separation
problem.	Greenacre’s	method	(1988)	is	a	data-driven	approach
for	collapsing	the	levels	of	the	categorical	input	variable	such	that
the	reduction	in	the	chi-square	value	for	measuring	its	relationship
with	the	target	variable	is	minimized.	

For	example,	in	the	Ames	Housing	Case,	the	chi-square	test	statistic
for	measuring	the	relationship	between,	or	independence	of,
BONUS	and	NEIGHBORHOOD	is	657.78.	As	you	will	soon	see,	it	is
possible	to	collapse	the	neighborhoods	into	five	groups	so	that	the
chi-square	statistic	is	reduced	only	to	649.65.	In	this	case,	very
little	information	about	the	relationship	is	lost	by	collapsing	the
number	of	levels	of	the	input	variable	from	twenty	to	five.	

The	basic	idea	is	to	collapse	categories	that	have	the	same
proportions	of	the	levels	in	the	target	variable.	For	example,	as
displayed	in	Table	8.1	Contingency	Table	of	Bonus	by
Neighborhood,	the	proportions	of	BONUS=1	versus	BONUS=0	for
the	neighborhood	College	Creek	(CollgCr)	are	about	a	72%	and
28%,	respectively;	those	same	proportions	are	70%	and	30%	for	the
neighborhood	Gilbert.	Because	the	breakdown	of	bonus	to	no-



bonus	is	relatively	the	same	for	both	neighborhoods,	those	two
neighborhoods	could	be	combined	with	little	impact	to	their
relationship	to	the	target	(BONUS).
Table	8.1		Contingency	Table	of	Bonus	by	Neighborhood

Table	of	Bonus	by	Neighborhood

Bonus Neighborhood

Fre
Percent
Row	Pct
Col	Pct

Brk
Side ClearCr CollgCr Crawfor Edwards Gilbert IDOTRR Mitchel

N
Ames

0 67
4.82
8.11
91.78

6
0.43
0.73
20.69

43
3.10
5.21
28.29

25
1.80
3.03
39.06

76
5.47
9.20
87.36

26
1.87
3.15
29.55

30
2.16
3.63
93.75

37
2.66
4.48
67.27

226
16.27
27.36
88.28

1 6
0.43
1.07
8.22

23
1.66
4.09
79.31

109
7.85
19.36
71.71

39
2.81
6.93
60.94

11
0.79
1.95
12.64

62
4.46
11.01
70.45

2
0.14
0.36
6.25

18
1.30
3.20
32.73

30
2.16
5.33
11.72

Total 73
5.26

29
2.09

152
10.94

64
4.61

87
6.26

88
6.34

32
2.30

55
3.96

256
18.43

	

Table	of	Bonus	by	Neighborhood

Bonus Neighborhood

Freq
Percent
Row	Pct
Col	Pct

Nridg
Ht

Old
Town SWISU Sawyer

Sawyer
W Somerst

Stone
Br Timber Veenker

0 0
0.00
0.00
0.00

116
8.35
14.04
93.55

23
1.66
2.78
88.46

89
6.41
10.77
97.80

22
1.58
2.66
37.93

0
0.00
0.00
0.00

0
0.00
0.00
0.00

5
0.36
0.61
12.82

2
0.14
0.24
15.38

1 49
3.53
8.70

100.00

8
0.58
1.42
6.45

3
0.22
0.53
11.54

2
0.14
0.36
2.20

36
2.59
6.39
62.07

17
1.22
3.02

100.00

6
0.43
1.07

100.00

34
2.45
6.04
87.18

11
0.79
1.95
84.62

Total 49
3.53

124
8.93

26
1.87

91
6.55

58
4.18

17
1.22

6
0.43

39
2.81

13
0.94

In	fact,	the	analyst	could	collapse	various	neighborhoods	with
relative	ease	and	check	for	an	insignificant	reduction	in	the	chi-
squared	test	statistic	using	the	newly	created	neighborhood
variable	with	now	only	19	levels;	however,	the	process	would



prove	to	be	tedious.	Therefore,	we	will	describe,	by	parts,	Program
8.3	Combining	Neighborhoods	from	Ames	Housing	Data	Using
Greenacre’s	Method	(SAS	Institute,	2012):
Program	8.3	Combining	Neighborhoods	from	Ames	Data	Housing	Using	Greenacre’s
Method

libname	sasba	‘c:\sasba\ames’;

data	ames70;

set	sasba.ames70;

run;

	

********Part	A	which	produces	Output8.3a******;

proc	freq	data=ames70	noprint;

tables	bonus*neighborhood/chisq;

output	out=chi	(keep=_pchi_)	chisq;

run;

	

proc	print	data=chi;

title	‘Chi-square	for	Bonus	by	Neighborhood’;

run;

	

********Part	B	which	produces	Output8.3b******;

proc	means	data=ames70	noprint	nway;

class	neighborhood;

var	bonus;

output	out=propbonus	mean=prop;

run;

	

proc	print	data=propbonus;

title	‘Proportion	of	Houses	with	Bonus	by	Neighborhood’;

run;

	
********Part	C	which	produces	Output8.3c	and	Output8.3d******;

proc	cluster	data=propbonus	method=ward	outtree=treeinfo

plots=(dendrogram(vertical	height=rsq));

freq	_freq_;

var	prop;



id	neighborhood;

run;

	

title	‘Results	of	Cluster	Analysis	on	Ames	Neighborhoods’;

ods	output	clusterhistory=cluster;

run;

	
	

********Part	D	which	produces	Output8.3e******;

proc	print	data=cluster;

title	‘Contents	of	the	Cluster	History’;

run;

	
********Part	E	which	produces	Output8.3f******;

data	cutoff;

if	_n_=1	then	set	chi;

set	cluster;

chisquare=_pchi_*rsquared;

degfree=numberofclusters-1;

logpvalue=logsdf(‘CHISQ’,chisquare,degfree);

run;

	

proc	print	data=cutoff;

var	numberofclusters	Semipartialrsq							rsquared	chisquare
degfree

logpvalue;

title	‘Log	P-Value	Information	and	the	Cluster	History’;

run;

	

********Part	F	which	produces	Output8.3g******;

proc	sgplot	data=cutoff;							

scatter	y=logpvalue	x=numberofclusters

/	markerattrs=(color=blue	symbol=circlefilled);

xaxis	label=“Number	of	Clusters”;

yaxis	label=“Log	of	P-Value”	min=-350	max=-250;

title	“Plot	of	Log	P-Value	by	Number	of	Clusters”;

run;



	
********Part	G	which	produces	Output8.3h******;

proc	sql;

select	numberofclusters	into	:ncl

from	cutoff

having	logpvalue=min(logpvalue);

quit;

run;

	

proc	tree	data=treeinfo	nclusters=&ncl	out=clus_solution;

id	neighborhood;

run;

	

proc	sort	data=clus_solution;

by	clusname;

run;

	

proc	print	data=clus_solution;

by	clusname;

id	clusname;

title	‘List	of	Neighborhoods	by	Cluster’;

run;

For	Greenacre’s	method,	the	value	of	the	chi-squared	statistic	for
BONUS	by	NEIGHBORHOOD	is	needed.	Therefore,	as	described	in
Part	A	of	Program	8.3	Combining	Neighborhoods	from	Ames	Data
Housing	Using	Greenacre’s	Method,	the	FREQ	procedure	with	the
CHISQ	option	is	used	on	the	AMES70	data	set.	The	NOPRINT
option	suppresses	the	contingency	table,	although	we	provide	it	in
Table	8.1		Contingency	Table	of	Bonus	by	Neighborhood.	The
OUTPUT	statement	is	used	to	save	the	chi-square	test	statistic	in	a
temporary	SAS	file	called	CHI,	as	displayed	in	Output	8.3a	Chi-
square	for	Bonus	by	Neighborhood.
Output	8.3a	Chi-square	for	Bonus	by	Neighborhood

Obs _PCHI_

1 657.781



The	next	step	in	the	process	requires	saving	both	the	numbers	and
proportions	of	houses	where	a	bonus	is	earned	(BONUS=1)	for
each	of	the	20	neighborhoods.		Note	that	the	mean	of	a	binary	(0-
1)	variable	is	simply	the	proportion	of	1s.	Therefore,	Part	B	of
	Program	8.3	uses	the	MEANS	procedure	on	the	variable	BONUS.
The	NWAY	option	requests	the	mean	for	each	of	the	neighborhoods
as	defined	by	the	CLASS	statement.	The	OUTPUT	statement
requests	that	the	results	of	the	MEANS	procedure	be	saved	in	the
temporary	SAS	data	set	called	PROPBONUS	and	renames	the
variable	MEAN	to	PROP.	The	PRINT	procedure	provides	for	a
listing	of	the	data	set	PROPBONUS,	as	displayed	in	Output	8.3b
Proportion	of	Houses	with	Bonus	by	Neighborhood.
Output	8.3b		Proportion	of	Houses	with	Bonus	by	Neighborhood

Obs Neighborhood _TYPE_ _FREQ_ Prop

1 BrkSide 1 73 0.08219

2 ClearCr 1 29 0.79310

3 CollgCr 1 152 0.71711

4 Crawfor 1 64 0.60938

5 Edwards 1 87 0.12644

6 Gilbert 1 88 0.70455

7 IDOTRR 1 32 0.06250

8 Mitchel 1 55 0.32727

9 NAmes 1 256 0.11719

10 NWAmes 1 82 0.59756

11 NoRidge 1 48 1.00000

12 NridgHt 1 49 1.00000

13 OldTown 1 124 0.06452

14 SWISU 1 26 0.11538

15 Sawyer 1 91 0.02198

16 SawyerW 1 58 0.62069

17 Somerst 1 17 1.00000

18 StoneBr 1 6 1.00000

19 Timber 1 39 0.87179

20 Veenker 1 13 0.84615



Next,	a	cluster	analysis	is	conducted	using	the	SAS	data	set
PROPBONUS,	as	illustrated	in	the	Part	C	of	Program	8.3.	The
CLUSTER	procedure	with	the	METHOD=WARD	option	and	the
FREQ	statement	will	provide	clustering	of	groups	with	similar
proportions	identical	to	that	of	Greenacre’s	method	(SAS	Institute,
2012).		

The	PLOTS=DENDROGRAM	option	with	the	VERTICAL	and
HEIGHT	options	requests	that	a	vertical	dendrogram	be	provided
with	height	based	upon	the	RSQ	value.	Information	on	the	final
clusters	is	saved	in	the	temporary	SAS	data	set,	TREEINFO,	using
the	OUTTREE=	option	and	the	ID	statement	requests	that
observations	are	identified	by	their	neighborhood	in	the	TREEINFO
data	set	when	the	cluster	history	is	printed.

Finally,	the	results	of	the	CLUSTER	procedure	are	saved	in	a
temporary	SAS	data	set,	called	CLUSTER,	using	the	ODS	OUTPUT
statement.	The	results	of	the	CLUSTER	procedure	and	the
dendrogram	are	displayed	in	Output	8.3c		Results	of	Cluster
Analysis	on	Ames	Neighborhoods	and	Output	8.3d	Dendrogram		of
Cluster	Analysis	Results	by	Neighborhoods,	respectively.
Output	8.3c		Results	of	Cluster	Analysis	on	Ames	Neighborhoods

Cluster	History

Number
of

Clusters Clusters	Joined Freq
Semipartial
R-Square R-Square Tie

19 NoRidge NridgHt 97 0.0000 1.00 T

18 CL19 Somerst 114 0.0000 1.00 T

17 CL18 StoneBr 120 0.0000 1.00 	

16 NAmes SWISU 282 0.0000 1.00 	

15 IDOTRR OldTown 156 0.0000 1.00 	

14 Crawfor SawyerW 122 0.0000 1.00 	

13 Edwards CL16 369 0.0000 1.00 	

12 Timber Veenker 52 0.0000 1.00 	

11 CollgCr Gilbert 240 0.0001 1.00 	

10 CL14 NWAmes 204 0.0001 1.00 	

9 BrkSide CL15 229 0.0001 1.00 	

8 ClearCr CL12 81 0.0006 .999 	



7 CL9 Sawyer 320 0.0009 .998 	

6 CL7 CL13 689 0.0043 .994 	

5 CL8 CL11 321 0.0062 .988 	

4 CL5 CL10 525 0.0147 .973 	

3 CL6 Mitchel 744 0.0181 .955 	

2 CL4 CL17 645 0.0587 .896 	

1 CL3 CL2 1389 0.8962 .000 	

From	Output	8.3c		Results	of	Cluster	Analysis	on	Ames
Neighborhoods,	note	in	the	first	row	that	the	neighborhoods,
NoRidge	and	NridgHt,	are	combined	first,	to	form	cluster	19	(CL19)
resulting	in	97	total	neighborhoods.	The	R-square	value	represents
the	proportion	of	the	chi-square	in	the	original	20x2	contingency
table	(χ2	=	657.781)	remaining	after	those	two	neighborhoods	are
combined;	the	semipartial	R-square	represents	the	change	in	the
chi-square.	So	in	the	first	step,	when	the	two	neighborhoods	are
combined	there	is	no	change	in	the	chi-square	value	to	the	fourth
significant	digit;	in	other	words,	essentially	100%	of	the	original
chi-square	value	is	retained	after	collapsing	to	19	clusters.

In	the	second	row,	note	that	cluster	19	(CL19	already	made	up	of
NoRidge	and	NridgHt)	and	the	neighborhood	Somerset	are
combined	to	form	a	new	cluster	18	(CL18)	containing	114
neighborhoods.	The	reduction	from	19	to	18	clusters	results	in	no
significant	reduction	in	the	chi-square,	as	represented	by	both	the
R-square	and	semipartial	R-square	values.

The	third	row	shows	that	the	neighborhood	StoneBr	is	combined
with	CL18	to	form	cluster	17	(CL17),	made	up	now	of	four
neighborhoods,	as	illustrated	by	the	rightmost	branch	of	the
dendrogram	in	Output	8.3d		Dendrogram	of	Cluster	Analysis
Results	by	Neighborhoods.	In	fact,	the	dendrogram	gives	a	great
visual	on	how	the	R-square	changes	with	every	collapse	of	two
clusters,	and	specifically	illustrates	where	the	collapsing	may	end.

Finally,	this	process	continues	so	that	each	subsequent	cluster
results	in	a	minimal	reduction	in	the	original	chi-square	until	all
neighborhoods	are	combined	into	one	cluster;	this	is	represented	in
the	last	line	when	clusters	2	and	3	are	combined	resulting	in	a	total
reduction	in	the	original	chi-square.



Note	that	the	first	two	observations	each	have	a	variable,	Tie,	with
a	value	of	‘T.’	This	is	an	indication	that	the	clustering	at	that	level
is	not	unique.	If	a	tie	occurs	early	in	the	cluster	history,	ordinarily
there	is	little	effect	on	the	later	stages;	however,	if	a	tie	occurs
midway	or	later	in	the	process,	the	analyst	should	investigate
further.
Output	8.3d		Dendrogram	of	Cluster	Analysis	Results	by	Neighborhoods

A	PRINT	procedure	is	included	in	Part	D	of		Program	8.3
Combining	Neighborhoods	from	Ames	Data	Housing	Using
Greenacre’s	Method	to	illustrate	the	contents	of	the	CLUSTER	data
set	as	displayed	in	Output	8.3e	Contents	of	Cluster	History,	along
with	the	names	of	variables	needed	for	subsequent	analysis.
Output	8.3e		Contents	of	the	Cluster	History

Obs NumberOfClusters Idj1 Idj2 FreqOfNewCluster SemipartialRSq

1 19 NoRidge NridgHt 97 0.0000

2 18 CL19 Somerst 114 0.0000

3 17 CL18 StoneBr 120 0.0000

4 16 Names SWISU 282 0.0000



5 15 IDOTRR OldTown 156 0.0000

6 14 Crawfor SawyerW 122 0.0000

7 13 Edwards CL16 369 0.0000

8 12 Timber Veenker 52 0.0000

9 11 CollgCr Gilbert 240 0.0001

10 10 CL14 NWAmes 204 0.0001

11 9 BrkSide CL15 229 0.0001

12 8 ClearCr CL12 81 0.0006

13 7 CL9 Sawyer 320 0.0009

14 6 CL7 CL13 689 0.0043

15 5 CL8 CL11 321 0.0062

16 4 CL5 CL10 525 0.0147

17 3 CL6 Mitchel 744 0.0181

18 2 CL4 CL17 645 0.0587

19 1 CL3 CL2 1389 0.8962

Upon	review	of	the	cluster	results,	the	question	becomes—out	of
the	nineteen	steps	in	the	cluster	analysis,	where	in	this	process	does
the	analyst	stop	when	there	is	no	subject	matter	expertise?	In	other
words,	how	can	the	process	be	automated	so	that	the	analyst
selects	the	best	number	of	clusters?		

The	ultimate	answer	can	be	found	using	the	p-value	of	the	chi-
square	value	at	each	step	of	the	clustering.	In	other	words,	the
analyst	can	define	a	stopping	criterion	as	that	iteration	where	the
p-value	of	the	chi-square	test	statistic	between	the	target	variable
and	the	collapsed	input	variable	is	minimized.	For	ease	of	data
visualization,	the	log	of	the	p-values	at	each	step	is	calculated	and
plotted	using	Part	E	of	Program	8.3	Combining	Neighborhoods
from	Ames	Data	Housing	Using	Greenacre’s	Method.

In	the	first	step,	the	chi-square	statistic	(_PCHI_	=	657.781)	from
the	original	contingency	table	of	BONUS	by	the	20	levels	of
NEIGHBORHOOD	must	be	merged	with	each	of	the	19	rows	of	the
cluster	history	data.	An	inspection	of	Part	E	of	Program	8.3
Combining	Neighborhoods	from	Ames	Data	Housing	Using
Greenacre’s	Method	shows	that	a	new	data	set,	called	CUTOFF,	is
created	using	both	a	SET	and	a	conditional	SET	statement.	In



general,	a	conditional	SET	statement	serves	as	a	RETAIN	statement
for	all	variables	in	the	data	set,	CHI,	namely,	the	_PCHI_	variable;
where	the	value	of	_CHI_	is	retained	for	each	observation	in	the
CLUSTER	data	as	it	is	placed	in	the	CUTOFF	data	set	(Warren,
2007).

Using	the	original	chi-square	statistic	and	the	R-square,	the	chi-
square	value	for	each	iteration	is	calculated,	along	with	its	degrees
of	freedom	and	log	p-value.	The	details	of	that	data	are	displayed
in	Output	8.3f	Log	P-Value	Information	and	Cluster	History.	A
visual	display	is	provided	using	the	SGPLOT	procedure,	as	shown	in
Output	8.3g	Plot	of	Log	P-Value	by	Number	of	Clusters.	A	visual
inspection	of	the	plot	further	illustrates	that	the	number	of	clusters
which	results	in	the	minimum	reduction	of	the	original	chi-square
statistic	is	five.
Output	8.3f		Log	P-Value	Information	and	the	Cluster	History

Obs NumberOfClusters SemipartialRSq RSquared chisquare degfree Logpvalue

1 19 0.0000 1.00 657.781 18 -293.105

2 18 0.0000 1.00 657.781 17 -294.949

3 17 0.0000 1.00 657.781 16 -296.824

4 16 0.0000 1.00 657.781 15 -298.733

5 15 0.0000 1.00 657.780 14 -300.677

6 14 0.0000 1.00 657.764 13 -302.651

7 13 0.0000 1.00 657.740 12 -304.664

8 12 0.0000 1.00 657.713 11 -306.720

9 11 0.0001 1.00 657.677 10 -308.822

10 10 0.0001 1.00 657.616 9 -310.967

11 9 0.0001 1.00 657.549 8 -313.171

12 8 0.0006 .999 657.145 7 -315.279

13 7 0.0009 .998 656.526 6 -317.362

14 6 0.0043 .994 653.704 5 -318.448

15 5 0.0062 .988 649.652 4 -319.039

16 4 0.0147 .973 639.981 3 -316.984

17 3 0.0181 .955 628.083 2 -314.041

18 2 0.0587 .896 589.499 1 -298.167



19 1 0.8962 .000 0.000 0 .

	
Output	8.3g		Plot	of	Log	P-Value	by	Number	of	Clusters

The	analyst	can	review	the	cluster	history	in	Output	8.3e	Contents
of	the	Cluster	History	to	determine	which	neighborhoods	belong	to
which	cluster.	Or	the	analyst	can	implement	an	automatic	approach
by	using	the	information	saved	from	the	OUTTREE	option,	namely
the	TREEINFO	SAS	data	set,	along	with	Part	G	of	Program	8.3
Combining	Neighborhoods	from	Ames	Data	Housing	Using
Greenacre’s	Method.

First,	the	SQL	procedure	is	used	to	both	scan	the	CUTOFF	data	and
select	only	that	record	associated	with	the	5-cluster	solution,	as
indicated	by	the	minimum	log	p-value.	The	number	of	clusters	from
that	record,	which	has	a	value	of	5,	is	saved	in	the	value	of	NCL.

Next,	the	TREE	procedure	is	used	to	create	a	temporary	data	set,
called	CLUS_SOLUTION,	containing	a	variable	to	indicate	the
disjoint	clusters	at	a	specified	level	in	the	tree.	The	NCLUSTERS=
option	with	&NCL=5,	as	defined	in	PROC	SQL,	requests	that
information	be	saved	only	for	the	5-cluster	solution.	The	ID



statement	identifies	the	leaves	of	the	tree,	or	the	neighborhoods;
when	it	is	included,	the	ID	is	copied	to	the	output	data	set.	As	a
result,	CLUS_SOLUTION	will	contain	the	neighborhoods.	Finally,
the	PRINT	procedure	provides	a	line	listing	of	the	data	set,	which
includes	the	neighborhoods	as	assigned	to	the	five	clusters,	and	is
displayed	in	Output	8.3h	List	of	Neighborhoods	by	Cluster.
Output	8.3h		List	of	Neighborhoods	by	Cluster

CLUSNAME Neighborhood CLUSTER

CL10 Crawfor 3

SawyerW 3

NWAmes 3

	

CLUSNAME Neighborhood CLUSTER

CL17 NoRidge 1

NridgHt 1

Somerst 1

StoneBr 1

	

CLUSNAME Neighborhood CLUSTER

CL5 Timber 4

Veenker 4

CollgCr 4

Gilbert 4

ClearCr 4

	

CLUSNAME Neighborhood CLUSTER

CL6 NAmes 2

SWISU 2

IDOTRR 2

OldTown 2



Edwards 2

BrkSide 2

Sawyer 2

	

CLUSNAME Neighborhood CLUSTER

Mitchel Mitchel 5

It	should	be	noted	that	when	a	new	variable,	NBR_CLUS,	is	created
to	represent	the	five	newly	collapsed	neighborhood	clusters,	the
resulting	chi-square	statistic	for	the	5x2	contingency	table	is
649.652,	a	slight	reduction	from	657.781	for	the	original	20
neighborhoods.	In	conclusion,	the	Greenacre	method	provides	an
automatic	solution	for	collapsing	20	neighborhoods	to	5
neighborhoods.

Note	that	once	the	analyst	collapses	the	levels	of	the	categorical
variable,	an	inspection	of	the	target	variable	by	the	newly	collapsed
levels	is	warranted.	Specific	to	our	Ames	Housing	data,	we	see	from
Table	8.2	Contingency	Table	of	Bonus	by	Clustered	Neighborhoods
that	there	is	still	a	problem	with	quasi-complete	separation,	where
100%	of	the	houses	in	NBR_CLUS=1	have	agents	who	earned	a
bonus.	As	a	result,	the	analyst	would	get	a	warning	of	model
validity	for	the	LOGISTIC	procedure	when	using	NBR_CLUS	as	a
predictor	of	bonus,	not	to	mention	an	infinite	(>999.999)	odds-
ratio.
Table	8.2		Contingency	Table	of	Bonus	by	Clustered	Neighborhoods

Table	of	Bonus	by	nbr_clus

Bonus nbr_clus

Frequency
Percent
Row	Pct
Col	Pct 1 2 3 4 5 Total

0 0
0.00
0.00
0.00

627
45.14
75.91
91.00

80
5.76
9.69
39.22

82
5.90
9.93
25.55

37
2.66
4.48
67.27

826
59.47

1 120
8.64
21.31
100.00

62
4.46
11.01
9.00

124
8.93
22.02
60.78

239
17.21
42.45
74.45

18
1.30
3.20
32.73

563
40.53



Total 120
8.64

689
49.60

204
14.69

321
23.11

55
3.96

1389
100.00

To	remedy	the	problem	and	for	purposes	of	considering	the
variable,	NBR_CLUS,	in	our	list	of	candidate	predictors,	we	will
combine	the	new	clusters,	1	and	4,	because	of	their	relatively
similar	proportions	of	bonus.	Finally,	in	order	to	use	the	categorical
variable,	NBR_CLUS,	three	dummy	variables	(NBR_CLUS1,
	NBR_CLUS2,	and	NBR_CLUS3)	will	be	used	in	all	subsequent
analyses	using	the	following	SAS	code:

nbr_clus1=0;	nbr_clus2=0;	nbr_clus3=0;

if	neighborhood=‘NoRidge’	or	neighborhood=‘NridgHt’	or

neighborhood=‘Somerst’	or	neighborhood=‘StoneBr’	or

neighborhood=‘Timber’	or	neighborhood=‘Veenker’	or

neighborhood=‘CollgCr’	or	neighborhood=‘Gilbert’	or

neighborhood=‘ClearCr’	then	nbr_clus1=1;

if	neighborhood=‘NAmes’	or	neighborhood=‘SWISU’	or
neighborhood=‘IDOTRR’

or	neighborhood=‘OldTown’	or	neighborhood=‘Edwards’

or	neighborhood=‘BrkSide’	or	neighborhood=‘Sawyer’	then
nbr_clus2=1;

if	neighborhood=‘Mitchel’	then	nbr_clus3=1;

From	the	SAS	code,	note	that	the	neighborhoods	not	assigned	to	a
dummy	variable	(Crawfor,	SawyerW,	and	NWAmes)	will	serve	as
the	reference	group.	Specifically,	when	a	house	has	a	value	of	0	for
all	three	dummy	variables,	meaning	that		the	house	does	not
belong	to	any	of	those	neighborhoods,	that	house	is	assumed	to	be
in	the	reference	group.

Variable	Clustering
In	many	situations,	the	analyst	is	faced	with	hundreds,	even
thousands,	of	input	variables.		Obviously	using	all	input	variables	is
not	desired	and	is	even	detrimental	to	the	validity	of	the	results.
First,	larger	sample	sizes	are	needed	when	using	a	relatively	large
number	of	input	variables	to	ensure	the	stability	of	parameter
estimates.		Furthermore,	with	a	large	number	of	input	variables,	it
is	almost	certain	that	some	of	them	are	highly	correlated;	in	this
case,	analysis	results	can	be	ambiguous	and	interpretation	is
impossible.	In	short,	when	there	are	numerous	input	variables,	the



initial	set	should	be	reduced	to	manageable	size	using	statistical
methodology	and,	of	course,	the	help	of	a	subject	matter	expert.

When	reducing	the	initial	set	of	inputs,	the	analyst	should	take	into
account	both	relevancy	and	redundancy.	In	predictive	modeling,	an
input	variable	is	irrelevant	if	it	is	not	related	to	the	target,	or
dependent,	variable.		Redundancy,	on	the	other	hand,	does	not	take
into	account	the	dependent	variable,	but	instead	must	be	assessed
in	terms	of	the	input	variables.	An	input	variable	is	redundant	if
its	inclusion	provides	no	additional	information	to	the	set	of	input
variables	—in	other	words,	there	is	no	loss	of	information	in	the	set
of	inputs	when	the	irrelevant	variable	is	excluded.	

A	common	strategy	among	analysts	is	to	first	tackle	the	issue	of
redundancy,	that	is,	reduce	the	initial	set	of	variable	inputs	to	a
manageable,	smaller	set	of	inputs	to	be	used	in	the	modeling
process.	This	section	will	address	input	redundancy	using	the
VARCLUS	procedure.	Subsequent	sections	will	address	the	issue	of
variable	relevancy.

The	VARCLUS	Procedure	for	Variable	Reduction
When	redundant	variables	exist,	the	goal	of	the	analyst	is	to	place
those	variables	with	similar	information	into	various	groups,	or
clusters,	such	that	each	variable	within	a	cluster	is	highly
correlated	with	its	own	cluster	while	uncorrelated	with	other
clusters.	Ultimately,	the	analyst	will	select	the	variable	that	best
represents	the	cluster,	and	use	that	variable	to	represent	the	cluster,
thus	eliminating	the	remaining	variables	in	that	cluster	from
subsequent	analyses.

Consider	the	following	example.	Suppose	we	randomly	selected
200	business	students	and	asked	them	to	rate	the	following
statements	on	a	scale	of	1	to	10,	where	1	is	strongly	disagree	and
10	is	strongly	agree.

Q1:	I	think	that	the	major	in	information	technology	(IT)	is	more
difficult	than	any	other	major.

Q2:	I	think	that	the	major	in	IT	is	more	demanding	than	any
other	major.

Q3:	Most	IT	jobs	require	heavy	programming	skills.



Q4:	Most	IT	jobs	require	extensive	technical	training.

Q5:	I	feel	confident	working	on	a	laptop	computer.

Q6:	I	feel	confident	using	a	variety	of	software	programs.

Q7:	I	feel	confident	getting	software	up	and	running.

Suppose	further	we	correlate	their	responses	to	get	the	correlation
matrix	in	Table	8.3		Correlation	Matrix	for	Variables	Q1	through
Q6.
Table	8.3		Correlation	Matrix	for	Variables	Q1	through	Q6

	 Q1 Q2 Q3 Q4 Q5 Q6

Q2 0.77 	 	 	 	 	

Q3 0.13 0.15 	 	 	 	

Q4 0.09 0.13 0.62 	 	 	

Q5 -0.10 -0.06 -0.11 -0.01 	 	

Q6 -0.06 -0.03 -0.14 -0.04 0.70 	

Q7 -0.05 -0.02 -0.15 -0.05 0.63 0.79

	

From	the	correlation	coefficients,	we	can	see	that	responses	for
questions	1	and	2	are	highly	correlated,	along	with	questions	3	and
4,	and	questions	5,	6,	and	7,	respectively.		In	this	case,	we	would
group	the	initial	7	questions	into	3	clusters	of	similar	variables.	In
fact,	using	correlations	and	possibly	subject	matter	expertise,	we
could	use,	say,	Q1,	Q3,	and	Q5	as	representative	of	the	original	set
of	variables	because	those	variables	seem	to	represent	the
redundant	information	in	questions	2,	4,	6,	and	7.

In	order	to	do	this	type	of	clustering,	the	analyst	can	apply	the
variable	cluster	(VARCLUS)	procedure,	which	is	related	to
principal	component	analysis.	A	brief	description	of	principal
component	analysis	is	as	follows:		When	considering	p	input
variables,	there	is	a	fixed	amount	of	variance	in	that	set	of
variables	and	is	defined	as	the	sum	of	the	variance	of	the	p
predictors.	This	variability	is	necessary	when	building	predictive



models—remember	an	input	variable	having	no	variability	also	has
no	predictive	power.		So,	the	goal	of	the	analyst	is	to	reduce	the	set
of	p	inputs	to	size	q	(for	q	<	p)	so	as	to	retain	as	much	variation	in
the	inputs	as	possible.		One	such	data	reduction	approach	is
principal	component	analysis.	

Principal	component	analysis	produces	a	set	of	p	principal
components	which	are	weighted	linear	combinations	of	the	original
variables,	having	the	form:

PRIN1	=	a11X1	+	a12X2	+	…	+	a1pXp

PRIN2	=	a21X1	+	a22X2	+	…	+	a2pXp

PRIN3	=	a31X1	+	a32X2	+	…	+	a3pXp

…

PRINq	=	aq1X1	+	aq2X2	+	…	+	aqpXp

…

PRINp	=	ap1X1	+	ap2X2	+	…	+	appXp

The	weights	of	the	first	principal	component	(a11	through	a1p)	are
calculated	so	that	PRIN1	accounts	for	the	greatest	variation	in	the
original	set	of	inputs.	It	should	be	noted	that	this	could	be	achieved
by	setting	the	weights	very	large;	so	the	weights	are	determined
under	the	additional	constraint	that	the	square	of	the	weights	must
add	to	1.0.	This	constraint	also	ensures	a	unique	solution.	

Next,	the	second	principal	component,	PRIN2,	is	determined	so	that
it	accounts	for	the	second	highest	variation,	while	at	the	same	time
having	zero	correlation	with	the	first	principal	component.	This
process	continues	until	there	are	p	principal	components,	where	the
sum	of	the	variances	of	PRIN1	through	PRINp	is	equal	to	the	total
variation	of	the	original	set	of	input	variables.	The	new	set	of
principal	component	variables	is	optimal	such	that	no	other
combination	of	variables	explains	more	variance	in	the	original	set
of	inputs.	Furthermore,	each	principal	component	has	zero
correlation	with	all	other	principal	components.

The	principal	components	are	ordinarily	calculated	using	the



covariance	matrix;	however,	to	account	for	the	differing	scales	of
the	input	variables,	the	variables	should	be	standardized.	As	an
equivalent	alternative,	principal	component	analysis	can	be
conducted	using	the	correlation	matrix;	here	the	variance	of	each
standardized	input	variable	is	1	and	the	total	variance	of	the
standardized	inputs	is	the	sum	of	the	diagonals	which	equals	p.

There	are	various	criteria	for	selecting	the	number	of	principal
components	(q	where	q	<	p);	one	such	criterion	is	to	select	those
principal	components	whose	variance	is	greater	than	one,	that	is,
where	the	eigenvalue	is	greater	than	1.0.	The	reduced	set	of	q
principal	components	accounts	for	a	sufficient	amount	of	variance
in	the	original	set	of	variables	and	can	be	used	for	subsequent
analyses.	Variable	clustering	is	a	variation	of	principal	component
analysis	and	is	used	to	create	a	set	of	clusters	containing	unique
variables	based	upon	a	similarity	measure,	such	as	the	correlation
coefficient.	

When	conducting	a	variable	clustering	procedure,	first,	all	variables
begin	in	a	single	cluster.	The	principal	component	algorithm	is
applied	to	that	cluster	and	if	the	variance	of	the	first	two	principal
components	is	greater	than	1	(eigenvalue>	1.0),	then	those	two
principal	components	are	rotated,	where	the	principal	component
coefficients	are	mathematically	transformed	and	used	for	cluster
assignment	(Harris	and	Kaiser,	1964).	So	those	variables	having
relatively	large	coefficients	on	the	first	principal	component	are
assigned	the	first	cluster	and	those	variables	having	relatively	large
coefficients	on	the	second	principal	component	are	assigned	to	the
second	cluster.	

In	short,	the	variables	with	relatively	high	coefficients	on	a
principal	component	are	highly	correlated.	At	the	same	time,	the
principal	component	algorithm	ensures	that	the	clusters	have	a
little	correlation	among	themselves.

Next,	one	of	the	two	newly	created	clusters	is	split,	namely	the
cluster	with	the	largest	second	eigenvalue,	to	create	two	new
principal	components;	each	variable	within	that	parent	cluster	is
assigned	to	one	of	the	two	new	clusters	based	upon	its	rotated
coefficients	on	the	two	new	principal	components.	Additionally,
when	that	split	occurs,	all	other	variables	are	reviewed	and
possibly	reassigned	to	a	different	cluster	if	it	has	a	higher



correlation	with	the	different	cluster.		

Next,	the	one	cluster	having	the	largest	second	eigenvalue	is	split;
again,	the	variables	within	that	cluster	are	assigned	to	two	new
clusters,	while	all	other	variables	are	reviewed	for	reassignment	to
a	different	cluster.	This	process	continues	until	the	second
eigenvalue	is	less	than	1,	or	less	than	the	value	defined	by
MAXEIGEN.		

It	should	be	noted	that	in	ordinary	principal	component	analysis,
all	principal	components	are	computed	using	the	same	full	set	of
inputs,	such	that	none	of	the	principal	components	are	correlated.
In	the	VARCLUS	procedure,	each	cluster	component	is	computed
from	a	different	subset	of	variables,	and	those	components	may
have	some	correlation.

Procedure	Syntax	for	PROC	VARCLUS

PROC	VARCLUS	is	a	procedure	used	to	create	variable	clustering
and	has	the	general	form:

PROC	VARCLUS	DATA=SAS-data-set	<options>;

VAR	variable(s);

RUN;

where	options	include	MAXEIGEN=n,	SHORT,	and	HI,	to	name	a
few.	MAXEIGEN=n	specifies	the	largest	value	of	the	second
eigenvalue	permitted	in	each	cluster	and	is	used	as	a	stopping	rule;
the	SHORT	option	omits	from	the	output	the	cluster	structure,
scoring	coefficients,	and	the	intercluster	correlation	matrices;	the
HI	(or	HIERARCHY)	option	prevents	variables	from	being
transferred	to	different	clusters	when	a	split	is	made,	thereby
maintaining	a	hierarchical	structure—in	other	words,	a	variable
will	remain	in	a	cluster	once	it	is	assigned	to	that	cluster.

To	illustrate	the	VARCLUS	procedure,	consider	the	Ames	Housing
data	set	including	the	initial	set	of	29	input	variables,	in	addition	to
the	three	neighborhood	cluster/dummy	variables	created	after
applying	the	Greenacre	method	(Note	that	had	we	had	missing
value	indicator	variables	and	imputed	variables,	those	would	have
been	included	in	our	initial	set	of	inputs	as	well).		

In	our	example,	it	is	conceivable	that	the	various	characteristics



(variables)	of	the	house	are	correlated;	obviously,	a	house	with	a
large	number	of	rooms	is	expected	to	have	more	square	footage
than	one	with	a	small	number	of	rooms;	a	multi-story	home	is
expected	to	have	more	square	footage	than	a	one-story	home;	a
large	house	is	more	likely	to	be	built	on	a	larger	lot	than	a	smaller
house,	etc.		

In	using	these	characteristics	to	predict	value	(as	measured	here	by
BONUS),	it	is	obvious	that	many	of	those	variables	have	inherent
redundant	information	and	lend	themselves	well	to	the	idea	of
variable	reduction.	As	a	result,	the	analyst	would	perform	a
variable	clustering	procedure	using	Program	8.4	The	VARCLUS
Procedure	for	Reducing	Ames	Housing	Inputs.
Program	8.4	The	VARCLUS	Procedure	for	Reducing	Ames	Housing	Inputs

libname	sasba	‘c:\sasba\ames’;

data	ames70;

set	sasba.ames70;

AboveAverage_Quality=0;	BelowAverage_Quality=0;

AboveAverage_Condition=0;	BelowAverage_Condition=0;

if	Overall_Quality=3	then	AboveAverage_Quality=1;

if	Overall_Quality=1	then	BelowAverage_Quality=1;

if	Overall_Condition=3	then	AboveAverage_Condition=1;

if	Overall_Condition=1	then	BelowAverage_Condition=1;

if	Heating_QC=“Ex”	then	Excellent_Heat_QC=1;

if	Heating_QC=“Gd”	or	Heating_QC=“Fa”	or	Heating_QC=“TA”

then	Excellent_Heat_QC=0;

if	Lot_Shape=“IRR”	then	Irreq_Lot_Shape=1;

if	Lot_Shape=“Reg”	then	Irreq_Lot_Shape=0;

if	Central_Air=“Y”	then	C_Air=1;

if	Central_Air=“N”	then	C_Air=0;

nbr_clus1=0;	nbr_clus2=0;	nbr_clus3=0;

if	neighborhood=“NoRidge”	or	neighborhood=“NridgHt”	or

neighborhood=“Somerst”	or	neighborhood=“StoneBr”	or

neighborhood=“Timber”	or	neighborhood=“Veenker”	or

neighborhood=“CollgCr”	or	neighborhood=“Gilbert”	or

neighborhood=“ClearCr”	then	nbr_clus1=1;

if	neighborhood=“NAmes”	or	neighborhood=“SWISU”	or

neighborhood=“IDOTRR”	or	neighborhood=“OldTown”	or



neighborhood=“Edwards”	or	neighborhood=“BrkSide”	or

neighborhood=“Sawyer”	then	nbr_clus2=1;

if	neighborhood=“Mitchel”	then	nbr_clus3=1;

***define	full	set	with	32	inputs***	4th	neighborhood	is
reference	group;

%let	fullset=Gr_Liv_Area	Total_Bsmt_SF	Bsmt_Fin_SF	Bsmt_Unf_SF
Lot_Area

Age_At_Sale	Bedroom_AbvGr	High_Kitchen_Quality	Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage	High_Exterior_Cond

High_Exterior_Qual	One_Floor	Vinyl_Siding	CuldeSac	Has_Fence

Land_Level	Poured_Concrete	Paved_Driveway	Total_Functionality

Normal_Prox_Cond	AboveAverage_Quality	BelowAverage_Quality

AboveAverage_Condition	BelowAverage_Condition
Excellent_Heat_QC

Irreq_Lot_Shape	C_Air	nbr_clus1	nbr_clus2	nbr_clus3;

run;

	

proc	varclus	data=ames70	maxeigen=.60	hi	short	plots=dendrogram;

var	&fullset;

run;

In	Program	8.4	The	VARCLUS	Procedure	for	Reducing	Ames
Housing	Inputs,	the	permanent	data	set	AMES70	is	read	and	new
input	variables	are	created,	including	the	neighborhood	clusters
created	in	the	previous	section.	Note	that	we		created	additional
variables	to	be	included	among	the	possible	inputs.	The	%LET
statement	creates	a	macro	variable	called	FULLSET	which	is	a
character	string,	or	list	of	input	variables	to	be	referenced	later.	

The	VARCLUS	procedure	is	applied	to	AMES70	and	clusters	are
split	as	long	as	the	second	eigenvalue	exceeds	0.60,	as	defined	by
MAXEIGEN.	The	HI	option	ensures	that	once	a	variable	is	placed	in
a	cluster	it	stays	in		that	cluster	and	the	SHORT	option	reduces	the
volume	of	output.	The	results	of	the	variable	clustering	procedure
will	be	explained	by	partial	outputs	as	follows:

First,	the	output	displays	the	number	of	observations,	the	number
of	variables	to	be	clustered,	and	the	criterion	for	the	maximum
eigenvalue,	as	illustrated	in	Output	8.4a	Summary	Information	for
VARCLUS	Procedure	for	Ames	Housing	Input	Data.	Note	that	one
observation	is	deleted	because	it	has	one	missing	value	on	one
input	variable.



	

Output	8.4a	Summary	Information	for	VARCLUS	Procedure	for	Ames	Housing	Input
Data

	
Oblique	Principal	Component	Cluster	Analysis

Observations 1388 Proportion 0

Variables 32 Maxeigen 0.6

	

Clustering	algorithm
converged.

	

Cluster	Summary	for	1	Cluster

Cluster Members
Cluster
Variation

Variation
Explained

Proportion
Explained

Second
Eigenvalue

1 32 32 7.665278 0.2395 2.2732

	

Total	variation	explained	=	7.665278	Proportion	=	0.2395

Cluster	1	will	be	split	because	it	has	the	largest	second	eigenvalue,
2.273223,	which	is	greater	than	the	MAXEIGEN=0.6	value. 	

Note	that	the	cluster	variation	is	equal	to	32,	which	is	always
identical	to	the	number	of	variables;	the	total	variation	explained
by	the	first	principal	component	is	7.665278,	which	accounts	for
23.95%	of	the	total	variation	of	the	input	variables	(7.665278
divided	by	32).	The	second	eigenvalue	(2.273223)	of	cluster	1	is
larger	than	the	0.60	as	determined	by	the	MAXEIGEN	option;
therefore,	cluster	1	will	be	split,	as	illustrated	in	Output	8.4b
Cluster	Summary	for	2	Clusters	for	Ames	Housing	Input	Data.
Output	8.4b	Cluster	Summary	for	2	Clusters	for	Ames	Housing	Input	Data

Cluster	Summary	for	2	Clusters

Cluster Members
Cluster
Variation

Variation
Explained

Proportion
Explained

Second
Eigenvalue



1 19 19 6.713918 0.3534 1.8615

2 13 13 2.604492 0.2003 1.5801

Total	variation	explained	=	9.31841	Proportion	=	0.2912
	

2	Clusters R-squared	with

1-R**2
RatioCluster Variable

Own
Cluster

Next
Closest

Cluster
1

Gr_Liv_Area 0.4147 0.1844 0.7176

	 Bsmt_Unf_SF 0.0928 0.0022 0.9092

	 Age_at_Sale 0.6109 0.3430 0.5922

	 Bedroom_AbvGr 0.0922 0.0227 0.9288

	 High_Kitchen_Quality 0.4601 0.0991 0.5993

	 Fullbath_2plus 0.6099 0.1482 0.4580

	 TwoPlusCar_Garage 0.4036 0.1746 0.7226

	 High_Exterior_Cond 0.0206 0.0039 0.9832

	 High_Exterior_Qual 0.5740 0.1237 0.4861

	 One_Floor 0.0399 0.0129 0.9726

	 Vinyl_Siding 0.4265 0.0281 0.5901

	 Has_Fence 0.0981 0.0036 0.9052

	 Poured_Concrete 0.6122 0.0872 0.4248

	 Normal_Prox_Cond 0.0229 0.0097 0.9867

	 AboveAverage_Quality 0.4351 0.1800 0.6890

	 AboveAverage_Condition 0.2957 0.0271 0.7239

	 Excellent_Heat_QC 0.3138 0.0617 0.7314

	 nbr_clus1 0.5942 0.1607 0.4835

	 nbr_clus2 0.5969 0.2262 0.5209

Cluster
2

Total_Bsmt_SF 0.4758 0.2226 0.6744

	 Bsmt_Fin_SF 0.4278 0.0212 0.5846

	 Lot_Area 0.1457 0.0225 0.8740

	 Fireplace_1plus 0.2453 0.1239 0.8615

	 CuldeSac 0.0814 0.0145 0.9321

	 Land_Level 0.0085 0.0006 0.9921



	 Paved_Driveway 0.3161 0.0704 0.7357

	 Total_Functionality 0.0392 0.0175 0.9779

	 BelowAverage_Quality 0.2471 0.0749 0.8139

	 BelowAverage_Condition 0.1027 0.0179 0.9136

	 Irreq_Lot_Shape 0.2313 0.0940 0.8484

	 C_Air 0.2781 0.0491 0.7592

	 nbr_clus3 0.0055 0.0001 0.9946

	

Cluster	1	will	be	split	because	it	has	the	largest	second	eigenvalue,
1.861523,	which	is	greater	than	the	MAXEIGEN=0.6	value.

Note	that	of	the	two	clusters	created,	the	largest	second	eigenvalue
occurs	for	cluster	1	(1.8615),	while	at	the	same	time	exceeding	the
maximum	eigenvalue	criterion	of	0.60,	so	cluster	1	is	split	in	the
next	step.

The	splitting	continues	with	the	creation	of	22	clusters	where	the
largest	second	eigenvalue	(occurring	for	cluster	1	is	0.603022)	is
larger	than	the	maximum	criterion	of	0.60,	warranting	another
split.	When	23	clusters	are	created,	the	largest	second	eigenvalue
for	cluster	13	(0.5962)	does	not	exceed	the	maximum	required
level	of	0.60,	as	illustrated	in	Output	8.4c	Cluster	Summary	for	23
Clusters	for	Ames	Housing	Input	Data,	and	the	splitting	process
ends.

The	variation	explained	corresponds	to	the	contribution	of	the
variables	in	that	cluster	and	not	to	all	of	the	original	variables,	as	is
the	case	in	factor	analysis.	Finally,	note	that	the	sum	of	the
Variation	Explained	is	28.07205,	which	means	that	23	clusters
account	for	87.73%	(28.07205/32)	of	the	total	variance	in	the
original	32	input	variables.
Output	8.4c	Cluster	Summary	for	23	Clusters	for	Ames	Housing	Input	Data

	

Cluster	Summary	for	23	Clusters 	

Cluster Members
Cluster
Variation

Variation
Explained

Proportion
Explained

Second
Eigenvalue 	

1 4 4 2.916174 0.7290 0.4423



	

2 2 2 1.55347 0.7767 0.4465 	

3 2 2 1.540439 0.7702 0.4596 	

4 1 1 1 1.0000 	 	

5 1 1 1 1.0000 	 	

6 1 1 1 1.0000 	 	

7 1 1 1 1.0000 	 	

8 3 3 2.033304 0.6778 0.5347 	

9 1 1 1 1.0000 	 	

10 1 1 1 1.0000 	 	

11 1 1 1 1.0000 	 	

12 1 1 1 1.0000 	 	

13 3 3 2.028662 0.6762 0.5962 	

14 1 1 1 1.0000 	 	

15 1 1 1 1.0000 	 	

16 1 1 1 1.0000 	 	

17 1 1 1 1.0000 	 	

18 1 1 1 1.0000 	 	

19 1 1 1 1.0000 	 	

20 1 1 1 1.0000 	 	

21 1 1 1 1.0000 	 	

22 1 1 1 1.0000 	 	

23 1 1 1 1.0000 	 	

	
Total	variation	explained	=	28.07205	Proportion	=	0.8773

	



The	cluster	summary	is	then	followed	by	a	detailed	listing	of	the
final	23	cluster	components	and	the	variable	assignments	within
each	cluster,	along	with	various	statistics,	as	illustrated	in	Output
8.4d	R-Squared	with	Own	Cluster	and	Next	Closest	Cluster	for
Ames	Housing	Input	Data.			

For	each	variable,	the	output	provides	its	squared	correlation	with
both	its	own	cluster	and	the	next	closest	cluster,	respectively.	For
example,	AGE_AT_SALE	and	Cluster	1	have	an	r-square	of	0.7614,
while	AGE_AT_SALE	and		its	closest	cluster	have	an	r-square	of
0.3570.	The	r-square	with	its	own	cluster	should	be	larger	than	that
for	the	nearest	cluster.	Small	r-squared	values	with	the	next	closest
cluster	represent	relatively	well	separated	clusters.	That	output	is
followed	by	a	message	indicating	that	‘no	cluster	meets	the
criterion	for	splitting.’

	

Output	8.4d		R-Squared	with	Own	Cluster	and	Next	Closest	Cluster	for	Ames
Housing	Input	Data

	

23	Clusters R-squared	with

1-R**2
RatioCluster Variable

Own
Cluster

Next
Closest

Cluster	1 Age_at_Sale 0.7614 0.3570 0.3711

	 Poured_Concrete 0.6777 0.3900 0.5285

	 nbr_clus1 0.7434 0.3083 0.3710

	 nbr_clus2 0.7337 0.4049 0.4474

Cluster	2 Total_Bsmt_SF 0.7767 0.1863 0.2744

	 Bsmt_Fin_SF 0.7767 0.3213 0.3289

Cluster	3 Gr_Liv_Area 0.7702 0.4010 0.3836

	 Bedroom_AbvGr 0.7702 0.1480 0.2697

Cluster	4 Paved_Driveway 1.0000 0.1239 0.0000

Cluster	5 Bsmt_Unf_SF 1.0000 0.0548 0.0000

Cluster	6 Irreq_Lot_Shape 1.0000 0.1141 0.0000

Cluster	7 Lot_Area 1.0000 0.0692 0.0000

Cluster	8 Fullbath_2plus 0.7205 0.4003 0.4661

	 TwoPlusCar_Garage 0.6485 0.2859 0.4922



	 AboveAverage_Quality 0.6643 0.2536 0.4498

Cluster	9 Total_Functionality 1.0000 0.0736 0.0000

Cluster
10

Normal_Prox_Cond 1.0000 0.0240 0.0000

Cluster
11

nbr_clus3 1.0000 0.0056 0.0000

Cluster
12

AboveAverage_Condition 1.0000 0.2718 0.0000

Cluster
13

High_Kitchen_Quality 0.7197 0.2899 0.3947

	 High_Exterior_Qual 0.7362 0.3951 0.4361

	 Excellent_Heat_QC 0.5727 0.2110 0.5415

Cluster
14

Has_Fence 1.0000 0.0600 0.0000

Cluster
15

Fireplace_1plus 1.0000 0.1707 0.0000

Cluster
16

Land_Level 1.0000 0.0370 0.0000

Cluster
17

BelowAverage_Quality 1.0000 0.1026 0.0000

Cluster
18

BelowAverage_Condition 1.0000 0.0736 0.0000

Cluster
19

High_Exterior_Cond 1.0000 0.0780 0.0000

Cluster
20

CuldeSac 1.0000 0.1141 0.0000

Cluster
21

C_Air 1.0000 0.1239 0.0000

Cluster
22

One_Floor 1.0000 0.2159 0.0000

Cluster
23

Vinyl_Siding 1.0000 0.3742 0.0000

No	cluster	meets	the	criterion	for	splitting.

The	last	table	created	by	the	VARCLUS	procedure	is	displayed	in
Output	8.4e	Summary	of	Cluster	Splitting	by	Stage.	It	gives	a
summary	of	key	indices	for	each	stage	of	the	splitting	process,
starting	with	cluster	1	and	ending	with	cluster	23,	specifically	the
proportion	of	variance	explained	at	each	point	and	the	maximum
second	eigenvalue	among	the	clusters.	So,	while	the	algorithm
provides	for	23	clusters,	the	additional	statistics,	complemented	by



the	dendrogram	in	Output	8.4f	Dendrogram	Illustration	of	Cluster
Splits	for	Ames	Housing	Input	Data,	and	subject-matter	expertise
can	be	used	to	force	fewer	clusters	or	allow	more	clusters.

To	do	this,	the	analyst	can	try	various	values	for	the	maximum
eigenvalue.	If	the	eigenvalue	threshold	for	splitting	is	reduced,	the
number	of	clusters	will	obviously	increase;	consequently,	if	the
threshold	is	increased,	the	number	of	clusters	will	decrease.	Note
that	the	common	practice	is	to	use	a	value	of	1.0;	however,	a	value
of	0.70	is	suggested	to	account	for	sampling	variability	(Jackson,
1991).	

Notice	that	in	our	example,	we	used	MAXEIGEN=0.60	because	it
provided	for	four	additional	clusters.	As	a	result,	we	selected	the
variables	that	best	represent	those	additional	clusters,	because
univariate	chi-square	tests	indicated	a	relationship	with	our	target
variable,	BONUS.	
Output	8.4e	Summary	of	Cluster	Splitting	by	Stage

Number
of

Clusters

Total
Variation
Explained

by
Clusters

Proportion
of

Variation
Explained
by	Clusters

Minimum
Proportion
Explained
by	a
Cluster

Maximum
Second

Eigenvalue
in	a

Cluster

Minimum
R-

squared
for	a

Variable

Maximum
1-R**2
Ratio
for	a

Variable

1 7.665278 0.2395 0.2395 2.273223 0.0000 	

2 9.318410 0.2912 0.2003 1.861523 0.0055 0.9946

3 10.782647 0.3370 0.2003 1.580090 0.0055 0.9990

4 12.144808 0.3795 0.2667 1.277230 0.0076 0.9970

5 13.201264 0.4125 0.2667 1.199255 0.0076 0.9970

6 14.336373 0.4480 0.3097 1.037528 0.0237 0.9807

7 15.334638 0.4792 0.3667 1.030320 0.0268 0.9792

8 16.188235 0.5059 0.3667 1.013512 0.0348 0.9712

9 17.171782 0.5366 0.3767 0.995020 0.0348 0.9712

10 18.144308 0.5670 0.3767 0.984173 0.0893 0.9149

11 19.127675 0.5977 0.3767 0.963315 0.2945 0.8158

12 20.055136 0.6267 0.5152 0.851749 0.3235 0.8158

13 20.846620 0.6515 0.5152 0.845288 0.3235 0.8158

14 21.691908 0.6779 0.5152 0.839398 0.3235 0.8158

15 22.525565 0.7039 0.5152 0.807658 0.4048 0.6632



16 23.333223 0.7292 0.5152 0.806703 0.4048 0.6632

17 24.139607 0.7544 0.6357 0.728683 0.5484 0.6346

18 24.868290 0.7771 0.6358 0.720631 0.5484 0.6346

19 25.588921 0.7997 0.6358 0.662151 0.5484 0.6346

20 26.251072 0.8203 0.6358 0.647995 0.5484 0.6346

21 26.899067 0.8406 0.6358 0.637553 0.5484 0.6346

22 27.532155 0.8604 0.6753 0.603022 0.5484 0.6346

23 28.072048 0.8773 0.6762 0.596157 0.5727 0.5415

	
Output		8.4f	Dendrogram	Illustration	of	Cluster	Splits	for	Ames	Housing	Input	Data

	

Cluster	Representative	and	Best	Variable	Selection
While	the	analyst	could	use	the	23	principal	component	scores	as
the	‘new’	inputs,	a	common	practice	is	to	select	a	single	variable
from	each	cluster	that	best	represents	that	cluster,	therefore	ending
with	a	reduced	set	of	23	inputs.	In	order	to	select	the	representative



variable,	the	analyst	can	use	the	1-R2	ratio,	which	is	defined	as:

As	a	general	rule,	when	looking	at	a	particular	cluster,		the	best
variable	representation	is	that	one	having	the	smallest	1-R2	ratio.
The	occurs	when	its	relationship	with	its	own	cluster	is	highest,	as
measured	by	 ,	and	its	relationship	with	the	nearest
cluster	is	lowest,	as	measured	by	 	—in	other	words,
when	the	numerator	is	closest	to	zero	and	its	denominator	is	closest
to	1.0.

So,	consider	cluster	2	for	example.	The	variable	with	the	smallest	1-
R2	ratio	(0.2744)	is	the	variable	total	area	of	basement	space
(TOTAL_BSMT_SF)	as	shown	in	Output	8.4d		R-Squared	with	Own
Cluster	and	Next	Closest	Cluster	for	Ames	Housing	Input	Data;
therefore,	the	analyst	would	select	that	variable	for	subsequent
analyses	and	omit	the	variable	BSMT_FIN_SF,	total	area	of	finished
basement	space.	It	makes	good	common	sense	that	those	two
variables	are	related,	further	supported	by	the	relatively	large	R2	of
	0.7767	and,	as	such,	eliminating	one-variable	results	in	a	relatively
small	loss	of	information.

Now	consider	cluster	3,	made	up	of	the	two	variables,
GR_LIV_AREA	and	BEDROOM_ABVGR.	While	BEDROOM_ABVGR
has	the	smallest	1-R2	ratio	(0.2697),	it	is	common	knowledge	that
an	industry	standard	is	to	price	homes	according	to	square	footage;
therefore,	we	will	select	GR_LIV_AREA	to	represent	cluster	3	and
eliminate	BEDROOM_ABVGR	from	subsequent	analyses.

Finally,	for	cluster	8,	we	selected	the	variable,	FULLBATH2_PLUS,
which	indicates	whether	or	not	the	house	had	two	or	more	full
bathrooms,	as	opposed	to	the	binary	variable,
ABOVEAVERAGE_QUALITY.	While	quality	is	certainly	important,
we		thought	that	the	number	of	full	bathrooms	is	easy	to	measure
and	probably	pretty	accurate,	whereas,	quality	ratings	may	be	more
subjective.

After	reviewing	the	1-R2	ratio	and	considering	variables	that	made
more	sense,	we	will	proceed	with	the	following	set	of	potential



input	variables,	as	listed	in	Table	8.4	Reduced	Set	of	Inputs	After
Deleting	Redundant	Variables	for	Ames	Housing.
Table	8.4	Reduced	Set	of	Inputs	After	Deleting	Redundant	Variables	for	Ames
Housing

From	
Cluster Selected	Input

R-
squared
with
Own
Cluster

R-
squared
with
Next
Closest

1-
R**2	
Ratio

Cluster
1 Age_at_Sale 0.7614 0.357 0.3711

Cluster
2 Total_Bsmt_SF 0.7767 0.1863 0.2744

Cluster
3 Gr_Liv_Area 0.7702 0.4010 0.3836

Cluster
4 Paved_Driveway 1.0000 0.1239 0.0000

Cluster
5 Bsmt_Unf_SF 1.0000 0.0548 0.0000

Cluster
6 Irreq_Lot_Shape 1.0000 0.1141 0.0000

Cluster
7 Lot_Area 1.0000 0.0692 0.0000

Cluster
8 Fullbath_2plus 0.7205 0.4003 0.4661

Cluster
9 Total_Functionality 1.0000 0.0736 0.0000

Cluster
10 Normal_Prox_Cond 1.0000 0.0240 0.0000

Cluster
11 nbr_clus3 1.0000 0.0056 0.0000

Cluster



12 AboveAverage_Condition 1.0000 0.2718 0.0000

Cluster
13 High_Kitchen_Quality 0.7191 0.2899 0.3947

Cluster
14 Has_Fence 1.0000 0.0600 0.0000

Cluster
15 Fireplace_1plus 1.0000 0.1707 0.0000

Cluster
16 Land_Level 1.0000 0.0370 0.0000

Cluster
17 BelowAverage_Quality 1.0000 0.1026 0.0000

Cluster
18 BelowAverage_Condition 1.0000 0.0736 0.0000

Cluster
19 High_Exterior_Cond 1.0000 0.0780 0.0000

Cluster
20 CuldeSac 1.0000 0.1141 0.0000

Cluster
21 C_Air 1.0000 0.1239 0.0000

Cluster
22 One_Floor 1.0000 0.2159 0.0000

Cluster
23 Vinyl_Siding 1.0000 0.3742 0.0000

	

Variable	Screening
As	mentioned	earlier,	the	analyst	should	take	into	account	both
relevancy	and	redundancy.	Using	the	VARCLUS	procedure	and
some	subject-matter	expertise	in	the	previous	section,	we	have
arrived	at	a	reduced	set	of	23	potential	inputs	in	an	attempt	to
address	the	redundancy	problem.

Now,	we	will	review	methods	for	detecting	irrelevance.	A	simple



approach	for	detecting	relevance,	or	the	association	between	two
variables,	is	the	Pearson	correlation	coefficient,	as	described	in
Chapter	9,	“Linear	Regression	Analysis.”		However,	this	coefficient
measures	only	linear	relationships,	requires	variables	to	be
measured	at	either	interval	or	ratio	levels,	and	is	influenced	by
outliers.	Therefore,	in	this	section,	we	will	discuss	the	use	of
alternative	indices	for	measuring	associations	which	take	into
account	the	form	of	the	data	at	hand.	These	indices	are	Spearman’s
correlation	and	Hoeffding’s	D	statistic	for	measuring	association,	or
relevancy,	with	the	target.
Once	the	final	input	variables	are	determined,	they	should	also	be
analyzed	to	determine	if	there	are	any	non-linear	associations.

The	CORR	Procedure	for	Detecting	Associations
The	Spearman’s	rank-order	correlation	coefficient	ranges	from
-1.0	to	+1.0	and	is	a	measure	of	the	strength	and	direction	of	the
monotonic	relationship	between	two	ranked	variables;	monotonic
refers	to	the	fact	that	the	direction	of	the	relationship	never
changes	and	is	either	always	positive,	always	negative,	or	always
constant.				

In	order	to	obtain	the	Spearman’s	correlation	coefficient	between
two	variables,	X	and	Y,	the	observations	must	be	ranked	by	X	and
ranked	by	Y,	respectively;	then	the	ranks	are	correlated.	So,	if
observations	have	similar	ranks	on	X	and	Y,	the	coefficient	is
positive.		If	their	ranks	are	dissimilar,	then	the	coefficient	is
negative.	Correlating	ranks	results	in	an	index	that	is	less	sensitive
to	both	non-linear	relationships	and	outliers.

Hoeffding’s	D	statistic	(Hoeffding,	1948)	is	also	a	rank-based
approach	to	measuring	associations,	whether	linear,	monotonic,	or
non-monotonic.	Note	that	a	linear	trend	is	monotonic,	but	a
monotonic	trend	is	not	always	linear.		So,	for	example,	exponential
and	logarithmic	functions	are	monotonic;	a	parabolic	function
across	the	domain	of	real	numbers	is	non-monotonic.

Hoeffding’s	D	ranges	from	-0.50	to	+1.0,	and	while	the	sign	has	no
meaning,	larger	values	indicate	the	strength	of	the	relationship.	An
advantage	of	using	Hoeffding’s	D	is	that	it	will	detect	non-
monotonic	relationships	that	can	go	undetected	using	Spearman’s



coefficient.
So,	consider	a	target	variable	(Y)	and	a	potential	predictor	(X).	If
both	the	Spearman’s	correlation	coefficient	and	Hoeffding’s	D	are
relatively	small	(or	statistically	zero	as	measured	by	their
respective	large	p-values),	then	there	is	evidence	that	X	has	no
association	with	Y.	In	short,	a	relatively	large	p-value	for
Spearman’s	correlation	coefficient	indicates	that	there	is	no
monotonic	relationship;	and	a	relatively	large	p-value	for
Hoeffding’s	D	indicates	that	there	is	no	relationship—monotonic,
non-monotonic,	nor	linear.

A	visualization	tool	which	utilizes	both	indices	for	detecting
associations,	or	irrelevance,	is	a	scatterplot	of	the	rank	of
Spearman’s	coefficient	by	the	rank	of	the	Hoeffding’s	D.	To
illustrate,	consider	the	Ames	Housing	Case	and	Program	8.5
Description	of	Input	Variables	Screened	for	Relevance	for	Ames
Housing	Data	described	in	parts.
Program	8.5	Description	of	Input	Variables	Screened	for	Relevance	for	Ames
Housing	Data

********Part	A	which	produces	Output8.5a	and	Output8.5b******;

libname	sasba	‘c:\sasba\ames’;

data	ames70;

set	sasba.ames70;

AboveAverage_Quality=0;	BelowAverage_Quality=0;

AboveAverage_Condition=0;	BelowAverage_Condition=0;

if	Overall_Quality=3	then	AboveAverage_Quality=1;

if	Overall_Quality=1	then	BelowAverage_Quality=1;

if	Overall_Condition=3	then	AboveAverage_Condition=1;

if	Overall_Condition=1	then	BelowAverage_Condition=1;

if	Heating_QC=“Ex”	then	Excellent_Heat_QC=1;

if	Heating_QC=“Gd”	or	Heating_QC=“Fa”	or	Heating_QC=“TA”

then	Excellent_Heat_QC=0;

if	Lot_Shape=“IRR”	then	Irreq_Lot_Shape=1;

if	Lot_Shape=“Reg”	then	Irreq_Lot_Shape=0;

if	Central_Air=“Y”	then	C_Air=1;

if	Central_Air=“N”	then	C_Air=0;

nbr_clus1=0;	nbr_clus2=0;	nbr_clus3=0;

if	neighborhood=“NoRidge”	or	neighborhood=“NridgHt”	or



neighborhood=“Somerst”	or	neighborhood=“StoneBr”	or

neighborhood=“Timber”	or	neighborhood=“Veenker”	or

neighborhood=“CollgCr”	or	neighborhood=“Gilbert”	or

neighborhood=“ClearCr”	then	nbr_clus1=1;

if	neighborhood=“NAmes”	or	neighborhood=“SWISU”	or

neighborhood=“IDOTRR”	or	neighborhood=“OldTown”	or

neighborhood=“Edwards”	or	neighborhood=“BrkSide”	or

neighborhood=“Sawyer”	then	nbr_clus2=1;

if	neighborhood=“Mitchel”	then	nbr_clus3=1;

**********define	reduced	set	with	23	inputs*********;

%let	reducedset=Age_at_Sale	Total_Bsmt_SF	Gr_Liv_Area
Paved_Driveway

Bsmt_Unf_SF	Irreq_Lot_Shape	Lot_Area	Fullbath_2plus

Total_Functionality	Normal_Prox_Cond	nbr_clus3
AboveAverage_Condition

High_Kitchen_Quality	Has_Fence	Fireplace_1plus	Land_Level

BelowAverage_Quality	BelowAverage_Condition	High_Exterior_Cond

CuldeSac	C_Air	One_Floor	Vinyl_Siding;

ods	output	spearmancorr=spearman

hoeffdingcorr=hoeffding;

run;

	

proc	corr	data=ames70	spearman	hoeffding	rank;

var	&reducedset;

with	bonus;

title	‘Spearman	and	Hoeffding	Correlation	Coefficients’;

run;

	

proc	print	data=spearman;

title	‘ODS	Output	of	Spearman	Data’;

run;

	

********Part	B	which	produces	Output8.5c******;

	

	

data	spearmanrank	(keep=variable	scorr	spvalue	ranksp);

length	variable	$25;

set	spearman;



array	best(*)	best1	—	best23;

array	r(*)	r1	—	r23;

array	p(*)	p1	—	p23;

do	i	=	1	to	23;

variable=best(i);

scorr=r(i);

spvalue=p(i);

ranksp=i;

output;

end;

run;

	

data	hoeffdingrank	(keep=variable	hcorr	hpvalue	rankhoeff);

length	variable	$25;

set	hoeffding;

array	best(*)	best1	—	best23;

array	r(*)	r1	—	r23;

array	p(*)	p1	—	p23;

do	i	=	1	to	23;

variable=best(i);

hcorr=r(i);

hpvalue=p(i);

rankhoeff=i;

output;

end;

run;

	

proc	sort	data=spearmanrank;	by	variable;

proc	sort	data=hoeffdingrank;	by	variable;

run;

	

data	final;

merge	spearmanrank	hoeffdingrank;

by	variable;

proc	sort	data=final;

by	ranksp;

run;

	



proc	print	data=final;

var	variable	ranksp	rankhoeff	scorr	spvalue	hcorr	hpvalue;

title	‘Spearman	and	Hoeffding	D	Correlation	Data	Sorted	by
Spearman	Rank’;

run;

	

********Part	C	which	produces	Output8.5d******;

proc	sgplot	data=final;

refline	23	/	axis=y;

refline	16	/	axis=x;

scatter	y=ranksp	x=rankhoeff	/	datalabel=variable;

yaxis	label	=	“Rank	of	Spearman	Correlation”;

xaxis	label	=	“Rank	of	Hoeffding	Correlation”;

title	‘Ranks	of	Spearman	Correlations	by	Ranks	of	Hoeffding
Correlations’;

run;

In	Part	A	of	Program	8.5	Description	of	Input	Variables	Screened
for	Relevance	for	Ames	Housing	Data,	the	AMES70	data	set	is	read,
new	variables	are	created,	the	reduced	set	of	23	input	variables	is
defined	using	the	%LET	REDUCEDSET=,	and	the	CORR	procedure
is	applied	to	that	reduced	set.		Specifically	note	that	both
correlation	coefficients	are	computed	by	including	the	SPEARMAN
and	HOEFFDING	options;	those	measure	the	relationship	between
the	reduced	set	of	input	variables	and	the	target	variable,	BONUS,
as	requested	by	the	WITH	statement.

The	output	includes	a	summary	of	the	variables	included	in	the
analysis	as	displayed	in	Output	8.5a	Summary	of	Input	Variables
Screened	for	Relevance	for	Ames	Housing	Data,	and	a	list	of	all
requested	correlation	coefficients,	which	will	not	be	included	here.
That	information	is	needed,	however,	for	subsequent	analyses,	so
the	output	generated	from	the	CORR	procedure	is	saved	in	the	two
files,	SPEARMAN	and	HOEFFDING,	each	containing	the	respective
correlation	coefficients,	as	defined	in	the	ODS	OUTPUT	statement.
The	PRINT	procedure	is	used	here	to	illustrate	the	structure	of	the
data	set	which	is	displayed	in	Output	8.5b	ODS	Output	of
Spearman	Data.
Output	8.5a	Summary	of	Input	Variables	Screened	for	Relevance	for	Ames	Housing
Data



1	With
Variables:

Bonus

23						Variables: Age_at_Sale																				Total_Bsmt_SF											
Gr_Liv_Area							Paved_Driveway									Bsmt_Unf_SF																			
Irreq_Lot_Shape									Lot_Area											Fullbath_2plus																
Total_Functionality											Normal_Prox_Cond						nbr_clus3														
AboveAverage_Condition			High_Kitchen_Quality			Has_Fence														
Fireplace_1plus																Land_Level																BelowAverage_Quality			
BelowAverage_Condition			High_Exterior_Cond					CuldeSac															
One_Floor																							Vinyl_Siding																C_Air																		

In	Output	8.5b	ODS	Output	of	Spearman	Data,	the	target	variable,
Bonus,	is	listed	under	the	column	heading,	Variable,	and	the	input
variables	are	assigned	to	variables	names,	Best1	to	Best23,
indicating	the	order	of	magnitude	of	the	Spearman’s	correlation
coefficient.	The	coefficients	and	associated	p-values	are	assigned	to
the	variable	names	R1	to	R23	and	P1to	P23,	respectively.	This	data
is	contained	in	one	row	as	one	observation.

Note	that	the	input	variable,	FULLBATH_2PLUS,	which	has	the
largest	correlation	with	the	target	variable,	BONUS,	is	assigned	to
the	variable,	Best1,	with	a	Spearman	correlation	coefficient	of	R1
=	0.69311,	and	smallest	p-value	represented	by	P1	<	.0001;
whereas	the	input	variable	with	the	weakest	correlation	is
NBR_CLUS3,	assigned	to	the	variable	Best23,	with	correlation
coefficient	R23	=	-0.03228	and	p-value	P23	=	0.2292.		Keep	in
mind	that	the	data	set,	HOEFFDING,	created	using	ODS	OUTPUT
has	the	same	one-row	structure.
Output	8.5b	ODS	Output	of	Spearman	Data

	

Obs Variable Best1 Best2 Best3 Best4

1 Bonus Fullbath_2plus Gr_Liv_Area Age_at_Sale High_Kitchen_Quality

	

Obs Best5 Best6 Best7 Best8 Best9

1 Total_Bsmt_SF Vinyl_Siding Lot_Area fireplace_1plus AboveAverage_Condition

	



Obs Best10 Best11 Best12 Best13 Best14

1 Irreq_Lot_Shape BelowAverage_Quality Has_Fence Paved_Driveway C_Air

	

Obs Best15 Best16 Best17 Best18 Best19

1 BelowAverage_Condition CuldeSac One_Floor Bsmt_Unf_SF Normal_Prox_Cond

	

Obs Best20 Best21 Best22 Best23 R1 R2

1 Total_Functionality High_Exterior_Cond Land_Level nbr_clus3 0.69311 0.68632

	

Obs R3 R4 R5 R6 R7 R8 R9 R10

1 -0.60139 0.57537 0.44553 0.42397 0.42184 0.41753 -0.32587 0.31056

	

Obs R11 R12 R13 R14 R15 R16 R17 R18

1 -0.23791 -0.21988 0.20885 0.16156 -0.13948 0.13861 -0.13734 0.13506

	

Obs R19 R20 R21 R22 R23 P1 P2 P3 P4

1 0.12976 0.08453 -0.07683 -0.05089 -0.03228 <.0001 <.0001 <.0001 <.0001

	

Obs P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

1 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

	

Obs P15 P16 P17 P18 P19 P20 P21 P22 P23

1 <.0001 <.0001 <.0001 <.0001 <.0001 0.0016 0.0042 0.0579 0.2292

Part	B	of	Program	8.5	Description	of	Input	Variables	Screened	for
Relevance	for	Ames	Housing	Data	is	used	to	convert	the	Spearman



and	Hoeffding	data	to	columns	and	merge	them	to	create	one	final
data	set.	First,	the	Spearman’s	data	is	saved	to	a	temporary	SAS
data	set,	called	SPEARMANRANK,	and	then	three	arrays,	each	with
a	dimension	of	23,	are	created	for	assigning	each	of	the	23	variable
names,	correlation	coefficients,	and	p-values,	respectively.			

The	DO	loop	assigns	each	of	the	variables,	Best1	through	Best23,	to
the	variable,	called	VARIABLE.	The	Spearman’s	correlation
coefficients,	R1	though	R23,	are	assigned	to	the	variable,	SCORR,
and	the	p-values	are	assigned	to	the	variable	SPVALUE.	Because	the
variables	are	in	order	from	best	to	worse,	the	index	i	is	identical	to
the	rank	and	is	saved	as	the	variable,	RANKSP.	For	each	value	of	i
from	1	to	23,	variables	are	assigned	and	then	output	to	the
SPEARMANRANK	data	set;	therefore,	at	the	end	of	the	loop,	the
data	set	has	23	observations,	one	for	each	of	the	four	variables.

The	data	set,	HOEFFDINGRANK,	is	created	in	the	same	way	using	a
DO	loop,	and	will	result	in	the	variables,	VARIABLE,	HCORR,
HPVALUE,	RANKHOEFF,	corresponding	to	the	variables	names,
correlation	coefficients,	p-values,	and	ranks.	It	contains	23
observations.

Next,	both	data	sets	are	sorted	by	VARIABLE,	and	then	merged	by
VARIABLE	into	the	final	data	set,	called	FINAL.	The	data	set	is	then
sorted	and	printed	by	the	rank	of	the	Spearman’s	correlation
coefficient,	RANKSP,	as	displayed	in	Output	8.5c	Spearman’s	and
Hoeffding’s	D	Correlation	Data	Sorted	by	Spearman’s	Rank.

Upon	inspection	of	the	correlation	data	in	Output	8.5c	Spearman’s
and	Hoeffding’s	D	Correlation	Data	Sorted	by	Spearman’s	Rank,	it
is	evident	that	the	top	ten	variables	are	related	to	the	target,
BONUS,	basically	having	p-values	of	zero.	In	fact,	if	a	variable
has		relatively	high	correlations	with	the	target	using	both
Spearman’s	and	Hoeffding’s	D	coefficients—corresponding	to	low
values	on	RANKSP	and	RANKHOEFF,	respectively—that	variable	is
deemed	monotonically	related,	or	relevant,	to	the	target	and
retained	for	subsequent	analyses.	If	a	variable	has	relatively	low
correlations	with	the	target,	corresponding	to	high	values	on	both
RANKSP	and	RANKHOEFF,	that	variable	is	considered	irrelevant
and	excluded	from	subsequent	analyses.

	



Output	8.5c	Spearman’s	and	Hoeffding’s	D	Correlation	Data	Sorted	by	Spearman’s
Rank

	

Obs Variable ranksp rankhoeff scorr spvalue hcorr hpvalue

1 Fullbath_2plus 1 3 0.69311 0.00000 0.053415 0.00001

2 Gr_Liv_Area 2 1 0.68632 0.00000 0.087528 0.00001

3 Age_at_Sale 3 2 -0.60139 0.00000 0.070234 0.00001

4 High_Kitchen_Quality 4 4 0.57537 0.00000 0.035920 0.00001

5 Total_Bsmt_SF 5 5 0.44553 0.00000 0.035561 0.00001

6 Vinyl_Siding 6 8 0.42397 0.00000 0.017192 0.00001

7 Lot_Area 7 6 0.42184 0.00000 0.031046 0.00001

8 Fireplace_1plus 8 7 0.41753 0.00000 0.018828 0.00001

9 AboveAverage_Condition 9 9 -0.32587 0.00000 0.011161 0.00001

10 Irreq_Lot_Shape 10 10 0.31056 0.00000 0.009685 0.00001

11 BelowAverage_Quality 11 14 -0.23791 0.00000 0.001141 0.01416

12 Has_Fence 12 11 -0.21988 0.00000 0.003197 0.00009

13 Paved_Driveway 13 15 0.20885 0.00000 0.000773 0.03705

14 C_Air 14 17 0.16156 0.00000 -0.000352 0.96679

15 BelowAverage_Condition 15 19 -0.13948 0.00000 -0.000593 1.00000

16 CuldeSac 16 18 0.13861 0.00000 -0.000371 0.98445

17 One_Floor 17 13 -0.13734 0.00000 0.001357 0.00817

18 Bsmt_Unf_SF 18 12 0.13506 0.00000 0.002738 0.00028

19 Normal_Prox_Cond 19 16 0.12976 0.00000 0.000041 0.31818

20 Total_Functionality 20 21 0.08453 0.00162 -0.000723 1.00000

21 High_Exterior_Cond 21 20 -0.07683 0.00417 -0.000610 1.00000

22 Land_Level 22 22 -0.05089 0.05792 -0.000836 1.00000

23 nbr_clus3 23 23 -0.03228 0.22922 -0.000970 1.00000

The	question	then	becomes:	What	are	the	criteria	for	determining
irrelevance?		In	general,	if	a	variable	has	p-values	for	both
Spearman’s	correlation	coefficient	and	Hoeffding’s	D	greater	than
.50,	then	that	variable	and	all	variables	with	higher	ranks	on	both
should	be	reviewed	for	possible	exclusion	from	further	analysis
(SAS	Institute,	2012;	Canes,	2014).	Keep	in	mind	that	the	final



decision	to	eliminate	an	input	variable	is	subjective	and	should
consider	the	business	context.

For	illustration	purposes,	we	will	use	p>	0.20	as	the	criterion.	An
inspection	of	the	correlation	data	reveals	that	the	one		variable,
NBR_CLUS3,	has	a	Spearman’s	p-value	of	0.2292	which	is	the
largest	p-value	with	rank	23.	When	reviewing	Hoeffding’s	D,	note
that	eight	variables	have	a	p-value	greater	than	.20;	the	lowest	rank
of	those	eight	is	16.	

A	plot	of	the	Spearman’s	and	Hoeffding’s	ranks	can	be	used	to
visualize	the	ranks	and	is	generated	using	the	SGPLOT	in	Part	C	of
Program	8.5	Description	of	Input	Variables	Screened	for	Relevance
for	Ames	Housing	Data.

The	SGPLOT	procedure	is	applied	to	the	FINAL	data	set,	where	the
rank	of	Hoeffding’s	D	represents	the	x-axis	and	the	rank	of	the
Spearman’s	correlation	coefficient	represents	the	y-axis.	The
DATALABEL	option	requests	that	the	data	points	be	represented	by
the	variable	name	for	ease	of	identification.		A	reference	line	for
the	x-axis	is	inserted	at	X=16	and	one	for	the	y-axis	is	inserted	at
Y=23,	each	identifying	the	rank	where	the	p-value	exceeds	0.20.

In	Output	8.5d	Rank	of	Spearman’s	Correlation	by	Rank	of
Hoeffding’s	D,	it	is	easy	to	identify	the	eight	variables	that	have
Hoeffding	p-values	greater	than	0.20	as	those	variables	are	listed
either	on	or	to	the	right	of	the	reference	line	at	X=16.		Again,	only
one	variable	has	Spearman’s	p-value	greater	than	0.20,	namely
NBR_CLUS3,	as	it	either	on	or	above	the	reference	line	at	Y=23.
Output	8.5d	Rank	of	Spearman’s	Correlation	by	Rank	of	Hoeffding’s	D



In	general,	any	variable	that	is	either	in	the	top	right	region	or	on
its	borders	should	be	eliminated	from	further	analyses	because	of
its	irrelevance	to	the	target.	In	our	example,	the	variable,
NBR_CLUS3,	will	be	eliminated	from	subsequent	analyses	because
it	has	no	monotonic	relationship	with	the	target,	as	measured	by
Spearman’s	correlation	coefficient,	and	at	the	same	time,	appears	to
have	no	relationship	(monotonic,	non-monotonic,	nor	linear)	with
the	target	as	measured	by	Hoeffding’s	D.

If	a	variable	has	a	point	on	the	plot	that	tends	to	fall	above	the
trend	of	the	other	points,	indicating	a	relatively	low	rank	for
Hoeffding’s	D	and	a	relatively	high	rank	for	Spearman,	there	may
be	a	non-monotonic	relationship	between	the	input	variable	and
the	target.	In	other	words,	Hoeffding’s	D	may	detect	a	non-
monotonic	relationship	that	is	not,	as	stated	earlier,	detected	by	the
Spearman	correlation	coefficient.

In	any	event,	the	analyst	should	follow	up	with	the	empirical	logit
plot	to	determine	if	there	are	any	input	variables	which	may	have	a
non-linear	relationship	with	the	target.		From	Output	8.5d	Rank	of
Spearman’s	Correlation	by	Rank	of	Hoeffding’s	D,	we	see	that	the
point	for	variable,	BSMT_UNF_SF,	falls	slightly	above	the	trend	of



the	other	points.		Therefore,	in	the	next	section,	we	will	investigate
that	variable	for	non-linear	association	with	the	target	variable.

Using	the	Empirical	Logit	to	Detect	Non-Linear
Associations
As	illustrated	in	Chapter	9,	“Linear	Regression	Analysis,”		residual
plots	are	created	to	check	the	assumptions	of	linear	regression.
Because	logistic	regression	is	based	upon	a	binary	target	variable,	a
plot	using	the	target	variable	would	be	useless.	However,	recall
that	for	logistic	regression,	it	is	assumed	that	the	logit	is	a	linear
combination	of	predictors,	defined	as:

where	pi	is	the	probability	of	success.		Therefore,	the	analyst	can
use	the	plot	of	the	logit	by	the	predictor	to	assess	the	nature	of	the
relationship.	Note	that	the	logit	is	undefined	when	pi	=	0	or	pi	=
1.	Therefore	the	analyst	must	review,	instead,	the	empirical	logit
for	each	quantile	of	the	input	variable	under	investigation.	The
empirical	logit	chosen	for	this	book		is	defined	as:

where	Mi	represents	the	total	number	of	observations	in	bin	i,		mi
represents	the	number	of	observations	in	the	event	of	interest	for
bin	i,	and	(Mi	–	mi)	represents	the	number	of	observations	not	in
the	event	of	interest	for	bin	i	(Santer	and	Duffy,	1989).		Note	that	pi
/	(1-pi)	reduces	to	mi/(Mi	–	mi)	and	 	is	included	in	the	term
to	avoid	an	undefined	logit	when	pi	=	0	or	pi	=	1.

In	order	to	produce	an	empirical	logit	plot,	the	analyst	would	use
Program	8.6	Plot	of	Empirical	Logit	by	Bsmt_Unf_SF.
Program	8.6	Plot	of	Empirical	Logit	by	Bsmt_Unf_SF

libname	sasba	‘c:\sasba\ames’;

data	ames70;



set	sasba.ames70;

run;

	

proc	rank	data=ames70	groups=100	out=outrank;

var	Bsmt_Unf_SF;

ranks	bin;

run;

	

proc	print	data=outrank	(obs=10);

var	Bsmt_Unf_SF	bin;run;

	

proc	means	data=outrank	noprint	nway;

class	bin;

var	bonus	Bsmt_Unf_SF;

output	out=bins	sum(bonus)=bonus
mean(Bsmt_Unf_SF)=Bsmt_Unf_SF;

run;

	

proc	sort	data=bins;	by	bin;

run;

	

proc	print	data=bins;

run;

	

data	bins;

set	bins;

elogit=log((bonus+(sqrt(_FREQ_)/2))/(_FREQ_-	bonus+
(sqrt(_FREQ_)/2)));

run;

	

proc	sgplot	data=bins;

reg	y=elogit	x=Bsmt_Unf_SF/degree=2;

series	y=elogit	x=Bsmt_Unf_SF;

title	‘Empirical	Logit	by	Bsmt_Unf_SF’;

run;

In	order	to	create	the	bins,	the	RANK	procedure	is	applied	to	the
AMES70	data	set	so	that	all	observations	are	ordered	by	the
variable,	BSMT_UNF_SF,	as	defined	in	the	VAR	statement.	The



GROUPS=100	option	requests	that	the	variable,	BSMT_UNF_SF,	be
partitioned	into	100	equal	parts	of	equal	size,	which	is	equivalent
to	dividing	the	variable	into	percentiles.	If	the	number	of	tied
values	exceeds	the	bin	size,	the	bin	size	is	increased	so	that	all	ties
are	in	the	same	bin.

The	values	of	the	ranks	are	saved	for	each	observation	in	the
variable,	called	BIN,	as	requested	in	the	RANKS	statement;	this
variable	is	saved	in	the	output	data	set,	OUTRANK.	In	our	case,	the
ranks	range	from	0	to	99,	where	the	maximum	of	99	is	defined	as
the	number	of	groups	(GROUPS=100)	minus	1.		

The	RANK	procedure	creates	no	output.	However,	you	can	see	the
ranks	of	BSMT_UNF_SF	for	the	first	eight	houses	of	the	Ames	data
using	a	PRINT	procedure	on	the	OUTRANK	data	set,	as	displayed	in
Output	8.6a	Value	of	Bsmt_Unf_SF	and	Bin	Variables	for	the	First
Eight	Houses	in	Ames	Housing.	The	output	indicates,	for	example,
that	the	first	house	has	270	square	feet	of	unfinished	basement	area
and	is	contained	in	the	30th	bin	(bin=29).
Output	8.6a	Value	of	Bsmt_Unf_SF	and	Bin	Variables	for	the	First	Eight	Houses	in
Ames	Housing

Obs Bsmt_Unf_SF bin

1 270 29

2 406 43

3 663 66

4 744 72

5 0 3

6 432 46

7 702 69

8 432 46

9 381 40

10 678 68

The	MEANS	procedure	is	applied	to	the	variables	BONUS	and
BSMT_UNF_SF	in	the	OUTRANK	data	set	for	each	bin	as	defined	by
the	CLASS	statement	and	the	NWAY	option.	The	new	data	set,
called	BINS,	will	contain	the	variable,	BONUS,	which	is	a	count	of



the	observations	in	that	bin	that	have	received	a	bonus
(BONUS=1),	and	the	variable,	BSMT_UNF_SF,	which	is	the	mean	of
the	unfinished	basement	square	footage	for	that	bin.		

Note	that	the	variable,	BONUS,	will	be	used	as	the	value	of	mi	for
that	bin	and	the	x-coordinate	for	the	empirical	logit	plot	will	be	the
mean	of	the	bin,	BSMT_UNF_SF.	The	PRINT	procedure	is	called	to
provide	an	excerpt	of	the	listing	of	the	data	set,	BINS,	and	is
displayed	in	Output	8.6b	Total	Frequency,	Number	of	Houses
Earning	a	Bonus,	and	Average	Bsmt_Unf_SF		by	Bin.
Output	8.6b	Total	Frequency,	Number	of	Houses	Earning	a	Bonus,	and	Average
Bsmt_Unf_SF		by	Bin

Obs bin _TYPE_ _FREQ_ bonus Bsmt_Unf_SF

1 3 1 99 20 0

2 7 1 12 3 28.25

3 8 1 13 6 54.461538462

4 9 1 12 6 74.5

5 10 1 16 12 85.5625

… … … … … …

93 98 1 14 12 1649.2142857

94 99 1 13 13 1864.6153846

A	review	of	Output	8.6b	Total	Frequency,	Number	of	Houses
Earning	a	Bonus,	and	Average	Bsmt_Unf_SF		by	Bin	shows,	for
example,	that	bin	9	has	twelve	houses	with	an	average	of	74.5
square	feet	of	unfinished	basement	areas	where	half	(BONUS=6)
earned	bonuses.	The	last	bin	contained	13	houses	with	an	average
of	1864.6	square	feet	of	unfinished	basement	area	where	all
(BONUS=13)	earned	bonuses.	Note	that	all	bins	have	essentially
the	same	size,	except	bin	3,	which	has	99	houses.	This	occurred
because	there	were	99	houses	that	had	no	unfinished	basements
(BSMT_UNF_SF=0);	and	because	ties	are	assigned	to	the	same	bin,
those	houses	were	assigned	to	bin	3.	Note	also	that	because	that
bin	is	so	large,	bin	3	takes	the	place	of	all	bins,	1	through	6.

Finally,	the	empirical	logit,	called	ELOGIT,	is	calculated	using	the
formula	above,	and	the	SGPLOT	procedure	is	used	to	plot



BSMT_UNF_SF,	the	mean	of	the	unfinished	basement	square	footage
on	the	x-axis	and	the	empirical	logit	on	the	y-axis.	Initially,	a
straight	line	was	fit	to	the	data;	however,	after	noting	that	the
trend	seemed	to	dip	and	then	increase,	we		decided	that	a
curvilinear	trend	fit	the	data	best,	as	displayed	in	Output	8.6c
Empirical	Logit	by	the	Variable	Bsmt_Unf_SF.
Output	8.6c	Empirical	Logit	by	the	Variable	Bsmt_Unf_SF

There	are	some	things	to	consider	before	interpreting	the	plot.
First,	the	binning	of	the	input	variable	essentially	splits	the	x-axis
into	100	equal	parts,	where	the	average	of	BSMT_UNF_SF	is	used	to
represent	the	value	of	the	bin.	Given	a	specific	bin	(or	average
BSMT_UNF_SF),	if	the	proportion	of	the	event	of	interest	is	larger
than	the	non-event	(p1>	p0),	then	the	empirical	logit	is	positive;
whereas	if	the	proportion	of	the	event	of	interest	is	smaller	than	the
non-event	(p1	<	p0),	then	the	empirical	logit	is	negative.	Finally,	if
p1	=	p0,	then	the	empirical	logit	is	approximately	zero.

Note	the	spike	at	the	fifth	point	on	the	plot	(bin=10);	this	occurs
because	m1	=	12	and	(1-m1)	=	4,	or	p1=.75	and	p0=.25;	in	other
words,	there	are	a	lot	more	houses	where	a	bonus	was	earned.	Note



also	the	downward	spike	at	bin=48;	this	drop	occurs	m1	=	2	and
(1-m1)	=	15,	or	p1=.12	and	p0=.88;	in	other	words,	there	are	a
lot	more	houses	where	a	bonus	was	not	earned.	

In	general,	if	the	analyst	expects	the	proportion	of	the	event	to
increase	as	the	input	variable	increases,	then	the	empirical	logit
should	increase.	This	is	certainly	not	the	case	for	our	variable,
BSMT_UNF_SF.	In	fact,	a	bivariate	histogram	of	BSMT_UNF_SF	by
BONUS	seems	to	indicate	that	the	homes	that	receive	a	bonus	are
not	discriminated	from	those	not	receiving	a	bonus	until	the
unfinished	basements	reach	much	larger	sizes.	This	seems	to	be	the
case,	as	seen	in	Output	8.6c	Empirical	Logit	by	the	Variable
Bsmt_Unf_SF,	where	there	is	a	consistent	increase	in	the	empirical
logit	from	bin	92	to	99.

In	conclusion,	the	relationship	is	certainly	not	linear.	The
relationship	does	not	seem	to	be	monotonic	either	because	it
changes	direction;	in	other	words,	the	empirical	logit	is	decreasing
and	then	starts	to	increase	as	BSMT_UNF_SF	increases.	Remedies
include	transforming	the	input	which	may	not	be	practical	when
there	are	a	large	number	of	inputs,	and	also	impedes	interpretation.

In	this	particular	example,	it	could	be	a	sign	that	interaction	exists.
It	could	be	that	there	are	other	characteristics	that	play	into	the
sale	price	(which	determines	bonus)	for	homes	with	smaller	or	no
unfinished	basements;	however,	once	the	unfinished	basement
becomes	sizable,	a	larger	sale	price	is	commanded,	thereby
ensuring	a	bonus.	

Finally,	recall	in	the	section	on	variable	reduction,	we	opted	to	use
TOTAL_BSMT_SF	for	Cluster	2	and	drop	the	variable,	BSMT_FIN_SF,
the	finished	basement	square	footage.	TOTAL_BSMT_SF	includes	the
area	of	both	finished	and	unfinished	basements,	so	it	makes	sense
to	drop	BSMT_UNF_SF	as	well.

As	a	result	of	screening	for	redundancy	and	irrelevancy,	in	addition
to	using	some	subjectivity,	the	initial	list	of	inputs	is	reduced	from
29	variables	to	21.	These	variables	certainly	take	into	account	all
characteristics	of	a	house	that	go	into	establishing	a	value,	thereby
determining	BONUS.	Those	variables	are:

Age_at_Sale,	Total_Bsmt_SF,	Gr_Liv_Area,	Paved_Driveway,
Irreq_Lot_Shape,	Lot_Area,	Fullbath_2plus,	Total_Functionality,



Normal_Prox_Cond,	AboveAverage_Condition,
High_Kitchen_Quality,	Has_Fence,

Fireplace_1plus,	Land_Level,	BelowAverage_Quality,
BelowAverage_Condition,	High_Exterior_Cond,	CuldeSac,	C_Air,
One_Floor,	Vinyl_Siding.

We	would	like	to	add	that	a	plot	of	the	empirical	logit	by	the	input
variable	AGE_AT_SALE	was	created	to	assess	other	relationships.
The	plot	shows	a	monotonic	(curvilinear)	decreasing	relationship
with	BONUS	which	flattens	as	the	age	of	the	home	increases.	In
short,	as	the	age	at	sale	increases,	the	proportion	of	houses	where	a
bonus	is	earned	decreases,	resulting	in	a	decrease	in	the	logit;
however,	as	the	house	gets	older,	the	decrease	slows.
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Chapter	Quiz
1.						Which	of	the	following	problems	must	be	addressed	when
preparing	data	for	predictive	modeling?

a.						model	validation

b.						quasi-complete-complete	separation

c.						scoring	new	data

d.						delete	all	variables	with	missing	data

2.						Suppose	an	analyst	is	interested	in	using	the	categorical
variable,	HOUSE_STYLE	(with	the	levels	1-Story,

1-1/2	Story	with	second	level	finished,	1-1/2	Story	with
second	level	unfinished,	2-Story,	Split	Foyer,	Split	Level),	to
predict	the	binary	target	variable,	BONUS,	but	wants	to	first
combine	the	levels	using	the

Greenacre	method.	Which	of	the	following	procedures	is	used
to	generate	the	proportions	of	the	target

variable	for	each	level	of	the	variable,	HOUSE_STYLE?

a.						proc	freq;	table	Bonus*House_Style/chisq;

b.						proc	varclus;	var	House_Style;	by	Bonus;

c.						proc	means;	class	House_Style;	var	Bonus;

d.						proc	corr;	var	House_Style;	with	Bonus;

3.						As	a	result	of	the	Greenacre	method,	suppose	the	analyst
collapses	the	input	variable,	HOUSE_STYLE,	into	three	new
categories:	one	story,	more	than	one	story,	and	split	floor
plan.		The	analyst	should	create:

a.						one	new	variable	representing	house	style	now	having
three	levels

b.						one	indicator	variable	indicating	that	the	Greenacre
method	has	been	applied

c.						three	new	variables	for	each	of	the	three	new	levels

d.						two	new	variables	representing	two	of	the	three	levels



	

4.						When	levels	of	a	categorical	variable	are	collapsed	so	that	no
level	has	a	0	response	nor	0	non-response,	which	of	the
following	problems	are	remedied?

a.						curse	of	dimensionality

b.						quasi-complete	separation

c.						values	not	missing	at	random

d.						non-linearity

Suppose	an	analyst	in	interested	in	using	demographic,	aptitude,
and	extracurricular	data	in	a	testing	instrument	to	predict	whether
or	not	students	successfully	complete	their	freshman	year	of
college.		The	aptitude	data	consists	of	standardized	test	data	in	10
areas	(grammar,	literature,	writing,	algebra,	geometry,	biology,
chemistry,	physics,	history,	and	technology)	each	measured	on	a
100-point	scale.		Suppose	the	analyst	uses	the	VARCLUS	procedure
to	reduce	the	academic	data.		Use	the	information	to	answer
questions	5	through	6:
			proc	varclus	data=highschool	maxeigen=1.0	hi	short
plots=dendrogram;

		var	r1	—	r10;

run;

Cluster	Summary	for	3	Clusters

Cluster Members
Cluster
Variation

Variation
Explained

Proportion
Explained

Second
Eigenvalue

1 4 4 1.969186 0.4923 1.2893

2 4 4 1.922264 0.4806 0.9070

3 2 2 1.678999 0.8395 0.3210

	

Cluster	Summary	for	4	Clusters

Cluster Members
Cluster
Variation

Variation
Explained

Proportion
Explained

Second
Eigenvalue

1 2 2 1.79351 0.8968 0.2065

2 4 4 1.922264 0.4806 0.9070

3 2 2 1.678999 0.8395 0.3210



4 2 2 1.462309 0.7312 0.5377

	

Number
of

Clusters

Total
Variation
Explained

by
Clusters

Proportion
of

Variation
Explained
by	Clusters

Minimum
Proportion
Explained
by	a
Cluster

Maximum
Second

Eigenvalue
in	a

Cluster

Minimum
R-

squared
for	a

Variable

Maximum
1-R**2
Ratio
for	a

Variable

1 2.373584 	 0.2374 1.811567 0.0269 	

2 4.113747 	 0.3652 1.466969 0.1401 0.8803

3 5.570449 	 0.4806 1.289285 0.2190 0.7995

4 6.857083 	 0.4806 0.907041 0.2202 0.7812

	

5.						Using	the	previous	output,	which	of		the	following
statements	is	true?

a.						The	algorithm	stops	at	four	clusters	because	the	maximum
second	eigenvalue	dropped	below	1.0.

b.						Three	clusters	splits	to	form	four	clusters	because	the
proportion	of	variance	explained	is	less	than	1.0.

c.						The	algorithm	will	continue	to	form	five	clusters	because
the	maximum	eigenvalue	for	five	clusters	will	be	less	than
MAXEIGEN.

d.						The	proportion	of	variance	explained	by	four	clusters	is
0.4806.

	

6.						Suppose	the	analyst	modified	the	SAS	code	to	get	the
following	six-cluster	solution.		Which	of	

the	following	statements	is	true?

a.						MAXEIGEN	was	increased	from	1.0	in	order	to	generate
more	clusters.

b.						Subsequent	analyses	would	include	only	those	variables
with	the	largest	R2	with	its	own	cluster.

c.						For	each	cluster,	the	analyst	can	select	either	of	the	two



variables	because	the	1-R2	ratio	values	are	close.

d.						The	analyst	should	use	all	10	variables	because	the
clusters	are	still	correlated.

	

6	Clusters R-squared	with

1-R**2
RatioCluster Variable

Own
Cluster

Next
Closest

Cluster
1

R7 0.8968 0.0285 0.1063

	 R8 0.8968 0.0342 0.1069

Cluster
2

R3 0.7536 0.1266 0.2821

	 R4 0.7536 0.1120 0.2775

Cluster
3

R9 0.8395 0.0359 0.1665

	 R10 0.8395 0.0151 0.1630

Cluster
4

R5 0.7312 0.0245 0.2756

	 R6 0.7312 0.0345 0.2784

Cluster
5

R2 1.0000 0.0598 0.0000

Cluster
6

R1 1.0000 0.1582 0.0000

	

	

7.						With	the	advent	of	sabermetrics,	many	statistics	have	been
developed	in	an	attempt	to	give	a	more

comprehensive	measure	of	value.		In	using	these	measures,	or
variables,	to	predict	value,	it	is	obvious	that	many	of	those
variables	have	inherent	redundant	information.		Suppose	an
analyst	has	38	potential

numeric	input	variables	(number	of	At	Bats	through	Walks
Per	Strikeout),	all	measuring	variations	of

hitting	opportunities	and	performance,	and	runs	a	VARCLUS
procedure	to	reduce	the	set	of	inputs.		Using	the	following



partial	output,	which	of	the	following	input	variables	would
be	included	in	subsequent	analyses	based	upon	the	1-R	square
ratio?

a.						AtBat	and	BaseOnBalls

b.						RBI	and	SacFlies

c.						GroundBalls	and	NumPitches

d.						StolenBases	and	HomeRuns

13	Clusters R-squared	with

1-R**2
RatioCluster Variable

Own
Cluster

Next
Closest

Cluster	1 Triples 0.5281 0.1293 0.5420

	 StolenBases 0.7630 0.1410 0.2759

	 CaughtStealing 0.7694 0.1787 0.2808

Cluster	2 AtBat 0.8500 0.5971 0.3723

	 GamesPlayed 0.8086 0.2190 0.2450

	 TotalPlateAppear 0.9660 0.6065 0.0864

	 NumPitches 0.7720 0.3308 0.3407

Cluster	3 HomeRuns 0.8538 0.3112 0.2122

	 RBI 0.7379 0.2925 0.3704

Cluster	4 BaseOnBalls 0.9139 0.4707 0.1628

	 PitchesPerPlateAppear 0.6461 0.2038 0.4445

	 WalksPerPlateAppear 0.9435 0.4468 0.1021

Cluster	5 Runs 0.6117 0.4298 0.6810

	 Avg 0.5547 0.3189 0.6538

	 RunsCreated 0.9070 0.6760 0.2872

Cluster	6 GroundBalls 0.8764 0.2512 0.1650

	 GroundtoFlyRatio 0.8764 0.1878 0.1521

Cluster	7 K_Strike_Outs 1.0000 0.1444 0.0000

… … … … …

Cluster
12

SacFlies 1.0000 0.0577 0.0000

Cluster
13

SacHits 1.0000 0.2024 0.0000



	

	

8.						Suppose	a	national	retailer	wants	to	send	emails	to	potential
customers	and	is	interested	in	using	those

variables	related	to	the	target,	RESPOND,	code	1	for	Yes	and
0	for	No.		Using	the	following	plot,	which	of	the	following	is
true?

a.						All	of	the	variables	except	USE_PAYPAL	and
NUMBER_OF_CARS	have	a	linear	relationship	with	the
target	variable.

b.						The	input	variables,	USE_PAYPAL	and
NUMBER_OF_CARS,	should	be	eliminated	from	further
analyses	because	of	irrelevance	to	the	target.

c.						Experience	has	the	strongest	non-monotonic	relationship
with	the	target.

d.						SALARY,	USE_PAYPAL,	and	NUMBER_OF_CARS	should	be
eliminated	because	their	Hoeffding	ranks	are	at	or	beyond
the	reference	line.

9.						Suppose	an	analyst	is	screening	a	set	of	potential	inputs



using	Spearman’s	correlation	coefficient	and

Hoeffding’s	D.		Which	of	the	following	situations	is	associated
with	a	large	Hoeffding’s	D	and	a	near	zero	Spearman
correlation	coefficient?

a.						a	nonmonotonic	association	between	the	variables

b.						linear	association	between	the	variables

c.						monotonic	association	between	the	variables

d.						no	association	between	the	variables

	

10.			Suppose	an	analyst	wants	to	predict	academic	major,	CSC
(code	as	1	if	the	student	will	major	in	Computer	Science	or	0
otherwise),	using	several	input	variables	and	wants	to	explore
the	relationship	between	CSC	and	the	input	variable,
TECH_LITERACY,	measuring	technical	literacy.	The
relationship	between	TECH_LITERACY	and	CSC	is
___________________________.

a.						linear

b.						monotonic,	curvilinear

c.						non-monotic

d.						logarithmic	
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Introduction			
In	Chapter	7,	“Analysis	of	Variance	(ANOVA),”	we	discussed	the
general	linear	model	for	investigating	the	differences	in	a	numeric
continuous	outcome	across	two	or	more	populations	(a	factor),
where	the	appropriate	statistical	test	is	an	analysis	of	variance
(ANOVA).	We	extended	the	general	linear	model	to	include
additional	factors	(or	variables)	as	a	way	to	explain	variation	in	the
outcome	variable	of	interest,	using	either	a	block	design	or	two-



factor	ANOVA.	

If	our	results	are	significant,	we	can	say	that	the	outcome	is	a
function	of	one	or	more	factors	(or	variables),	where	those
variables	are	categorical.	In	this	chapter,	we	extend	the	general
linear	model	to	include	describing	a	numeric	continuous	outcome
as	a	function	of	one	or	more	numeric	continuous	and/or	categorical
variables	(called	predictors).

As	discussed	in	Chapter	1,	“Statistics	and	Making	Sense	of	Our
World,”	if	the	analyst	is	interested	in	investigating	the	relationship
between	a	numeric	continuous	response	variable	and	a	set	of
predictors	(whether	categorical	or	numeric),	then	the	appropriate
statistical	analysis	is	linear	regression	analysis.	

In	this	chapter,	we	will	introduce	the	idea	of	bivariate	correlation
and	scatter	plots	as	a	way	to	assess	the	nature	of	the	relationship
between	two	numeric	continuous	variables.	We	will	follow	up	with
a	discussion	of	simple	linear	regression	where	the	goal	is	to	predict
a	numeric	continuous	outcome	from	a	numeric	continuous
predictor,	and	how	that	is	related	to	correlational	analysis.

We	will	provide	the	details	of	simple	linear	regression,	including
the	concepts	behind	finding	the	slope	and	intercept	of	the	line	that
best	fits	the	data,	how	to	measure	the	goodness	of	fit,	inferences	to
the	population,	and	using	the	results	for	purposes	of	explanation
and	prediction.	Following,	we	extend	those	same	concepts	to	the
multiple	regression	situation	where	the	analyst	will	consider	two	or
more	predictors.	

With	multiple	predictors,	we	will	discuss	issues	related	to
collinearity	(redundancy),	its	diagnosis,	and	suggest	remedies.
Following	we	will	discuss	the	variable	selection	(predictor
relevancy)	process	using	both	the	REG	and	GLMSELECT	procedures
in	an	attempt	to	find	the	best	model	based	upon	user-defined
criteria.	

This	chapter	ends	with	a	statement	of	the	assumptions	and	the
application	of	regression	diagnostics	to	assess	those	assumptions,
including	remedies	to	violations	of	the	assumptions.		Finally,	we
discuss	deletion	statistics	for	detecting	outliers	and	influential
observations	and	provide	recommendations	for	handling	influential
observations.



In	this	chapter,	you	will	learn	how	to:

	identify	situations	that	require	the	use	of	linear	regression
analysis

	use	the	correlation	coefficient	and	scatter	plot	to	assess	the
relationship	between	two	numeric	continuous	variables

	use	the	CORR	and	SGPLOT	procedures	to	get	correlation
coefficients	and	scatter	plots

	apply	simple	and	multiple	linear	regression	and	understand
the	concept	of	fitting	the	best	line	(equation)	using	the	OLS
(ordinary	least	squares)	criterion

	use	the	REG	procedure	to	fit	both	simple	and	multiple	linear
regression

	use	the	GLM	procedure	to	fit	both	simple	and	multiple	linear
regression,	including	a	CLASS	statement	for	categorical
predictors

	convert	the	model	from	both	PROC	REG	and	PROC	GLM	to
an	algebraic	expression

	interpret	the	slopes	and	intercept	in	the	algebraic	expression
in	order	to	describe	the	relationship	between	the	outcome
variable	and	its	predictors

	conduct	individual	t-tests	to	assess	the	significance	of	one	or
more	predictors

	identify	the	parts	of	the	ANOVA	table,	including	the	sums	of
squares,	degrees	of	freedom,	mean	square	regression,	mean
square	error,	and	the	F-test	statistic,	and	use	the	p-value	for
assessing	the	significance	of	the	set	of	predictors

	identify	the	measures	of	fit	(R2,	R2adj,	and	RMSE)	for
assessing	the	model	adequacy

	identify	R2	as	the	proportion	of	variance	in	the	outcome
explained	by	the	predictor	(or	predictors)

	identify	the	better	model	out	of	two	models	using	the
measures	of	fit

	use	the	STEPWISE,	FORWARD,	and	BACKWARD	selection
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methods	using	the	SELECTION	option	in	PROC	REG

	use	the	STEPWISE,	FORWARD,	and	BACKWARD	selection
methods	using	the	SELECTION	option	in	PROC	GLMSELECT

	identify	the	best	models	using	graphs	of	fit	criteria	in	PROC
REG,	including	R2adj	and	Mallows’	Cp

	identify	the	best	models	using	graphs	of	fit	criteria	in	PROC
GLMSELECT,	including	log	p-value

	assign	names	to	models	using	LABEL	in	the	REG	procedure	to
distinguish	various	output	models

	describe	the	assumptions	of	linear	regression	and	understand
the	consequences	of	violating	those	assumptions

	use	PROC	REG	and	the	MODEL	statement	to	generate
residual	plots	to	assess	the	assumptions

	use	the	residual	plots	to	assess	the	assumptions

	understand	how	to	fix	the	violations	to	assumptions

	use	the	PROC	REG	and	the	MODEL	statement	to	produce
deletion	statistics	to	identify	possible	influential	observations,
including	leverage,	studentized	residuals,	Cook’s	D,	DFFITS,
and	DFBETAS

	interpret	the	deletion	statistics	to	identify	possible	influential
observations

	describe	remedies	for	handling	influential	observations

	use	PROC	REG	and	the	MODEL	statement	to	provide
collinearity	diagnostics,	including	variance	inflation	factors
and	condition	number	(VIF,	COLLIN,	COLLINOINT)

	identify	collinearity	using	VIF,	COLLIN,	and	COLLINOINT
and	give	recommendations	for	resolving	related	issues

Exploring	the	Relationship	between	Two	Continuous
Variables
When	ultimately	using	predictive	modeling,	the	analyst	should	first
conduct	exploratory	data	analysis.	Exploratory	data	analysis
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requires	both	data	visualization	and	data	summaries.	In	this
section,	we	will	explore	the	relationship	between	two	(numeric)
continuous	variables	using	the	scatter	plot	for	visualizing	the
relationship	and	the	correlation	coefficient	for	numerical
description.

Exploring	the	Relationship	between	Two	Continuous
Variables	Using	a	Scatter	Plot
Suppose	the	analyst	is	interested	in	examining	the	relationship
between	the	sale	price	and	the	above	ground	living	area	of	a
particular	group	of	houses.	For	each	house,	we	can	treat	both
continuous	variables	as	an	ordered	pair	(X,Y),	where	the	dependent
variable	represents	the	y-coordinate	and	the	independent	variable
represents	the	x-coordinate.	A	scatter	plot	can	be	constructed	by
plotting	each	point	on	an	XY-coordinate	plane.	This	visual	display
of	the	data	provides	the	preliminary	information	we	need	to
describe	the	type	of	relationship	between	the	variables,	whether
positive,	negative,	linear,	curvilinear,	etc.

Consider	the	Ames	Housing	Case	and	the	variables,	sale	price
(SALEPRICE)	and	above	ground	living	area	(GR_LIV_AREA),	where
we	take	a	random	sample	of	300	houses.	The	Program	9.1	Scatter
Plot	of	Sale	Price	by	Above	Ground	Living	Area	is	used	to	generate
the	scatter	plot:
Program	9.1	Scatter	Plot	of	Sale	Price	by	Above	Ground	Living	Area

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	sgplot	data=amesreg300;

reg	x=Gr_Liv_Area	Y=SalePrice;

run;

From	Program	9.1	Scatter	Plot	of	Sale	Price	by	Above	Ground
Living	Area,	we	can	see	that	the	SGPLOT	procedure	is	applied	to
the	Ames	Housing	data	set,	as	defined	by	the	DATA=	option.	The
REG	statement	defines	SALEPRICE	as	the	dependent	variable	(Y)
and	the	above	ground	living	area,	GR_LIV_AREA,	as	the



independent	variable	(X).	The	output	generated	is	illustrated	in
Output	9.1	Scatter	Plot	of	Sale	Price	and	Above	Ground	Living
Area.
Output	9.1	Scatter	Plot	of	Sale	Price	and	Above	Ground	Living	Area

From	the	scatter	plot	we	can	see	that	there	is	a	positive	relationship
between	the	two	variables;	namely,	as	above	ground	living	area
increases,	the	sale	price	increases	as	well.		We	also	have	some
visual	evidence	from	the	plot	that	the	relationship	is
linear.		Finally,	there	do	not	seem	to	be	any	outliers—that	is,
observations	that	deviate	from	the	general	linear	trend;	however,
we	will	discuss	outlier	detection	later	in	this	chapter.

Consider	Program	9.2	Scatter	Plot	of	Sale	Price	and	Age	at	Time	of
Sale	requesting	a	scatter	plot	of	sale	price	by	the	age	of	the	house
at	the	time	of	the	sale.
Program	9.2	Scatter	Plot	of	Sale	Price	and	Age	at	Time	of	Sale

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	sgplot	data=amesreg300;

reg	x=Age_at_Sale	Y=SalePrice;

run;



We	can	see	from	Output	9.2	Scatter	Plot	of	Sale	Price	and	Age	at
Time	of	Sale	that	the	relationship	between	sale	price	and	age	at	the
time	of	the	sale	is	negative,	meaning	that	as	the	house	gets	older,
the	sale	price	decreases.	Again,	we	can	see	that	the	relationship	is
linear.
Output	9.2	Scatter	Plot	of	Sale	Price	and	Age	at	Time	of	Sale

Finally,	there	may	be	situations,	for	example,	where	other
amenities	play	into	the	sale	price	so	that	the	sale	price	has	less	to
do	with	square	footage.	Consider	the	following	example	as
illustrated	using	Program	9.3	Scatter	Plot	of	Sale	Price	and	Square
Footage.
Program	9.3	Scatter	Plot	of	Sale	Price	and	Square	Footage

data	housing;

input	SqFt	SalePrice		@@;

datalines;

2135	95.27	850	43.03	800	213.82	865	93.98

1515	75.15	1200	22.41	1200	216.13	1200	132.97

1625	219	1595	238.19	2100	224.66	2000	23.1

2000	195.56	1855	102.61	1700	130.27	1000	254.44

;

proc	sgplot	data=housing;

reg	x=SqFt	Y=SalePrice;



run;

The	relationship	between	sale	price	and	square	footage	is	flat,	as
illustrated	Output	9.3	Scatter	Plot	of	Sale	Price	and	Square	Footage.
In	other	words,	there	does	not	seem	to	be	a	change	in	sale	price
associated	with	a	change	in	the	square	footage;	specifically,	at	each
level	of	square	footage	(X),	the	average	sale	price	seems	to	stay
relatively	constant,	as	indicated	by	the	line	with	zero	slope.
Output	9.3	Scatter	Plot	of	Sale	Price	and	Square	Footage

Quantifying	the	Degree	of	Association	between	Two
Continuous	Variables	Using	Correlation	Statistics
Every	data	visualization	should	be	coupled	with	descriptive
statistics.	For	example,	in	Chapter	3,	“Data	Visualization,”	the
histogram	of	numeric	continuous	data	was	accompanied	by
measures	of	center	(mean,	median,	and	mode),	measures	of
dispersion	(range,	standard	deviation,	and	variance),	and	measures
of	shape	(skewness	and	kurtosis).	Consequently,	a	scatter	plot
should	be	accompanied	by	the	correlation	coefficient.	

Essentially,	correlation	describes	how	two	variables	change	values
in	relation	to	one	another.	When	describing	the	correlation
between	two	continuous	variables,	where	it	is	assumed	the
relationship	is	linear,	the	coefficient	of	interest	is	Karl	Pearson’s
correlation	coefficient	(r).		This	correlation	coefficient	provides	two
bits	of	information	about	the	relationship	between	X	and	Y:	(1)	the



strength	of	the	relationship	and	(2)	its	direction,	whether	positive
or	negative.		The	correlation	between	X	and	Y	is	calculated	using:

where	rxy	is	the	sample	correlation	coefficient	between	X	and	Y,
Covxy	is	the	sample	covariance	of	X	and	Y,	Sx	is	the	sample	standard
deviation	of	X,	and	Sy	is	the	sample	standard	deviation	of	Y.	

The	range	of	rxy	is	bounded	between	-1	to	+1,	inclusive.	For	a
perfect	positive	linear	relationship,	rxy	=	+1,	as	displayed	in
Figure	9.1	Scatter	Plot	of	Perfect	Positive,	Perfect	Negative,	and	No
Relationship,	Panel	A.	For	a	perfect	negative	linear	relationship,	rxy
=	-1,	as	displayed	in	Figure	9.1	Scatter	Plot	of	Perfect	Positive,
Perfect	Negative,	and	No	Relationship,	Panel	B.	When	there	is	no
relationship,	rxy	=	0,	as	displayed	in	Figure	9.1	Scatter	Plot	of
Perfect	Positive,	Perfect	Negative,	and	No	Relationship,	Panel	C.
Figure	9.1	Scatter	Plot	of	Perfect	Positive,	Perfect	Negative,	and	No	Relationship



Interpreting	the	strength	of	association	using	the	correlation
coefficient	depends	upon	the	particular	situation.	General	rules	can
be	followed:	if	the	absolute	value	of	a	correlation	coefficient	is
under	.30,	the	relationship	is	considered	weak;	values	between	.30
and	.50	are	considered	moderate;	any	value	.50	and	above	is
considered	strong.	These	rules	are	general	rules	and	business
analysts	have	to	consider	the	standards	on	the	topic	under
investigation	when	interpreting	the	degree	of	association.
Following	this	section	will	be	a	discussion	on	using	hypothesis
testing	for	confirming	evidence	of	a	significant	relationship
between	X	and	Y	in	the	population.

Producing	Correlation	Coefficients	Using	the	CORR
Procedure
PROC	CORR	is	a	procedure	used	to	establish	the	relationship
between	two	numeric	continuous	variables	and	has	the	general
form:



PROC	CORR	DATA=SAS-data-set	<options>;

VAR	variables;

WITH		variables;

RUN;

Let’s	revisit	the	Ames	Housing	Case	and	explore	potential
predictors	of	sale	price,	using	the	following	code	in	Program	9.4
Correlation	Coefficient	and	Descriptive	Statistics	for	Ames	Housing.
Program	9.4	Correlation	Coefficient	and	Descriptive	Statistics	for	Ames	Housing

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	corr	data=amesreg300;

var	SalePrice	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area	Age_at_Sale;

run;

From	Program	9.4	Correlation	Coefficient	and	Descriptive	Statistics
for	Ames	Housing,	we	can	see	that	the	CORR	procedure	is	applied
to	the	Ames	Housing	data	set,	as	defined	by	the	DATA=	option.
The	VAR	statement	defines	the	five	continuous	variables	for	the
correlational	analysis.	The	results	are	displayed	in	Output	9.4
Correlation	Coefficients	and	Descriptive	Statistics	for	Ames
Housing.
Output	9.4	Correlation	Coefficients	and	Descriptive	Statistics	for	Ames	Housing

5		
Variables:

SalePrice					Gr_Liv_Area			Total_Bsmt_			Lot_Area						
Age_at_Sale

	

Simple	Statistics

Variable N Mean Std	Dev Sum Minimum Maximum

SalePrice 300 154910 34924 46473009 75200 240000

Gr_Liv_Area 300 1343 314.74797 402987 641.00000 2322

Total_Bsmt_SF 300 964.59667 297.74194 289379 0 1680

Lot_Area 300 10015 3799 3004352 2887 36500



Age_at_Sale 300 43.18333 27.45437 12955 1.00000 135.00000

	

Pearson	Correlation	Coefficients,	N	=	300
Prob	>	|r|	under	H0:	Rho=0

	 SalePrice Gr_Liv_Area Total_Bsmt_SF Lot_Area Age_at_Sale

SalePrice 1.00000 0.74357
<.0001

0.45533
<.0001

0.31517
<.0001

-0.73675
<.0001

Gr_Liv_Area 0.74357
<.0001

1.00000 0.19077
0.0009

0.22958
<.0001

-0.38742
<.0001

Total_Bsmt_SF 0.45533
<.0001

0.19077
0.0009

1.00000 0.26236
<.0001

-0.32242
<.0001

Lot_Area 0.31517
<.0001

0.22958
<.0001

0.26236
<.0001

1.00000 -0.24354
<.0001

Age_at_Sale -0.73675
<.0001

-0.38742
<.0001

-0.32242
<.0001

-0.24354
<.0001

1.00000

First,	observe	the	table	of	Simple	Statistics	in	Output	9.4	which
summarizes	information	about	the	houses	in	the	sample—	namely,
how	many	observations	have	complete	data	and	descriptions	of	the
center	and	spread.	In	short,	the	analyst	can	see	that	the	sample	of
300	houses	has	an	average	sale	price	of	$154,910,	average	above
ground	living	area	of	1343	square	feet,	average	basement	area	of
964.60	square	feet,	lot	area	of	10,015	square	units,	and	an	average
age	of	43.18	years.	The	minimum	and	maximum	values,	in	addition
to	the	standard	deviation,	are	of	interest	as	well	in	describing	the
variation.

Second,	the	table	of	Pearson	Correlation	Coefficients	in	Output	9.4
provides	coefficients	and	p-values	for	every	pair	of	variables	listed
in	the	VAR	statement.	Note	that	the	diagonal	entries	each	have
correlation	coefficients	of	1,	representing	the	fact	that	a	variable	is
perfectly	correlated	with	itself.	

Note,	in	particular,	the	correlation	coefficient	in	the	second	row	of
the	first	column	having	a	value	of	0.74357.	The	entry	represents
where	the	GR_LIV_AREA	row	intersects	the	SALEPRICE	column,
indicating	that	GR_LIV_AREA	and	SALEPRICE	have	a	relatively
large	positive	relationship	(the	p-value	will	be	discussed	in	the	next
section).	Note	also	that	this	same	correlation	coefficient	is	repeated
in	the	first	row	of	the	second	column.	In	fact,	all	entries	above	the



diagonal	are	mirror	images	(repeats)	of	the	entries	below	the
diagonal;	therefore,	only	the	entries	below	the	diagonal	are	of
importance.

From	the	table,	we	can	see	that	all	potential	predictors	have	a
relatively	strong	correlation	with	SALEPRICE,	ranging	from	a
magnitude	of	0.31517	(LOT_AREA)	to	0.74357	(GR_LIV_AREA),
including	a	strong	negative	correlation	between	AGE_AT_SALE	and
SALEPRICE	(-0.73675).	Keep	in	mind	that	while	these	bivariate
correlations	are	relatively	high,	the	analyst	must	consider	multiple
linear	regression	to	see	how	these	correlations	may	change	in	the
presence	of	other	predictors.

When	conducting	linear	regression,	the	analyst	will	be	concerned
with	minimizing	the	correlations	among	the	potential	predictors
(Xs).	The	correlation	matrix	provides	preliminary	information
about	the	relationship	between	the	Xs	and	is	displayed	in	the
remaining	entries.	The	correlations	among	the	predictors	range
from	0.19077	(between	GR_LIV_AREA	and	TOTAL_BSMT_SF)	and
-0.38742	(between	GR_LIV_AREA	and	AGE_AT_SALE)	which	are
somewhat	smaller	than	the	correlations	with	the	outcome	variable
Y	(SALEPRICE).	Later	in	this	chapter,	you	will	see	ways	to
determine	if	the	correlations	are	large	enough	to	deem	that
collinearity	is	a	problem.

When	using	the	CORR	procedure,	it	is	important	to	know	that	the
default	SAS	setting	utilizes	pairwise	deletion,	whereas	other
procedures	utilize	listwise	deletion.	Pairwise	deletion	retains	only
those	observations	that	have	complete	(non-missing)	data	on	the
two	variables	being	analyzed	or	correlated.	If	the	analyst	wants	to
include	only	observations	having	complete	data	on	all	variables
listed	in	the	VAR	statement,	PROC	CORR	should	include	the
NOMISS	option.

If	the	analyst	is	interested	only	in	the	predictors	associated	with
sale	price,	the	WITH	statement	can	be	used;	the	PLOT=SCATTER
option	can	be	added	to	generate	scatter	plots	illustrated	in	Program
9.5	Correlation	Coefficients	with	Sale	Price	for	Ames	Housing.	
Program	9.5	Correlation	Coefficients	with	Sale	Price	for	Ames	Housing

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;



set	sasba.amesreg300;

run;

	

proc	corr	data=amesreg300	plot=scatter;

var	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area	Age_at_Sale;

with	SalePrice;

run;

Output	9.5a	Correlation	Coefficients	with	Sale	Price	for	Ames	Housing

1	With	Variables: SalePrice

4							Variables: Gr_Liv_Area			Total_Bsmt_SF
Lot_Area						Age_at_Sale

	

Pearson	Correlation	Coefficients,	N	=	300
Prob	>	|r|	under	H0:	Rho=0

	 Gr_Liv_Area Total_Bsmt_SF Lot_Area Age_at_Sale

SalePrice 0.74357
<.0001

0.45533
<.0001

0.31517
<.0001

-0.73675
<.0001

The	information	provided	in	Output	9.5a	Correlation	Coefficients
with	Sale	Price	for	Ames	Housing	states	that	the	variable
SALEPRICE	will	be	correlated	with	the	4	variables,	GR_LIV_AREA,
TOTAL_BSMT_SF,	LOT_AREA,	and	AGE_AT_SALE.	That	information
is	followed	with	the	associated	four	correlation	coefficients.	These
correlation	coefficients	should	be	coupled	with	data	visualizations,
as	displayed	in	Output	9.5b	Scatter	Plots	for	Sale	Price	with
Potential	Predictors.	

The	scatter	plots	of	both	SALEPRICE	with	GR_LIV_AREA	and
SALEPRICE	with	AGE_AT_SALE	show	a	stronger	relationship	as
indicated	with	the	relatively	small	spread	of	points	within	the
prediction	ellipse.	Note	that	the	prediction	ellipse	represents	the
region	for	predicting	the	location	of	a	new	observation	for	each
value	of	X,	whereas,	the	confidence	ellipse	defines	the	confidence
interval	around	the	mean	of	the	predicted	values	for	each	value	of
X.

These	plots	complement	the	information	obtained	using	the
correlations	coefficients	themselves.		Note	that	there	is	a	relatively



larger	spread	in	the	linear	trend	for	SALEPRICE	by
TOTAL_BSMT_SF,	which	is	also	represented	by	the	relatively
smaller	correlation	coefficient,	indicating	that	while	the
relationship	between	SALEPRICE	and	TOTAL_BSMT_SF	may	be
relatively	strong,	it	is	not	as	strong	as	the	relationship	of
SALEPRICE	with	GR_LIV_AREA	nor	AGE_AT_SALE.	Finally,	the
ellipse	in	the	scatter	plot	of	SALEPRICE	by	LOT_AREA	is	relatively
tight:	notice	that	several	observations	are	relatively	far	from	the
ellipse,	resulting	in	a	reduction	in	the	relationship	as	measured	by
the	lowest	correlation	coefficient,	0.31517.
Output	9.5b	Scatter	Plots	for	Sale	Price	with	Potential	Predictors

	

Testing	the	Hypothesis	for	a	Bivariate	Linear
Relationship	Using	the	CORR	Procedure
In	the	last	section,	we	used	the	correlation	coefficient	to	describe
the	relationship	between	two	continuous	numeric
variables.		Suppose	the	analyst	now	wants	to	use	the	sample
correlation	coefficient	(rxy)	to	make	inferences	about	the	magnitude
of	the	linear	relationship	between	X	and	Y	in	the	population.	The



question	becomes:	‘Is	the	sample	correlation	coefficient	considered
large	enough	to	infer	that	the	population	correlation	coefficient
(ρxy)	is	large,	that	is,	significantly	different	from	zero.	In	this	case,
we	are	testing	the	following	hypothesis	set:

Suppose	we	consider	the	Ames	Housing	Case,	where	we	want	to
make	inferences	about	the	population	correlation	coefficients	using
the	sample	coefficients	in	Output	9.4.		In	particular,	consider	the
relationship	between	SALEPRICE	and	GR_LIV_AREA,	with	sample
correlation	coefficient	equal	to	0.74357.

The	correlation	coefficient	has	a	sampling	distribution	shaped	like	a
t-distribution,	so	the	appropriate	test	is	the	t-test	with	n-2	degrees
of	freedom.	The	formula	for	the	t-test	statistics	defined	as:

This	t-value	(19.261)	is	enormous	and	has	a	p-value	<	0.0001	as
found	in	the	correlation	table	displayed	in	Output	9.4.		In
conclusion,	the	analyst	would	reject	the	null	hypothesis	and
conclude	that	our	sample	provides	evidence	the	correlation
coefficient	for	SALEPRICE	and	GR_LIV_AREA	in	the	population	is
different	than	zero.	Note	that	the	t-test	statistic,	in	this	case,	is
driven	by	the	sample	size;	in	other	words,	a	large	sample	size	in	the
numerator,	holding	all	other	terms	constant,	results	in	a	large	test
statistic.	Therefore,	the	analyst	should	interpret	the	results	taking
into	account	the	sample	size.	(Note:	It	turns	out	that	we	would
have	arrived	at	the	same	conclusion	with	rxy	=	0.74357	for	a
sample	size	of	30).

Finally,	let’s	consider	testing	the	significance	of	all	correlation
coefficients	provided	in	Output	9.4.	In	all,	there	are	a	total	of	10
correlation	coefficients,	or	(5)(5-1)/2	for	5	variables.	When
conducting	many	hypothesis	tests	as	part	of	a	single	set	of	tests,	the
analyst	expects	to	reject	at	least	one	of	those	tests	by	chance,	even
if	there	are	no	significant	correlations.		In	other	words,	when
conducting	many	tests	at	once,	the	chance	of	rejecting	the	null
when	we	shouldn’t	increases	(i.e.,	the	probability	of	making	a	type



I	error	increases).	Therefore,	when	conducting	hypothesis	tests,	the
alpha-level	used	should	be	adjusted	by	dividing	the	alpha	level	by
the	number	of	tests.		This	is	referred	to	as	the	Bonferroni
correction	(Dunn,	O.J.,	1961).		

So	when	the	analyst	conducts	the	test	of	significance	for	10
correlations,	to	have	an	effective	alpha-level	of,	for	example,	0.01,
the	analyst	should	divide	that	alpha	by	10	(the	number	of	tests)
and	use	0.001	as	the	significance	level	when	deciding	to	reject	the
null.	In	our	tests	of	the	10	correlations,	we	would	reject	the	null
and	conclude	that	there	are	correlations	among	these	five	variables
in	the	population.

In	conclusion,	correlational	analyses	with	CORR	and	SGPLOT	are
good	first	steps	in	understanding	bivariate	data.	These	procedures
give	information	about	the	characteristics	of	each	variable	and	how
two	particular	variables	are	related.	In	the	remaining	part	of	this
chapter,	we	will	discuss	linear	regression	which	is	related	to
correlational	analysis—specifically,	when	looking	at	using	a	single
X	to	predict	Y.	However,	when	using	multiple	Xs	to	predict	Y,
while	correlations	help	in	understanding	the	relationship	between
the	pair	of	variables,	linear	regression	with	multiple	predictors
takes	into	account	the	relationship	between	an	entire	system	of
variables.

Understanding	Potential	Misuses	of	the	Correlation
Coefficient
There	are	limitations	to	the	correlation	coefficient.	As	with	prior
statistical	techniques	presented	thus	far,	using	the	correlation
coefficient	to	establish	causal	effects	or	direction	of	causal	effects	is
not	valid	regardless	of	the	size	of	the	correlation	coefficient.	A
significant	correlation	coefficient	establishes	only	associations
among	continuous	variables,	not	causality.	Additional	controls
must	be	considered	before	causation	can	be	established.

Secondly,	the	correlational	analysis	is	appropriate	when	variables
have	a	linear	relationship.	It	is	not	valid	to	use	the	correlation
coefficient	to	describe	non-linear	relationships	between	variables.
Therefore,	scatter	plots	are	very	important	in	assessing	the	nature
of	the	relationship.	In	the	sections	on	linear	regression,	there	will
be	discussions	on	remedies	when	the	relationship	between	X	and	Y



is	non-linear.
Caution	must	be	used	when	using	correlational	analysis,	in
particular,	when	it	comes	to	outliers.		The	correlation	coefficient	is
calculated	using	all	observations,	so	when	any	one	observation
deviates	significantly	from	the	linear	trend	of	the	remaining
observations,	the	magnitude	of	the	correlation	is	reduced	(and
biased).	Again,	a	visual	inspection	of	the	scatter	plot	should	always
accompany	the	reporting	of	statistics	to	ensure	an	adequate
assessment	of	influences.	Outliers	will	be	addressed	in	the
following	discussions	of	linear	regression.

The	correlation	coefficient	is	useful	when	data	values	reflect	the
entire	range	of	possible	values	in	the	population.	If	this	is	not	the
case,	the	correlation	coefficient	may	be	biased	because	of
restriction	of	range.	An	example	is	as	follows—	suppose	you	want
to	correlate	the	sale	price	of	a	house	with	the	living	area	for	a
neighborhood	of	all	large	homes.	When	there	is	relatively	little
variation	in	X	(here,	square	footage),	there	is	probably	very	little
variation	in	the	sale	price,	resulting	in	a	biased	(reduced)
correlation	coefficient.	As	a	result,	the	correlation	between	sale
price	and	living	area	for	that	neighborhood	would	not	be
representative	of	the	relationship	among	the	population	having
larger	ranges.	As	always,	an	inspection	of	the	descriptive	statistics,
along	with	data	visualizations,	will	aid	in	determining	if	restriction
of	range	is	an	issue.

Finally,	as	illustrated	earlier,	correlation	coefficients	are	often
significant	for	large	samples.	The	statistical	significance	is	one
component	of	the	interpretation	of	the	correlation	coefficient;	the
analyst	must	always	consider	the	magnitude	of	the	correlation
coefficient.	If	you	have	a	correlation	coefficient	that	is	significant,
but	the	strength	of	the	association	is	less	than	0.30,	you	should
carefully	consider	the	practical	significance	over	the	statistical
significance.	

Simple	Linear	Regression
The	overall	goal	of	simple	linear	regression	is	to	develop	a
mathematical	model,	or	equation,	that	linearly	relates	two	numeric
continuous	variables.	For	purposes	of	regression	analysis,	we	define



Y	to	be	the	dependent	variable,	or	outcome	variable;	X	is	defined
as	the	independent	variable	or	predictor.	In	simple	linear
regression,	there	is	only	one	predictor,	and	the	analysis	has	two
main	objectives:

1.						to	establish	if	there	is	a	relationship	between	two	variables—
similar	to	correlational	analysis—and	to	describe	that
relationship

2.						to	predict	the	outcome	(Y)	of	new	observations	based	upon
the	values	of	their	predictors	(Xs)

Fitting	a	Simple	Linear	Regression	Model	Using	the
REG	Procedure
When	assessing	the	linear	relationship	between	two	variables,	the
assumption	is	that	the	form	of	the	equation	is	linear;	therefore,	the
simple	linear	regression	model	is	defined	as:

where	Yi	is	the	value	of	the	dependent	variable	for	observation	i,	Xi
is	the	value	of	the	predictor	for	observation	i,	β0	is	the	intercept,	β1
is	the	slope,	and	ε0	is	the	error	in	prediction	for	observation	i.	The
intercept,	β0,	represents	the	value	of	Yi	when	the	independent
variable	X	has	a	value	of	zero.		The	slope,	β1,	represents	the	change
in	Y	for	every	1	unit	change	in	X.	

From	the	sample,	the	analyst	will	develop	a	prediction	equation
that	best	represents	the	relationship	in	the	population.	The
prediction	equation	has	the	form:

where	 	is	the	predicted	value	of	Y	for	observation	i,	Xi	is	the
value	of	the	predictor	for	observation	i,	b0	is	the	sample	estimate	of
the	population	intercept	β0,	and	b1	is	the	sample	estimate	of	the
population	slope	β1.	

When	trying	to	find	the	‘best’	linear	equation	that	fits	the	points	on
a	scatter	plot,	the	formulae	for	calculating	the	slope	and	the
intercept	are	based	on	the	idea	that	the	best	line	is	the	single	line



that	is	closest	in	proximity	to	all	points.	In	other	words,	the	desired
line	is	the	one	that	minimizes	the	error	in	prediction	(e)	for	each
observation,	that	is,	the	distance	between	the	Y-coordinate	of	an
observation	and	the	point	on	the	line,	 ,	represented	by,	 ,
as	illustrated	in	Figure	9.2		Fitting	the	Line	Closest	to	All	Points.
It	should	be	noted	that	the	errors	are	negative	for	points	below	the
line	and	positive	for	all	points	above	the	line.	So	if	we	attempt	to
minimize	the	sum	of	the	errors,	the	positive	errors	and	negative
errors	always	cancel	each	other,	and	the	sum	of	the	errors	will	be
zero	for	all	lines.	In	short,	the	goal	is	to	find	the	slope	and	intercept
of	the	line	that	minimizes	the	‘squared’	errors;	therefore,	the
criterion	for	finding	solutions	is	called	the	Least-Squares
Criterion,	and	the	method	is	referred	to	as	ordinary	least	squares
(OLS).
Figure	9.2	Fitting	the	Line	Closest	to	All	Points

PROC	REG	is	a	procedure	used	to	produce	the	linear	equation	and
assessment	information	for	establishing	the	relationship	between	a
numeric	continuous	outcome	variable	and	one	or	more	numeric	or
dummy	coded	predictor	variables	and	has	the	general	form:

PROC	REG	DATA=SAS-data-set	<options>;
								<label>:	MODEL	dependent(s)=regressor(s)	</	options>;

RUN;

To	illustrate,	consider	the	Ames	Housing	data	where	the	analyst	is



interested	in	relating	the	sale	price	of	a	house	to	its	above	ground
living	area.	The	necessary	SAS	code	is	displayed	in	Program	9.6
Linear	Regression	for	Predicting	Sale	Price	with	Ground	Living
Area.
Program	9.6	Linear	Regression	for	Predicting	Sale	Price	with	Ground	Living	Area

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300;

model	SalePrice	=	Gr_Liv_Area;

run;

From	Program	9.6	Linear	Regression	for	Predicting	Sale	Price	with
Ground	Living	Area,	we	can	see	that	the	REG	procedure	is	applied
to	the	Ames	Housing	data	set,	as	defined	by	the	DATA=	option.
The	MODEL	statement	is	used	to	define	the	linear	model;	namely,
SALEPRICE	is	equal	to	linear	function	of	GR_LIV_AREA.	The	partial
output,	including	all	tables	and	one	scatter	plot,	is	illustrated	in
Output	9.6	Linear	Regression	Output	for	Predicting	Saleprice	with
Ground	Living	Area.
Output	9.6	Linear	Regression	Output	for	Predicting	Saleprice	with	Ground	Living
Area

Dependent	Variable:	SalePrice
Model:	MODEL1

Number	of	Observations
Read

300

Number	of	Observations
Used

300

	

Analysis	of	Variance

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

Model 1 2.016341E11 2.016341E11 368.51 <.0001

Error 298 1.63052E11 547154248 	 	



Corrected
Total

299 3.646861E11 	 	 	

	

Root	MSE 23391 R-Square 0.5529

Dependent
Mean

154910 Adj	R-Sq 0.5514

Coeff	Var 15.09994 	 	

	

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

Intercept 1 44081 5929.17772 7.43 <.0001

Gr_Liv_Area 1 82.50561 4.29790 19.20 <.0001

	

First,	a	preliminary	inspection	of	the	scatter	plot	of	SALEPRICE	by
GR_LIV_AREA	(referred	to	as	the	Fit	Plot)	seems	to	indicate	no
gross	deviations	from	linearity.	While	this	chapter	will	later	cover
ways	to	diagnose	non-linearity	problems	and	outliers,	at	this	point,
we	will	proceed	with	the	interpretation	of	the	output	as	if	the
model	has	been	confirmed.



As	displayed	in	Output	9.6	Linear	Regression	Output	for	Predicting
Saleprice	with	Ground	Living	Area,	the	output	begins	with	a
statement	of	the	dependent	variable,	namely,	SALEPRICE,	followed
by	the	default	model	name	(MODEL1),	the	number	of	observations
read,	and	the	number	of	observations	used.	Note	that	these	are
both	300,	indicating	that	all	300	observations	have	complete	data
(no	missing)	and	will	be	included	in	the	regression	analysis.

The	table	of	Parameters	Estimates	provides	information	for	defining
the	equation	of	the	line	that	best	fits	the	data;	in	particular,	the
intercept	is	defined	to	be	44,081	and	the	slope	is	defined	to	be
82.50561.	From	this,	the	analyst	can	provide	the	estimated
regression	equation	for	predicting	Y,	denoted	by	 	as	follows:

	=	44,081	+	82.51*Gr_Liv_Area

As	far	as	interpretation,	the	analyst	can	use	the	slope	to	estimate
the	change	in	Y	(SALEPRICE)	per	unit	change	in	X	(GR_LIV_AREA).
In	particular,	the	slope	of	82.51	indicates	that	for	every	additional
square	foot	of	ground	living	area,	the	expected	increase	in	the	sale
price	is	$82.51.		(Note	that	the	interpretation	of	slope	uses	the	unit
of	measure	of	Y,	specifically	dollars	in	this	example.)	The	intercept
represents	the	value	of	Y	(SALEPRICE)	when	X	(GR_LIV_AREA)	is
zero;	in	other	words,	based	upon	this	sample,	the	value	of	the	home
with	no	above	ground	living	area	is	$44,081.	This	can	be
interpreted,	possibly,	as	a	base	price,	and	the	slope	gives	an
indication	of	the	additional	price	incurred	for	every	additional
square	foot	of	above	ground	living	area.	(Note	also	that	the
intercept	is	interpreted	in	terms	of	dollars.)	

In	terms	of	prediction,	let’s	assume	we	have	a	house	on	the	market
in	the	general	area	of	the	houses	in	the	sample.	Of	course	the	house
has	not	been	sold,	so	we	do	not	have	a	sale	price,	but	we	can
estimate	the	sale	price	based	upon	our	sample.	Suppose	this	house
has	2000	above	ground	living	area	(GR_LIV_AREA	=	2000).	The
estimated	sale	price	is:

	=	44,081	+	82.51*(2000)	=	$209,101

In	conclusion,	based	upon	our	sample	of	similar	homes,	we	expect,
or	predict,	the	sale	price	to	be	approximately	$209,101.	Keep	in
mind	that	when	conducting	a	linear	regression,	we	should	not



predict	Y	until	we	have	determined	evidence	that	X	is	a	good
predictor	for	the	population	to	which	we	want	to	infer.	In	the
following	sections,	we	will	describe	and	interpret	the	remaining
parts	of	the	linear	regression	output,	including	a	discussion	of	how
well	the	regression	line	fits	the	data	and	how	to	assess	the	evidence
that	X	and	Y	are	related	and	that	X	would	be	a	good	predictor	of	Y.

Measures	of	Fit	for	the	Linear	Regression	Model
Once	the	linear	regression	model	is	fit,	the	analyst	may	want	to
compare	its	performance	to	the	model	having	no	predictors.	If	the
model	with	a	single	predictor	is	considered	a	good	fit	to	the	data,	it
is	natural	then	to	consider	a	second	model	with	a	different
predictor	to	see	which	is	better	in	terms	of	predictive	accuracy.
There	are	several	fit	indices	that	are	used	for	comparison	purposes,
namely,	(1)	the	coefficient	of	determination	(R2)	and	(2)	the
standard	error	of	the	regression	(Se).	In	order	to	explain	the

rationale	for	R2,	you	must	first	understand	the	meaning	of	three
sums-of-squared-deviations:	SST,	SSE,	and	SSR.	

Consider	the	first	situation	where	the	analyst	has	a	set	of
observations	where	only	Y	is	known	(in	other	words,	there	is	no
predictor	X).		If	the	analyst	wants	to	predict	the	Y	values	for	future
observations,	the	best	estimate	of	Y	is	the	average	Y.	How	do	you
measure	the	overall	error	in	predicting	Y	for	all	observations	when
the	analyst	uses	 ?	The	error	in	prediction	for	one	observation	is
(Y-	 ,	so	the	error	for	all	observations	can	be	represented	by	the
Total-Sum-of-Squares	(SST)	as	follows:

Note	that	the	sum	of	the	deviations	is	always	zero	because	the
positive	deviations	and	negative	deviations	always	cancel	out;
therefore,	the	deviations	are	squared	to	get	the	index.	Note	also
that	SST	is	the	numerator	when	we	calculate	the	variance	in	Y,	and
is	a	measure	of	how	the	Y	values	deviate	from	the	mean	of	Y.

Consider	now	the	situation	where	the	analyst	has	a	set	of
observations	where	both	X	and	Y	are	known,	and	then	builds	an
equation	 ,	to	predict	Y	based	upon	X.	The	error	in	prediction



for	one	observation	is	(Y- ,	so	the	error	for	all	observations	when
using	X	as	a	predictor	can	be	represented	by	the	Error-Sum-of-
Squares	(SSE)	as	follows:

In	fact,	if	X	is	‘good’	at	predicting	Y,	we	expect	SSE	to	be	smaller
than	SST;	in	other	words,	we	expect	an	improvement.	That’s	where
the	Regression-Sum-of-Squares	(SSR)	comes	into	play.		SSR
represents	the	improvement	in	prediction	by	using	X	over	the
model	which	does	not	include	X	and	is	calculated	as	follows:				

So	in	reviewing	the	linear	regression	output	in	Output	9.6	Linear
Regression	Output	for	Predicting	Saleprice	with	Ground	Living
Area,	we	can	see	in	the	Sum	of	Squares	column	of	the	Analysis	of
Variance	table	that	the	total	error	without	using	X	(SST)	equals
3.646861	x	1011,	the	error	using	X	(SSE)	is	reduced	at	1.63052	x
1011,	and	the	improvement	in	prediction	(SSR)	is	2.016341	x	1011.
(Note:	The	sums-of-squares	are	rounded	to	six	decimal	places,	so
calculations	may	have	some	rounding	error.)

The	Coefficient	of	Determination	(R2)

Keep	in	mind	that	our	total	improvement	(SSR)	in	predicting	Y
with	X	can	be	no	larger	than	SST.		The	proportion	of	improvement
relative	to	the	total	possible	improvement	is	defined	to	be	R-
Square	and	is	calculated	using:

In	our	example,	as	shown	in	Output	9.6	Linear	Regression	Output
for	Predicting	Saleprice	with	Ground	Living	Area,

In	conclusion,	55.29%	of	the	variation	in	SALEPRICE	(Y)	is
explained	by	GR_LIV_AREA	(X).

There	are	few	notes	to	consider:

	The	sums	of	squares	are	additive:	SST	=	SSR	+	SSE.●					



	If	we	have	perfect	prediction	using	the	prediction	equation
(i.e.,	using	X),	then

SSE=0.	In	short,	we	would	have	total	improvement	where
SSR=SST	and	R2=1.0.

	If	we	have	no	predictive	accuracy	using	the	prediction
equation,	then	our

improvement	(SSR)	is	0,	and		our	error	in	prediction	using	X
(SSE)	and	error	in

predicting	without	using	X	(SST)	are	the	same	(SSE=SST),
and	R2=0.

	R2	ranges	from	0	to	1,	inclusive.	

It	should	be	noted	that	when	the	analyst	uses	just	one	predictor,
the	correlation	coefficient	can	be	directly	calculated	from	R2.	The
correlation	coefficient	(rxy)	is	calculated	as	follows:

So,	using	the	R2	from	the	linear	regression	used	to	predict
SALEPRICE	(Y)	using	GR_LIV_AREA	(X),	we	get

Which	matches	the	correlation	coefficient	for	SALEPRICE	and
GR_LIV_AREA,	found	in	Output	9.4.		Note	that	the	R2	for
SALEPRICE	and	AGE_AT_SALE	is	positive,	so	when	taking	the
square	root	to	get	r,	you	must	also	use	the	sign	of	the	slope	which
would	be	negative.

The	Standard	Error	of	the	Regression	(Se)

The	second	measure	of	fit	measures	the	dispersion	of	the	points
around	the	prediction	equation;	basically,	it	is	the	standard
deviation	of	the	error,	(Y- .	Let’s	consider	first	the	variance	of	the
points	around	the	prediction	line.	Remember	from	Chapter	7	,
“Analysis	of	Variance	(ANOVA)”	that	variance	is	the	sum	of
squared	deviations	divided	by	degrees	of	freedom,	and	is	referred
to	as	a	mean-square	(MS).	So	in	regression,	the	variance	of	the
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points	around	the	line	is	the	mean-square-error	(MSE)	and	is
defined	as:

MSE	

where	the	error	degrees	of	freedom	dferror	=	n-k-1,	n	=	sample
size,	and	k	=	the	number	of	predictors	used	in	the	regression
equation.	In	our	Ames	Housing	example,

MSE	 													where	dferror	=	300

–	1	–	1	=	298

Finally,	the	standard	deviation	of	the	error,	referred	to	as	the
standard	error	of	the	regression	(Se),	is	the	square	root	of	the
variance,	and	is	defined	as:

In	our	Ames	Housing	example,		
	23,391,	as	displayed	in

Output	9.6	Linear	Regression	Output	for	Predicting	Saleprice	with
Ground	Living	Area.	The	standard	error	gives	us	a	measures	of
accuracy;	in	short,	the	standard	error	here	tells	us	that	on	the
average	our	predicted	sale	price	will	miss	our	actual	sale	price	by
$23,391.	(Note	that	the	standard	error	is	in	the	same	unit	of
measure	as	Y,	in	dollars).	

At	this	point	it	is	hard	to	tell	if	the	standard	error	is	large	or	small.
You	can	use	standard	error	to	compare	this	model	with	the
predictor	X=Gr_LIV_AREA	to	other	models	with	other
predictors.		When	we	cover	the	material	on	how	to	determine	if	X
is	a	good	predictor,	we	will	also	discuss	how	this	determines
whether	or	not	our	standard	error	is	considered	small.

Just	like	R-squared,	consider	the	following	comments	about	the
standard	error	of	the	regression:

	If	the	points	all	fall	on	the	prediction	line,	Se	is	0;	in	other
words,	the	points	do	not	vary	from	the	prediction	line.		This
should	make	perfect	sense—if	the	points	fall	on	the	line,	we

●					



have	perfect	prediction,	where	SSE=0	and	 	=

0.

	If	the	points	are	relatively	close	to	the	prediction	line,	Se	is
relatively	small;	if	the	points	are	relatively	‘far’	from	the
prediction	line,	Se	is	relatively	large.

Using	Measures	of	Fit	to	Compare	Models

Suppose	we	wanted	to	know	which	model	was	best	for	predicting
sale	price:		the	model	with	above	ground	living	area
(GR_LIV_AREA)	or	the	model	using	age	of	the	house	at	the	time	of
the	sale	(AGE_AT_SALE).

Table	9.1	Measures	of	Fit	for	Simple	Linear	Regression	provides	a
summary	of	indices	for	the	linear	regression	model	just	discussed,
where	the	analyst	is	interest	in	predicting	SALEPRICE	using
GR_LIV_AREA.	The	table	also	includes	the	same	indices	had	the
regression	analysis	been	conducted	for	SALEPRICE	and
AGE_AT_SALE.
Table	9.1	Measures	of	Fit	for	Simple	Linear	Regression

Measures	of	Fit Gr_Liv_Area	(Model	1) Age_at_Sale	(Model	2)

R2 0.5529 0.5428

Se 23,391 23,654

SSR 2.016341	x	1011 1.979537	x	1011

SST 3.646861	x	1011 3.646861	x	1011

Note	that	the	SST	for	both	model	1	and	model	2	are	identical.	This
should	make	sense	because	this	number	measures	how	the	sale
price	deviates	from	the	average	sale	price	and	does	not	depend
upon	the	predictor	X.	Note	that	the	improvement,	as	measured	by
SSR,	is	slightly	higher	(better)	when	using	model	1	compared	to
model	2.	This	is	directly	reflected	in	the	value	of	the	R2	which
measures	the	relative	improvement.	When	using	GR_LIV_AREA
(model	1),	55.29%	of	the	variation	in	SALEPRICE	is	explained;
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when	using	AGE_AT_SALE	(model	2),	54.28%	of	the	variation	in
SalePrice	is	explained.

Note	also	that	the	standard	error	for	model	1	is	slightly	lower	than
that	for	model	2,	meaning	that	there	is	less	error	in	predicting
SALEPRICE	when	using	GR_LIV_AREA	as	compared	to
AGE_AT_SALE.		In	practical	terms	these	models	are	basically
equivalent.	As	we	will	soon	see	in	multiple	linear	regression	(where
we	have	two	or	more	predictors),	it	may	make	more	sense	to	use
both	predictors	at	the	same	time.

Finally,	in	this	section,	we	are	using	R2	to	compare	models.	In	the
section	on	multiple	linear	regression,	the	discussion	will	support
the	use	of	an	adjustment	to	R2	for	comparing	models.	This	index	is
referred	to	as	the	adjusted	R2,	denoted	by	 .

Hypothesis	Testing	for	the	Slope
In	the	last	few	sections,	we	discussed	the	interpretation	of	the	slope
and	intercept	as	a	way	of	describing	how	X	and	Y	are	related.	We
also	discussed	measures	of	fit	as	a	way	to	describe	the	strength	of
the	model.	All	of	those	discussions	assume	that	X	is	a	‘good’
predictor	of	Y	if	applied	to	the	population	under	consideration.		In
reality,	that	is	not	always	the	case	–	X	may	not	be	related	to	Y.	In
this	section,	we	will	discuss	statistical	tests	for	determining	if	we
can	use	our	sample	data	to	make	inferences	about	the	‘goodness’	or
not	of	X	as	a	predictor	of	Y.	In	fact,	no	interpretations	should	be
made	before	confirming	that	the	assumptions	of	linear	regression
are	met	and	that	X	is	considered,	in	general,		a	good	predictor	of	Y.

It	turns	out	that	the	hypothesis	test	for	testing	whether	or	not	X	is	a
statistically	good	predictor	of	Y	is	a	hypothesis	about	the	slope.
Recall	that	the	linear	regression	model	has	the	form:

From	the	linear	equation,	we	can	see	that	if	the	slope	(β1)	is	zero,
then	the	X-term	is	zero	no	matter	what.	In	that	case,	Y	is	a	function
of	the	intercept	only,	which	is	really	the	average	value	of	Y.		So	the
hypothesis	set	determining	the	goodness	of	X	as	a	predictor	is	as
follows:



H0:	β1	=	0			(X	and	Y	are	not	linearly	related)

H1:	β1	≠	0			(X	and	Y	are	linearly	related)

The	null	hypothesis,	H0,	is	that	X	is	not	a	good	predictor	of	Y;	that
is,	there	is	no	linear	relationship	between	X	and	Y.	The	alternative
hypothesis	is	that	X	is	a	good	predictor	of	Y;	there	is	a	linear
relationship	between	X	and	Y.		

The	t-Test	for	Slope

As	discussed	in	Chapter	4,	“The	Normal	Distribution	and
Introduction	to	Inferential	Statistics,”	any	statistical	test	requires
using	the	sampling	distribution	to	measure	how	far	a	sample
statistic	differs	from	its	expected	value	if	the	null	hypothesis	is	true.
It	turns	out	that	if	the	analyst	takes	repeated	random	samples	from
the	population	and	fits	a	slope	for	each	sample,	using	X	and	Y
values,	then	the	sampling	distribution	of	slopes	is	shaped	like	a	t-
distribution.	The	average	of	all	possible	slopes	is	equal	to	the
population	slope	(β1)	and	the	standard	deviation	of	the	slope	
	is	defined	as:

where	Se	is	the	standard	error	of	the	regression.	Because	the
reference	distribution	is	a	t-distribution,	the	appropriate	statistical
test	is	the	t-test	of	slope	and	the	t-test	statistic	is	defined	as:

with	degrees	of	freedom	=	dferror	=	n-k-1,	where	b1	is	the	sample
slope,	and	β1	is	the	hypothesized	slope	of	0.

Suppose	we	want	to	test	to	see	if	above	ground	living	area
(GR_LIV_AREA)	is	a	significantly	good	predictor	of	SALEPRICE	(Y).
When	inspecting	the	simple	linear	regression	displayed	in	Output
9.6	Linear	Regression	Output	for	Predicting	Saleprice	with	Ground
Living	Area,	note	that	the	sample	slope	is	82.50561	and	the
standard	deviation	of	the	slope	( 	is	4.29790.	So	the	t-test
statistic	is:



		=	19.197			with		dferror	=	300-1-1	=	298
Notice	also	in	Output	9.6	Linear	Regression	Output	for	Predicting
Saleprice	with	Ground	Living	Area	that	the	p-value	for	the	two-
tailed	test	of	slope	is	less	than	0.0001,	and	the	null	hypothesis	is
rejected	(for	any	alpha	.01,	.05,	or	.10).	In	conclusion,	we	have
evidence	that	β1	is	significantly	different	from	zero.	In	other	words,
we	have	evidence,	based	upon	the	sample,	that	GR_LIV_AREA	is	a
good	predictor	of	SALEPRICE	in	the	population.	Note	that	the	t-test
statistic	is	identical	(within	rounding	error)	to	the	t-test	statistic	for
correlation.	This	is	no	coincidence—testing	the	co-relationship
between	X	and	Y	is	equivalent	to	testing	the	significance	of	the
slope	in	simple	linear	regression.

The	F-Test	for	Slope

In	simple	linear	regression,	the	analyst	can	also	use	an	F-test	to	test
hypotheses	about	the	slope:

Ho:	β1	=	0	(	no	linear	relationship)

H1:	β1	≠	0	(linear	relationship)

Recall	from	Chapter	7,	“Analysis	of	Variance	(ANOVA)”	that	an	F-
test	statistic	is	the	ratio	of	two	variances.	So	consider	the	following
two	variances.	First,	the	mean-square-error	(MSE)	measures	the
variance	of	the	points	around	the	estimated	regression	equation.			

Consider	the	second	variance,	the	mean-square-regression	(MSR).
Recall	that	a	variance	is	a	sum-of-squared	deviations	divided	by	its
degrees	of	freedom.		So	MSR	=	SSR/dfreg,	where	the	degrees
freedom	(dfreg)	=	k,	and	k	=	the	number	of	predictors	in	the
model	(of	course,	in	simple	linear	regression,	k	is	always	equal	to
1).

We	can	then	define	the	F-test	statistic	as	follows:

						with		dfreg	=	k,	and	dferror	=	n-k-1	

So	how	do	we	use	the	F-ratio	to	test	our	hypothesis?	It	turns	out
that	if	the	null	hypothesis	is	true,	then	MSR	is	an		unbiased



estimate	of	the	variance	of	the	points	around	the	line;
consequently,	in	this	case,	MSE	=	MSR,	and	F=1.0.	However,	if
the	null	hypothesis	is	false,	MSR	is	an	overestimate	of	the	variance
of	the	points	around	the	line;	as	a	result,	MSR	>	MSE	and	F	>
1.0.	

The	question	then	becomes—how	much	greater	than	1	should	the
F-ratio	be	in	order	to	reject	the	null	hypothesis	and	control	for	a
specific	level	of	significance?	The	answer	requires	using	the	F-table
to	find	the	critical	value.	Or,	the	analyst	can	use	the	p-value	for	the
F-test	to	make	conclusions.

The	results	of	the	F-test	can	be	found	in	the	analysis	of	variance
(ANOVA)	table	which	has	the	general	form	as	displayed	in
Table		9.2	Analysis	of	Variance	(ANOVA)	Table	for	Linear
Regression.
Table	9.2	Analysis	of	Variance	(ANOVA)	Table	for	Linear	Regression

Source	of
Variation

Sums-of-
Squares
(SS)

Degrees
of
Freedom

Mean
Square

	
F-Ratio

Regression SSR k MSR	=	SSR
/	k

F	=
MSR/MSE

Error SSE n-k-1 MSE	=	SSE
/	(n-k-1)

	

Total SST n-1 	 	

So,	the	decision	rule	is:		if	the	F-test	statistic	is	greater	than	the
critical	value,	then	reject	the	null	hypothesis	and	conclude	that	the
slope	in	the	population	is	significantly	different	than	zero.

Recall	that	in	the	previous	section,	the	t-test	was	used	to	confirm
evidence	that	above	ground	living	areas	(GR_LIV_AREA)	is	a	good
predictor	of	SALEPRICE.	Let’s	consider	the	F-test	for	arriving	at	the
decision.		

Referring	to	the	ANOVA	table	in	Output	9.6	Linear	Regression
Output	for	Predicting	Saleprice	with	Ground	Living	Area,	we	can
see	that	the	degrees	of	freedom	regression	=	k	=	1,	the	degrees	of
freedom	error	=	n-k-1	=	300	–	1	–	1	=	298.	The	values	of	SSR,



SSE,	and	SST	were	calculated	in	a	previous	section.	Note	that	the
two	mean-squares,	MSR	and	MSE,	were	calculated	by	taking	the
sums-of-squares	and	dividing	by	their	respective	degrees	of
freedom.		Finally	the	F-test	statistic	is	calculated	using
F=MSR/MSE	and	displayed	as	368.51	with	a	p-value	less	than
0.0001.	If	we	set	the	level	of	significance	at	0.01	(α	=	0.01),	the	p-
value	is	less	than	α,	so	the	null	hypothesis	is	rejected.	In
conclusion,	above	ground	living	area	(GR_LIV_AREA)	is	a	good
predictor	of	SALEPRICE.	Keep	in	mind	that	this	also	allows	us	to
say	that	the	standard	error	is	considered	statistically	low	and	the	R2
is	considered	statistically	large	(i.e.,	different	from	zero).

In	simple	linear	regression,	the	t-test	and	the	F-test	are	different
approaches	to	testing	the	same	hypothesis,	so	the	results	are	always
identical.		In	fact,	t2	is	equal	to	F;	in	our	example,	(19.1972)
≈		368.51.	We	will	see,	in	the	later	discussion	of	multiple	linear
regression,	that	the	F-test	will	test	the	overall	relationship	between
the	outcome	Y	and	the	entire	set	of	predictors	(Xs).

Producing	Confidence	Intervals
The	chance	that	our	sample	slope	is	identical	to	the	population
slope	is	zero.	In	fact,	because	there	are	many	possible	samples,
every	sample	has	its	own	slope	and	it’s	probable	that	none	of	them
will	be	identical	to	the	population	slope.	Therefore,	the	analyst
should	consider	a	confidence	interval	around	the	estimated	slope.
As	illustrated	in	Chapter	4,		“The	Normal	Distribution	and
Introduction	to	Inferential	Statistics,”	a	confidence	interval	takes
into	account	the	sampling	variability	and	is	calculated	as	follows:

							with	(n-k-1)	degrees	of	freedom

Where	 	is	the	margin	of	error.	So	for	the	Ames	Housing
Case,	a	95%	confidence	interval	for	the	slope	is:

		=

[74.04753,90.96369]

where	t.05/2	with	300-1-2	=	298	degrees	of	freedom	is



approximately	1.96	(SAS	uses	a	t-value	of	1.967956).	The	95%
confidence	interval	means	that	the	criteria	for	calculating	the
margin	of	error	ensure	that	if	you	had	taken	100	random	samples
to	run	the	regression,	approximately	95%	of	the	confidence
intervals	of	the	slope	would	actually	contain	the	true	population
slope.	Here	the	confidence	interval	indicates	that	for	a	one-square-
foot	increase	in	above	ground	living	area,	the	sale	price	will
increase	anywhere	from	$74.05	to	$90.96.
In	order	to	produce	the	confidence	interval	of	the	slope	using	SAS,
the	analyst	would	include	the	CLB	option	in	the	MODEL	statement
as	illustrated	in	Program	9.7	Confidence	Interval	for	Effect	of
Gr_Liv_Area	on	Sale.
Program	9.7	Confidence	Interval	for	Effect	of	Gr_Liv_Area	on	Sale	Price

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300;

model	SalePrice	=	Gr_Liv_Area/clb;

run;

The	95%	confidence	interval	is	displayed	in	Output	9.7	Confidence
Interval	for	Effect	of	Gr_Liv_Area	on	SalePrice.		Note	that	the
confidence	interval	does	not	contain	zero.		In	other	words,	the
sample	slope	is	far	enough	from	zero,	that	even	the	interval	around
the	sample	slope	does	not	contain	zero;	therefore,	we	can	infer	that
the	population	slope	is	significantly	different	than	zero.	This	can	be
used	for	hypothesis	testing.	In	short,	if	the	interval	contains	zero,
we	do	not	reject	the	null;	however,	if	the	interval	does	not	contain
zero,	we	do	reject	the	null.	

When	the	confidence	level	is	95%,	using	the	confidence	interval	is
equivalent	to	conducting	a	two-tailed	test	at	alpha	of	0.05.	The
default	confidence	level	in	SAS	is	95%.	In	order	to	change	the	level
of	confidence,	the	analyst	can	use	the	ALPHA=	option	in	the
MODEL	statement.
Output	9.7		Confidence	Interval	for	Effect	of	Gr_Liv_Area	on	SalePrice



Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

95%	Confidence
Limits

Intercept 1 44081 5929.17772 7.43 <.0001 32413 55749

Gr_Liv_Area 1 82.50561 4.29790 19.20 <.0001 74.04753 90.96369

Multiple	Linear	Regression
Many	real-world	questions	are	too	complex	to	be	represented	by
only	one	explanatory	variable	as	is	the	case	in	simple	linear
regression.	To	reflect	the	complex	nature	of	business,	the	analyst
should	use	multiple	linear	regression.	In	multiple	regression,	the
analyst	is	able	to	assess	the	relationship	between	the	outcome
variable,	Y,	and	an	entire	set	of	predictors	simultaneously,	while
taking	into	account	the	interrelationships	among	the	multiple
predictors.	As	stated	earlier,	the	goal	of	linear	regression	is	both	to
describe	relationships	and	to	predict	future	outcomes.

In	this	section,	we	will	apply	the	concepts	discussed	in	simple
linear	regression	to	the	multiple	predictor	case.	Subsequently,	we
will	discuss	how	to	determine	which	variable	has	the	largest
relative	impact	on	the	model,	in	the	presence	of	other	predictors.	A
natural	follow-up	is	to	ask	the	question—should	a	predictor	be
included	in	the	model	when	other	predictors	are	already	in	the
model?	Related	to	that	topic	is	the	idea	of	variable	selection;	in
other	words,	the	analyst	is	interested	in	finding	the	best	model	for
explaining	the	outcome	variable	taking	into	account	model	fit
indices	and	parsimony.

Fitting	a	Multiple	Linear	Regression	Model	Using	the
REG	Procedure
As	with	simple	linear	regression,	the	form	of	the	multiple	linear
regression	equation	with	k	predictors	is	defined	as:

where	Yi	is	the	dependent	variable,	k	is	the	number	of	predictors,
β0	is	the	intercept,	and	each	βk	is	the	coefficient	for	each	respective
predictor,	Xik,	and	εi		is	the	error.



From	the	sample,	the	analyst	will	develop	a	prediction	equation
that	best	represents	the	relationship	in	the	population.	The
prediction	equation	has	the	form:

where	 	is	the	predicted	value	of	Y	for	observation	i,	Xi	is	the
value	of	the	predictor	for	observation	i,	b0	is	the	sample	estimate	of
the	population	intercept	β0,	and	bk	is	the	sample	estimate	of	the
population	slope	βk.	

Consider	the	following	example	using	the	Ames	Housing	Case.
Suppose	we	want	to	predict	sale	price	based	upon	above	ground
living	area,	having	at	least	two	full	bath	rooms	or	not,	total
basement	square	footage,	age	at	sale,	square	footage	of	the	open
porch,	and	garage	area.	The	analyst	would	use	Program	9.8
Multiple	Linear	Regression	for	Predicting	Sale	Price	with	Six
Predictors.
Program	9.8	Multiple	Linear	Regression	for	Predicting	Sale	Price	with	Six	Predictors

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300;

model	SalePrice=	Gr_Liv_Area	Fullbath_2plus	Total_Bsmt_SF

Age_at_Sale	Open_Porch_SF	Garage_Area

/clb	alpha=.05;

run;

From	Program	9.8	Multiple	Linear	Regression	for	Predicting	Sale
Price	with	Six	Predictors,	we	can	see	that	the	REG	procedure	is
applied	to	the	Ames	Housing	data	set,	as	defined	by	the	DATA=
option.	The	MODEL	statement	is	used	to	define	the	linear	model,
namely	SALEPRICE	is	equal	to	linear	function	of	the	predictors
GR_LIV_AREA	through	GARAGE_AREA.	The	CLB	option	with
ALPHA=	requests	that	95%	confidence	intervals	be	included	as
well.	The	partial	output	is	illustrated	in	Output	9.8	Multiple	Linear
Regression	for	Predicting	SalePrice	with	Six	Predictors.



Output	9.8	Multiple	Linear	Regression	for	Predicting	SalePrice	with	Six	Predictors

Dependent	Variable:	SalePrice
Model:	MODEL1

Number	of	Observations
Read

300

Number	of	Observations
Used

300

	

Analysis	of	Variance

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

Model 6 3.063744E11 51062396999 256.57 <.0001

Error 293 58311700187 199016042 	 	

Corrected
Total

299 3.646861E11 	 	 	

	

Root	MSE 14107 R-Square 0.8401

Dependent
Mean

154910 Adj	R-Sq 0.8368

Coeff	Var 9.10677 	 	

	

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t| 95%	Conf	Limits

Intercept 1 74697 5766.25317 12.95 <.0001 63349

Gr_Liv_Area 1 51.43011 3.45007 14.91 <.0001 44.64006 58.22016

Fullbath_2plus 1 6005.85200 2500.87545 2.40 0.0170 1083.89541

Total_Bsmt_SF 1 21.13561 2.96919 7.12 <.0001 15.29196 26.97925

Age_at_Sale 1 -513.50416 39.35261 -13.05 <.0001 -590.95378 -436.05455

Open_Porch_SF 1 -5.25951 15.13243 -0.35 0.7284 -35.04155 24.52253

Garage_Area 1 24.87604 6.08830 4.09 <.0001 12.89370 36.85839



	
Consider	the	following	interpretation	of	the	output	based	upon	the
discussion	thus	far.	First,	using	the	parameter	estimates,	the
estimated	regression	equation	is:

	=	74697	+	51.43*Gr_Liv_Area	+	6005.85*Fullbath_2plus	+

21.14*Total_Bsmt_SF	–	513.50*Age_at_Sale	–	5.26*Open_Porch_SF

+	24.88*Garage_Area.

The	estimate	of	the	slope	for	GR_LIV_AREA	indicates	that	for	each
additional	square	foot	of	above	ground	living	area,	the	sale	price
will	increase	by	$51.43,	holding	all	other	variables	constant	(in
other	words	when	comparing	houses	that	are	equivalent	on	all
other	variables).	In	fact,	the	estimates	of	slopes	are	referred	to	as
partial	slopes,	because	they	measure	the	effect	of	the	variable	on	Y,
controlling	for	the	other	predictors.	Note	also	that	the	slope	for
GR_LIV_AREA	changed	significantly	from	the	bivariate	case	(as
shown	in	Output	9.6	Linear	Regression	Output	for	Predicting
Saleprice	with	Ground	Living	Area);	remember	that	slope	ignores
the	presence	of	other	variables.

The	R2	indicates	that	84.01%	of	the	variation	in	SALEPRICE	is
accounted	for	by	using	the	predictors	GR_LIV_AREA	through
GARAGE_AREA	(in	the	next	section,	we	will	see	that	adjusted	R2	is
a	better	measure	of	fit).	The	standard	error	of	the	regression
indicates	that,	on	average,	the	estimate	of	sale	price	will	miss	the
actual	price	by	$14,107.

The	F-test	statistic	is	used	to	test	if	the	entire	set	of	predictors	is
considered	good	when	predicting	sale	price	for	the	population.	In
other	words,	the	appropriate	set	of	hypotheses	is:

Ho:	β1	=	β2	=	…	=	β6					(none	of	the	6	predictors	are
good)

H1:	at	least	one	βj	≠	0			(at	least	one	predictor	is	good),	for
any	j	=	1,…,k

From	Output	9.	8	Multiple	Linear	Regression	for	Predicting
SalePrice	with	Six	Predictors,	we	can	see	that	the	p-value	for	the	F-



test	is	less	than	0.0001;	therefore,	the	null	hypothesis	is	rejected,
indicating	evidence	in	the	population,	that	at	least	one	predictor	is
good	when	predicting	sale	price.	

Referring	now	to	the	individual	t-tests,	we	can	see	that
OPEN_PORCH_SF	(p=0.7284	>	.01)	is	not	a	good	predictor	when
considered	together	with	the	other	predictors.	Keep	in	mind	that
this	test	is	not	saying	that	OPEN_PORCH_SF	is	not	a	good	predictor.
Used	alone	there	may	actually	be	a	relationship	between
SALEPRICE	and	OPEN_PORCH_SF.	This	test	simply	gives	evidence
that	OPEN_PORCH_SF	does	not	add	to	the	accuracy	in	prediction	in
the	presence	of	the	other	predictors.	

This	is	further	evidenced	using	the	confidence	interval	as	well.
Note	that	the	95%	confidence	interval	for	the	slope	of
OPEN_PORCH_SF,	(-35.04155,	24.52253),	contains	zero,	so	the	null
hypothesis	is	not	rejected.

Measures	of	Fit	for	the	Multiple	Linear	Regression
Model
As	seen	in	the	simple	linear	regression	section,	measures	of	fit	were
used	to	compare	the	performance	of	the	simple	linear	regression
model	using	either	above	ground	living	area	(GR_LIV_AREA)	or	age
at	the	time	of	sale	(AGE_AT_SALE).	In	multiple	linear	regression,
measures	of	fit	can	be	used	to	compare	various		models,	as	well.

Consider	the	example	just	described	where	the	analyst	wants	to
predict	sale	price	based	upon	above	ground	living	area,	having	at
least	two	full	bath	rooms	or	not,	total	basement	square	footage,	age
at	sale,	square	footage	of	the	open	porch,	and	garage
area.		Referring	to	Output	9.8	Multiple	Linear	Regression	for
Predicting	SalePrice	with	Six	Predictors,	the	standard	error	of	the
regression	is	14,107	and	the	R2	is	0.8401.		Again,	this	means	that,
on	the	average,	the	predicted	value	of	sale	price	will	miss	the
actual	sale	price	by	$14,107	when	using	those	six	variables.	The	R2
indicates	that	84.01%	of	the	variance	in	SalePrice	is	explained	by
using	those	six	variables	to	predict	SalePrice.

Adjusted	R-Square

Note	that	the	R2	produced	by	six	predictors	(0.8401)	has	increased



over	that	R2	value	produced	by	using	just	GR_LIV_AREA	(0.5529).
It	seems	obvious	that	as	more	predictors	are	added	to	the	model	(at
least	those	related	to	the	outcome	variable),	the	fit	of	the	model
improves	and,	as	a	result,	the	R2	increases.	It	turns	out	that	even
when	a	variable	not	related	to	the	outcome	variable	is	included	in
the	model,	R2	still	increases.	

The	R2	is	basically	inflated	as	the	number	of	predictors	increases
and	is	an	overestimate	of	the	relationship	between	the	outcome	Y
and	the	set	of	predictors;	therefore,	the	more	common	measure	of
fit	is	the	adjusted	R2	and	is	calculated	as	follows:

The	adjusted	R2	(denoted	by	R2adj)	includes	a	penalty	for	adding
more	predictors.	The	formula	also	takes	into	account	that,	as	the
sample	size	(n)	increases,	the	penalty	for	using	k	predictors
becomes	smaller;	in	other	words,	as	the	sample	size	increases,	the
value	of	R2adj	approaches	R2.	It	should	be	noted,	also	that	R2adj	is

better	estimate	of	the	fit	in	the	population,	denoted	by	ρ2.
As	an	illustration,	consider	comparing	the	performance	of	the
linear	regression	model	with	six	predictors,	having	R2adj	of	0.8368,
as	found	in	Output	9.8	Multiple	Linear	Regression	for	Predicting
SalePrice	with	Six	Predictors,	with	the	same	model	with	five
predictors	excluding,	OPEN_PORCH_SF.		The	R2adj	with	five
predictors	is	0.8373,	as	displayed	in	Output	9.9	Multiple	Linear
Regression	for	Predicting	SalePrice	with	Five	Predictors.	It	is,
therefore,	evident	that	there	is	essentially	zero	loss	of	accuracy
when	dropping	the	non-significant	variable,	OPEN_PORCH_SF.			
Output	9.9	Multiple	Linear	Regression	for	Predicting	SalePrice	with	Five	Predictors

Dependent	Variable:	SalePrice
Model:	MODEL1

Number	of	Observations
Read

300

Number	of	Observations
Used

300



	

Analysis	of	Variance

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

Model 5 3.063503E11 61270068111 308.79 <.0001

Error 294 58335741627 198420890 	 	

Corrected
Total

299 3.646861E11 	 	 	

	

	

Root	MSE 14086 R-Square 0.8400

Dependent
Mean

154910 Adj	R-Sq 0.8373

Coeff	Var 9.09315 	 	

	

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

Intercept 1 74606 5751.64527 12.97 <.0001

Gr_Liv_Area 1 51.27981 3.41774 15.00 <.0001

Fullbath_2plus 1 5975.69610 2495.63000 2.39 0.0173

Total_Bsmt_SF 1 21.14003 2.96472 7.13 <.0001

Age_at_Sale 1 -511.85215 39.00605 -13.12 <.0001

Garage_Area 1 24.99176 6.07009 4.12 <.0001

	
Consider	also	the	comparison	of	the	standard	error	of	the
regression	for	the	six-predictor	model	versus	the	five-predictor
model,	as	illustrated	in	Table	9.3	Measures	of	Fit	for	Multiple
Linear	Regression.	When	dropping	OPEN_PORCH_SF	from	the
model,	the	standard	error	is	$14,086,	indicating	that	with	five
predictors,	the	predicted	sale	price	will,	on	average,	miss	the	actual
sale	price	by	$14,086.



Table	9.3	Measures	of	Fit	for	Multiple	Linear	Regression

	

Gr_Liv_Area,
Fullbath_2plus,
Total_Bsmt_SF,
Age_at_Sale,
Garage_Area,
Open_Porch_SF

Gr_Liv_Area,
Fullbath_2plus,
Total_Bsmt_SF,
Age_at_Sale,
Garage_Area

Number	of
Predictors

6 5

R2 0.8401 0.8400

R2adj 0.8368 0.8373

Se 14107 14086

Based	upon	the	combination	of	the	hypothesis	tests	and	the
measures	of	fit,	the	best	model	would	be	the	five-predictor	model.
In	practice,	the	analyst	would	consider	that	model	for	predicting
sale	price.

Quantifying	the	Relative	Impact	of	a	Predictor
Once	the	analyst	fits	a	linear	regression	model,	it	is	natural	to
follow	up	with	the	question—what	is	the	relative	impact	of	a
predictor	in	the	model;	in	other	words,	what	is	the	unique
contribution	of	a	predictor	to	the	model	in	the	presence	of	other
predictors?

The	answer	is	the	squared	semi-partial	correlation	( ,	which
represents	the	proportion	of	variance	in	Y	explained	by	X	alone,
over	and	above	the	variance	explained	by	the	remaining
predictors.		This	index	also	measures	the	reduction	in	the	R2	when
that	predictor	is	removed	from	the	model,	and	can	be	calculated
using	the	following	formula:

where	R2Y.123…j…k	is	the	R2	that	measures	the	association	between



Y	with	all	predictors	including	predictor	j	and	R2Y.123…(j)…k	is	the

R2	that	measures	the	association	between	Y	with	all	other
predictors	except	predictor	j.
In	order	to	get	that	index	for	the	six-predictor	case,	the	analyst
would	include	the	SCORR2	option	in	the	MODEL	statement	as	in
	Program	9.9	Measures	of	Relative	Predictor	Importance	in	Multiple
Linear	Regression.	
Program	9.9	Measures	of	Relative	Predictor	Importance	in	Multiple	Linear
Regression

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300;

model	SalePrice=	Gr_Liv_Area	Fullbath_2plus	Total_Bsmt_SF

Age_at_Sale	Open_Porch_SF	Garage_Area

/scorr2;

run;

The	output	is	identical	to	those	illustrated	previously	and	now
includes	an	additional	column	displaying	the	squared	semi-partial
correlations	(Type	II),	as	shown	in	Output	9.10	Measure	of	Relative
Predictor	Impact	in	Multiple	Linear	Regression.	Using	that
information,	we	can	see	that	GR_LIV_AREA	is	best	in	explaining	the
variation	in	SALEPRICE,	with	 	=	0.12127.	The	predictor,
OPEN_PORCH_SF,	has	the	least	impact,	with	 	=	0.00006592;	in
fact,	the	magnitude	of	the	squared	semi-partial	correlation
illustrates	the	fact	that	the	R2	is	basically	unchanged	when
OPEN_PORCH_SF	is	removed.
Output	9.10		Measure	of	Relative	Predictor	Impact	in	Multiple	Linear	Regression

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

Squared
Semi-
partial

Corr	Type	II

Intercept 1 74697 5766.25317 12.95 <.0001 .



Gr_Liv_Area 1 51.43011 3.45007 14.91 <.0001 0.12127

Fullbath_2plus 1 6005.85200 2500.87545 2.40 0.0170 0.00315

Total_Bsmt_SF 1 21.13561 2.96919 7.12 <.0001 0.02765

Age_at_Sale 1 -513.50416 39.35261 -13.05 <.0001 0.09292

Open_Porch_SF 1 -5.25951 15.13243 -0.35 0.7284 0.00006592

Garage_Area 1 24.87604 6.08830 4.09 <.0001 0.00911

	

Checking	for	Collinearity	Using	VIF,	COLLIN,	and
COLLINOINT
As	mentioned	earlier,	the	analyst	is	sometimes	faced	with	hundreds
of	potential	input	variables.		Recall,	specifically	from	Chapter	8,
“Preparing	the	Input	Variables	for	Production,”	that	there	are
strategies	for	addressing	the	issue	of	redundancy	where	the
predictor	variables	are	highly	correlated	and	have	overlapping
information.	

In	multiple	linear	regression,	if	the	predictors	under	consideration
are	highly	correlated,	the	analyst	may	encounter	results	that	seem
ambiguous.	This	condition	is	known	as	collinearity	and	should	be
remedied.	When	collinearity	exists,	for	example,	the	output	may
show	a	negative	slope	for	at	least	one	of	the	predictors	when	it	is
common	knowledge	that	X	and	Y	are	positively	related.		

Another	example	exists	when	the	overall	F-test	shows	that	the	set
of	predictors	as	a	whole	is	significantly	related	to	the	outcome
variable,	while	the	t-tests	for	testing	the	significance	of	specific
variables	indicate	that	no	predictors	are	significantly	related	to	the
outcome	variable.	This	occurs	because	the	estimates	of	the	slopes
are	unstable	and	have	inflated	standard	errors	(Belsley,	Kuh,	and
Welsch,	1980).	Consequently,	if	a	slope	has	an	inflated	standard
error,	its	t-test	statistic	is	deflated,	resulting	in	an	inflated	p-value;
here,	the	analyst	would	conclude	that	the	predictor	under
consideration	is	non-significant,	when	in	reality,	the	predictor
would	be	significant	in	the	absence	of	collinearity.

In	this	section,	we	will	discuss	a	strategy	for	detecting	if
collinearity	exists	and	provide	recommendations	for	deleting	the
redundant	predictor.	Once	one	or	more	potential	predictors	are



deleted	because	of	collinearity,	the	analyst	must	next	consider	the
idea	of	relevancy	of	the	predictor	to	the	outcome	variable.
Relevancy	will	be	discussed	in	the	next	section	in	the	context	of
variable	selection.

The	Variance	Inflation	Factor	(VIF)	for	Detecting	Collinearity

An	index	for	detecting	possible	collinearity	is	referred	to	as	the
Variance	Inflation	Factor	(VIF).		This	index	is	calculated	for	each
predictor	using	the	following	formula:

where	R2j.12…(j)…k	is	the	R2	that	measures	the	association	between
predictor	j	with	all	other	predictors	except	j.	

So,	consider	the	case	where	the	analyst	is	interested	in	detecting
collinearity	among	three	predictors.	The	variance	inflation	factor
for	X1	(VIF1)	would	be	calculated	as	follows:

1.						Conduct	a	linear	regression	to	predict	X1	using	the
remaining	predictors,	X2	and	X3.

2.						Use	the	R2	value	from	that	model	for	R21.23.

3.						Calculate	VIF1	using	1/(1-R21.23).

4.						Repeat	steps	1	through	3	for	X2,	where	VIF2	=	1/(1-R22.13).

5.						Repeat	steps	1	through	3	for	X3,	where	VIF3	=	1/(1-R23.12).

If	there	is	absolutely	no	relationship	among	all	predictors,	1,2,…,	k,
then	R2j.12…(j)…k	is	0,	the	tolerance	is	1	and	the	VIF	is	1.	If	all	of	the

predictors	are	perfectly	related	and	R2j.12…(j)…k	is	1,	then	the
tolerance	is	0	and	the	VIF	is	∞.	So	the	range	of	the	VIF	is	[1,
∞).		As		R2j.12…(j)…k		increases,	tolerance	decreases,	and	VIF
increases.	

The	VIFj	measures	the	inflation	in	the	variance	of	bj	when	Xj	is
linearly	related	to	the	other	predictors	as	compared	to	the	variance



of	bj	when	Xj	is	not	linearly	related	to	the	other	predictors.	For
example,	if	the	VIFj	is	12,	then	the	estimated	variance	of	Xj	is	12
times	larger	than	if	Xj	has	no	correlation	with	the	other	predictors.
The	question	then	becomes	what	value	must	the	VIF	exceed	for
collinearity	to	be	suspect?	A	common	criterion	is	VIF	≥	10
(tolerance	≤	0.10,	R2j.12…(j)…k	≥	0.90).

The	Condition	Index	(C)	for	Detecting	Collinearity

Another	approach	to	investigating	collinearity	involves	principal
component	analysis,	where	each	predictor	can	be	represented	as	a
linear	combination	of	all	predictors.	The	linear	combination	is
referred	to	as	a	principal	component.	As	described	in	Chapter	8	,
“Preparing	the	Input	Variables	for	Prediction,”	principal	component
analysis	produces	a	set	of	k	principal	components	which	are
weighted	linear	combinations	of	the	standardized	versions	(Z1
through	Zk)	of	the	original	variables	(X1	through	Xk),	and	have	the
form:

PRIN1	=	a11Z1	+	a12Z2	+	…	+	a1kZk

PRIN2	=	a21Z1	+	a22Z2	+	…	+	a2kZk

PRIN3	=	a31Z1	+	a32Z2	+	…	+	a3kZk

.	.

PRINq	=	aq1Z1	+	aq2Z2	+	…	+	aqkZk

…

PRINk	=	ak1Z1	+	ak2Z2	+	…	+	apkZk

The	values	of	the	principal	components	(PRIN1	through	PRINk)	are
calculated	for	each	observation	using	its	standardized	values	of	the
X1	through	Xk.	The	eigenvalue	(λj)	for		j	=	1,	2,	…,	k		represents
the	variance	of	PRINj,	where	the	weights	(eigenvectors)	are
derived	so	that	λ1	represents	the	maximum	amount	of	the	total
variance	in	the	original	set	of	Xs,	λ2	represents	the	next	largest
proportion	of	variance,	and	so	on.



If	all	λ’s	are	equal	to	1.0,	the	original	variables	have	no	linear
relationship	(i.e.,	the	original	variables	are	orthogonal),	and
collinearity	does	not	exist.	If	any	λ	is	0,	the	original	variables		have
a	perfect	linear	relationship,	and	collinearity	is	extreme.		

In	practice,	the	analyst	is	interested	in	the	case	where	one	λ	is
small	relative	to	the	others,	indicating	the	existence	of	collinearity.
To	aid	in	the	diagnosis,	the	analyst	is	interested	in	how	much
smaller	one	λ	is	compared	to	the	others	and	can	use	the	following
condition	number	(C):

When	C	is	large,	there	is	evidence	of	collinearity.	Based	upon	their
experience,	Chatterjee	and	Hadi	(2006)	suggest	that	collinearity
affects	regression	coefficients	when	the	condition	number	exceeds
15	and	argues	for	necessary	corrective	action	if	it	exceeds	30.
Belsey,	Kuh,	and	Welch	(1980)	suggest	that	weak	collinearity	will
have	effects	for	condition	numbers	as	low	as	10.	In	any	situation,
the	analyst	should	proceed	with	caution	and	use	subject	matter
expertise	to	guide	in	the	final	determination.

For	simplicity,	let’s	consider	the	four	predictors	considered	in	the
correlation	section,	as	displayed	in	Output	9.4,	where	the
correlation	coefficient	with	the	largest	magnitude	is	between
GR_LIV_AREA	and	AGE_AT_SALE	(r	=	-0.38742).	Consider	Program
9.10	VIF	and	Condition	Numbers	for	Detecting	Collinearity.
Program	9.10	VIF	and	Condition	Numbers	for	Detecting	Collinearity

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300;

model	SalePrice	=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_at_Sale/collinoint	vif;

run;

The	REG	procedure	and	the	MODEL	statement	are	identical	to
those	illustrated	thus	far.	However,	notice	that	the	options
COLLINOINT	and	VIF	are	added.	The	COLLINOINT	option	requests



that	principal	component	analysis	be	provided	with	the	condition
numbers	and	VIF	requests	variance	inflation	factors.	(Note:	using
the	COLLIN	assumes	that	the	intercept	is	an	effect	and	can
contribute	to	collinearity;	this	is	used	when	the	intercept	has	an
interpretable	meaning	and	is	assumed	not	equal	to	zero.)	The
results	are	displayed	in	Output	9.11	VIF	and	Condition	Numbers	for
Detecting	Collinearity.
Output	9.11	VIF	and	Condition	Numbers	for	Detecting	Collinearity

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

Variance
Inflation

Intercept 1 77779 5785.70319 13.44 <.0001 0

Gr_Liv_Area 1 57.55856 2.94407 19.55 <.0001 1.20677

Total_Bsmt_SF 1 23.29239 3.05811 7.62 <.0001 1.16517

Lot_Area 1 0.28425 0.23598 1.20 0.2293 1.12938

Age_at_Sale 1 -590.53302 34.89945 -16.92 <.0001 1.29021

	

Collinearity	Diagnostics	(intercept	adjusted)

Number Eigenvalue
Condition
Index

Proportion	of	Variation

Gr_Liv_Area Total_Bsmt_SF Lot_Area Age_at_Sale

1 1.82419 1.00000 0.11374 0.10814 0.10129 0.13217

2 0.84073 1.47301 0.38476 0.27045 0.27026 0.08120

3 0.75940 1.54989 0.04891 0.41296 0.60782 0.06989

4 0.57568 1.78010 0.45258 0.20845 0.02063 0.71673

Notice	that	all	VIF	values	are	reasonably	low,	ranging	from
1.12938	to	1.29021;	therefore,	there	is	no	evidence	that
collinearity	exists.	A	review	of	the	condition	indices	also	indicates
that	collinearity	is	not	a	problem.

In	situations	when	collinearity	is	detected,	the	analyst	can	delete
the	redundant	predictor	or	predictors,	or	combine	the	predictors	if
it	makes	good	business	sense.	If	the	analyst	chooses	to	delete	the
redundant	predictor,	a	common	approach	is	to	run	a	regression
with	each	predictor	separately	to	see	which	contributes	more	to	the



fit	of	the	model,	therefore	keeping	that	variable	in	the	final
predictor	set.	If	the	suspect	predictor	(or	predictors)	must	be
included	for	substantive	reasons,	the	analyst	can	consider	either
ridge	regression	or	principal	component	regression.

Note	also	that	the	existence	of	collinearity	results	in	biased
parameter	estimates	which	hinders	using	regression	analysis	in
‘explaining’	relationships.	If	the	purpose	of	linear	regression	is
‘prediction’	only,	collinearity	does	inflate	the	variance	of	the
predictions;	therefore,	reducing	redundancy	is	important,	as
addressed	in	Chapter	8,	“Preparing	the	Input	Variables	for
Prediction.”

Fitting	a	Simple	Linear	Regression	Model	Using	the
GLM	Procedure
In	previous	sections,	linear	regression	analyses	have	been
conducted	using	the	REG	procedure.		The	analyst	can	also	use	the
GLM	procedure	which	is	designed	to	estimate	parameters	for	a
general	linear	model	(GLM).	General	linear	models	are	a	broad
class	of	statistical	models		having	the	form	(Rutherford,	2001):	

Data	=	Model	+	Error

As	seen	in	Chapter	7,	“Analysis	of	Variance	(ANOVA),”	the	analysis
of	variance	(ANOVA)	model	falls	under	the	umbrella	of
GLM		which	assumes	that	a	continuous	numeric	outcome	variable
is	a	function	of	one	or	more	categorical	predictors	(called	factors,
including	interactions)	and	an	error	term.	In	that	case,	analyses	are
conducted	using	PROC	GLM.	

When	conducting	a	linear	regression	analysis,	both	REG	and	GLM
procedures	produce	the	ordinary	least	squares	solutions	and	under
the	same	assumptions.	While	PROC	GLM	includes	a	CLASS
statement	to	allow	automatic	dummy	coding	for	categorical
predictors	and	provides	many	of	the	statistics	related	to	predicted
and	residual	values	as	found	in	PROC	REG,	it	does	not	provide
scatter	plots,	collinearity	diagnostics,	nor	outlier	diagnostics.	Also
PROC	GLM	allows	for	only	one	MODEL	statement	and	has	no
variable	selection	capabilities;	PROC	REG	allows	multiple	MODEL
statements	for	generating	multiple	model	results	for	comparison
purposes	and	also	includes	options	for	variable	selection.



Recall	from	Chapter	7,	“Analysis	of	Variance,”	(ANOVA)”	the
syntax	for	the	GLM	procedure:

PROC	GLM	DATA=SAS-data-set	<PLOTS=options>;

CLASS	variables;

MODEL	dependents=independents	</	options>;

OUTPUT	OUT=SAS-data-set	<keyword=variable…>;

RUN;

Let’s	first	consider	the	GLM	procedure	for	the	specific	case	where
one	categorical	predictor	is	used	in	a	regression	analysis.	Revisiting
the	Ames	Housing	Case,	suppose	we	want	to	predict	sale	price
(SALEPRICE)	based	upon	the	overall	quality	of	the	house.
Remember	the	variable,	OVERALL_QUALITY,	is	categorical	where
below	average	quality,	average,	and	above	average	are	coded	as	1,
2,	and	3,	respectively.	Program	9.11	PROC	GLM	for	Prediction
Using	One	Categorical	Variable	would	be	used	to	define
OVERALL_QUALITY	as	a	CLASS	variable.
Program	9.11	PROC	GLM	for	Prediction	Using	One	Categorical	Variable

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	glm	data=amesreg300;

class	Overall_Quality;

model	SalePrice	=	Overall_Quality/solution;

means	Overall_Quality/tukey;

run;

Notice	that	the	code	is	equivalent	to	running	an	analysis	of
variance	(ANOVA)	where	the	analyst	in	interested	in	testing	for
mean	differences	in	SALEPRICE	across	the	three	groups	defined	by
OVERALL_QUALITY.	The	CLASS	statement	indicates	that	the
variable,	OVERALL_QUALITY,	is	a	categorical	predictor	variable.
The	estimated	regression	equation	will	be	provided	only	if	the
SOLUTION	option	is	used.	The	output	can	be	found	in	Output	9.12a
PROC	GLM	for	Prediction	Using	One	Categorical	Variable.



Output	9.12a	PROC	GLM	for	Prediction	Using	One	Categorical	Variable

Class	Level	Information

Class Levels Values

Overall_Quality 3 1	2	3

	

Number	of	Observations
Read

300

Number	of	Observations
Used

300

	

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

Model 2 115956795154 57978397577 69.23 <.0001

Error 297 248729287029 837472346.9 	 	

Corrected
Total

299 364686082183 	 	 	

	

R-Square Coeff	Var Root	MSE SalePrice	Mean

0.317963 18.68124 28939.11 154910.0

	

Parameter Estimate 	
Standard

Error t	Value Pr	>	|t|

Intercept 173230.9057 B 2295.021063 75.48 <.0001

Overall_Quality
1

-47467.9427 B 6023.671306 -7.88 <.0001

Overall_Quality
2

-36970.4232 B 3551.530703 -10.41 <.0001

Overall_Quality
3

0.0000 B . . .

	



First,	the	CLASS	statement	requests	that	SAS	automatically	create
dummy	variables,	called	design	variables,	for	the	categorical
variable,	OVERALL_QUALITY.	There	are	three	levels	(C=3)	for
OVERALL_QUALITY	(having	values	1,	2,	and	3,	respectively);
therefore	SAS	creates	design	variables	for	each	of	the	first	(C-1)
levels	in	alpha-numeric	order;	namely	OVERALL_QUALITY	1	and
OVERALL_QUALITY	2,	as	displayed	in	the	table	of	parameter
estimates	in	Output	9.12a		PROC	GLM	for	Prediction	Using	One
Categorical	Variable.		(OVERALL_QUALITY	3	is	created	as	a
reference	for	comparison.)		

Next,	upon	inspection	of	the	ANOVA	table,	the	analyst	can	see
there	are	significant	differences	in	the	average	SalePrice	across	the
three	levels	of	OVERALL_QUALITY,	with	F-test	statistic	=	69.23,	p
<	0.0001,	R2	=	0.3180,	and	RMSE	=	28939.11.	In	other	words,
OVERALL_QUALITY	is	considered	a	good	predictor	of	SALEPRICE.
The	estimated	regression	equation	is

	=	173230.91	–	47467.94*Overall_Quality	1	–

36970.42*Overall_Quality	2

So,	if	the	house	has	above	average	quality	(where	the	reference
group	is	OVERALL_QUALITY	3	=	1;	and	OVERALL_QUALITY	1	=



0,	OVERALL_QUALITY	2	=	0),	then	the	predicted	SalePrice	is

	=	173230.91	–	47467.94(0)	–	36970.42(0)	=	$173,230.91	=

intercept

If	the	house	has	below	average	quality	(OVERALL_QUALITY	1	=	1,
all	else	0),	then	the	predicted	SalePrice	is

	=	173230.91	–	47467.94(1)	–	36970.42(0)	=	$125,764.97.		

Finally,	if	the	house	has	average	quality	(OVERALL_QUALITY	2	=
1,	all	else	0),	then	the	predicted	SalePrice	is

	=	173230.91	–	47467.94(0)	–	36970.42(1)	=	$136,260.49.		

The	three	group	means	are	displayed	in	the	Distribution	of
SalePrice	found	in	Output	9.12a	PROC	GLM	for	Prediction	Using
One	Categorical	Variable.

Note	also	that	the	slopes	for	below	average	quality
(OVERALL_QUALITY=1)	and	average	quality
(OVERALL_QUALITY=2),	respectively,	represent	how	those	group
means	differ	from	the	mean	of	the	reference	group
(OVERALL_QUALITY=3).	So	consider	the	p-value	for
OVERALL_QUALITY	1	(p<.0001,	t	=	-7.88);	in	conclusion,	the
slope	is	significantly	different	from	zero,	indicating	that	the
difference	in	the	average	SalePrice	for	below	average	quality
houses	(OVERALL_QUALITY=1)	and	above	average	quality	houses
(OVERALL_QUALITY=3)	is	significantly	different	from	zero.		

Next,	consider	the	p-value	for	OVERALL_QUALITY	2	(t	=	-10.41);
in	conclusion,	the	slope	is	significantly	different	from	zero,
indicating	that	the	difference	in	the	average	SalePrice	for	average
quality	houses	(OVERALL_QUALITY=2)	and	above	average	quality
homes	(OVERALL_QUALITY=3)	is	significantly	different	from
zero.		

In	short,	the	analyst	can	see	that	the	average	sale	prices	differ	when
comparing	above	average	with	both	average	and	below	average
quality	houses.	However,	there	is	no	test	provided	for	testing	the
difference	in	sale	price	when	comparing	houses	with	below	average
(OVERALL_QUALITY=1)	and	average	quality



(OVERALL_QUALITY=2).		

Finally,	notice	in	Output	9.12a,	PROC	GLM	for	Prediction	Using
One	Categorical	Variable,	the	terms	whose	estimates	are	followed
by	the	letter	B.	This	indicates	that	the	parameter	estimates	are	not
uniquely	estimable.	This	is	known	as	overparameterization.	Use
of	the	CLASS	statement	always	produces	a	linear	dependency
among	the	levels	of	the	CLASS	variables.	Simply	put—there	are	too
many	unknown	variables	to	uniquely	solve	the	set	of	equations,
thereby	resulting	in	infinitely	many	solutions.

To	overcome	the	issue	in	SAS,	the	last	level	of	the	categorical
variable	is	defined	as	the	reference	group	and	assigned	a	parameter
estimate	of	0.	As	a	result,	the	parameter	estimates	of	the	other
levels	represent	differences	in	effects	between	that	level	and	the
reference	group,	as	illustrated	in	the	predicted	Sales	Price	for
OVERALL_QUALITY	=	1,	2,	and	3,	respectively.

The	MEANS	statement	with	the	TUKEY	option	provides	the	results
of	the	multiple	comparisons,	as	shown	in	Output	9.12b	Tukey
Procedure	for	Detecting	Differences	in	Mean	Sale	Price.	As	just	seen
with	the	t-tests,	there	are	significant	differences	in	means	when
comparing	OVERALL_QUALITY	3	with	both	OVERALL_QUALITY	1
and	2	(indicated	by	***);	however,	there	are	no	differences	in	the
mean	saleprice	when	comparing	OVERALL_QUALITY	1	and	2,	as
indicated	by	no	asterisks.
Output	9.12b	Tukey	Procedure	for	Detecting	Differences	in	Mean	Sale	Price

Comparisons	significant	at	the	0.05	level	are
indicated	by	***.

Overall_Quality
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Limits 	

3	-	2 36970 28605 45336 ***

3	-	1 47468 33279 61657 ***

2	-	3 -36970 -45336 -28605 ***

2	-	1 10498 -4092 25087 	

1	-	3 -47468 -61657 -33279 ***

1	-	2 -10498 -25087 4092 	



Finally,	the	regression	output	illustrated	in	Output	9.12b	Tukey
Procedure	for	Detecting	Differences	in	Mean	Sale	Price	is
equivalent	to	the	output	generated	by	Program	9.12	PROC	REG	for
Prediction	Using	One	Categorical	Variable	which	uses	the
OVERALL_QUALITY	dummy	codes	created	beforehand,	as
illustrated	in	Output	9.13	PROC	REG	for	Prediction	Using	One
Categorical	Variable.
Program	9.12	PROC	REG	for	Prediction	Using	One	Categorical	Variable

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

Average_Quality=(Overall_Quality=2);

BelowAverage_Quality=(Overall_Quality=1);

run;

	

proc	reg;

model	saleprice=average_quality	belowaverage_quality;

run;

Output	9.13	PROC	REG	for	Prediction	Using	One	Categorical	Variable

Root	MSE 28939 R-Square 0.3180

Dependent
Mean

154910 Adj	R-Sq 0.3134

Coeff	Var 18.68124 	 	

	

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

Intercept 1 173231 2295.02106 75.48 <.0001

Average_Quality 1 -36970 3551.53070 -10.41 <.0001

BelowAverage_Quality 1 -47468 6023.67131 -7.88 <.0001

While	this	example	illustrates	how	to	interpret	the	output	when
using	only	one	categorical	predictor,	similar	interpretations	can	be
applied	in	the	multiple	regression	case,	as	will	be	illustrated	later.



Keep	in	mind	that	once	a	model	is	constructed	using	PROC	GLM,
the	analyst	can	use	PROC	REG	to	follow	up	with	diagnostics	and
residual	analyses	related	to	checking	assumptions	and	outlier
detection.	Note	also	that	GLM	allows	for	defining	interaction	terms
in	the	MODEL	statement,	whereas	PROC	REG	does	not	and
requires,	instead,	creating	an	interaction	variable	beforehand
(interaction	will	be	addressed	in	Chapter	10,	“Logistic	Regression
Analysis,”	and	applies	here	as	well).

Variable	Selection	Using	the	REG	and	GLMSELECT
Procedures
As	mentioned	earlier,	the	analyst	is	sometimes	faced	with	hundreds
of	variables	as	potential	inputs	for	predictive	models.	Recall	that
there	are	strategies	for	addressing	the	issue	of	redundancy,	that	is,
	where	the	predictor	variables	are	highly	correlated	and	have
overlapping	information.		Specifically,	we	discussed	using	the	VIFs
(variance	inflation	values)	and	condition	numbers	to	address	the
problem	of	collinearity.	Once	one	or	more	potential	predictors	are
deleted	because	of	collinearity,	the	analyst	must	next	consider	the
idea	of	relevancy	of	the	predictor	to	the	outcome	variable.

In	this	section,	we	will	discuss	the	process	of	variable	selection
where	the	analyst	is	interested	in	selecting	a	subset	of	j	variables	(j
<	k)	related	to	the	outcome	variable,	so	that	the	reduced	subset,	or
reduced	model,	provides	the	‘best’	model	fit	to	the	data,	according
to	a	desired	selection	criterion.

When	the	number	of	predictors	is	small,	eliminating	one	variable	at
a	time	is	a	manageable	approach	and	allows	for	using	knowledge	of
the	subject	to	guide	in	selecting	the	best	variable	subset.	However,
when	the	number	of	variables	is	large,	eliminating	one	variable	at	a
time	is	unreasonable,	time	consuming,	and	sometimes	impossible;
therefore,	the	analyst	must	resort	to	automatic	selection
procedures.	

The	first	question	concerning	variable	selection	is:	What	SAS
procedure	should	the	analyst	use?		Recall	that	both	the	REG	and
GLM	procedures	give	output	for	analyzing	the	relationship	between
a	numeric	continuous	outcome	and	a	set	of	predictors,	but	each
have	their	limitations.	So	the	analyst	has	two	choices	for	variable



selection:		(1)	PROC	REG	when	all	predictors	have	numeric
variable	types;	or	(2)	PROC	GLMSELECT,	an	alternative	to	PROC
GLM,	for	the	analyst	wanting	to	perform	variable	selection
procedures	and	include	one	or	more	categorical	variables	as
predictors.			
For	both	procedures,	the	variable	selection	process	can	be
conducted	using	the	SELECTION=	option	within	the	MODEL
statement.	The	default	for	the	SELECTION	option	is	to	fit	a	full
model,	that	is,	with	all	predictors	defined	in	the	MODEL	statement;
the	specific	option	is	SELECTION=NONE.		PROC	REG	provides	an
option	to	investigation	of	all-possible	subsets.		For	less	exhaustive
approaches,	both	PROC	REG	and	PROC	GLMSELECT	provide
options	that	allow	for	sequential	searches;	these	methods	include
backward,	forward,	and	stepwise	selection.		

In	this	section,	we	will	describe	the	selection	approaches,	first	using
PROC	REG,	followed	by	examples	using	PROC	GLMSELECT.		

The	REG	Procedure	for	Variable	Selection

All	Possible	Subsets

An	all	possible	subset	approach	provides	the	analyst	with	key
selection	criteria	for	all	possible	regression	models.	In	general,	if
the	full	model	contains	k	predictors,	then	there	are	2k-1	possible
models	from	which	to	choose	based	upon	specified	criteria.	As	the
number	of	predictors	increases,	the	number	of	models	to	review
becomes	unmanageable;	therefore,	the	analyst	must	resort	to
various	criteria	for	narrowing	the	candidate	models.

The	common	criteria	for	variable	selection	are	the	adjusted	R2,	the
standard	error	of	the	regression	(Se),	and	Mallows’	Cp	(Mallow,
1973).	The	first	indices	have	been	discussed	previously;	let’s	now
consider	Mallows’	Cp	which	is	calculated	using:

where	p	is	the	number	of	parameters	in	the	model	under	review
(including	the	intercept),	MSEp	is	the	mean-squared-error	for	the
model	containing	p	parameters,	MSEfull	is	the	mean-square-error	for



the	full	model	representing	an	estimate	of	the	variance	of	the
residuals,	and	n	is	the	sample	size.

When	the	full	model	and	the	model	with	p	parameters	explain	the
same	variance	in	the	outcome	variable,	MSEp	and	MSEfull	are	equal
and	Cp	=	p.		In	other	words,	when	Cp	=	p,	the	full	model	adds	no
information	that	is	not	already	provided	by	the	model	with	p
parameters.	Therefore,	the	reduced	model	with	p	parameters	is
preferred.		In	conclusion,	Mallow	suggested	the	following	rule:

Selection	Criterion:		Select	the	model	having	the	least	number	of
variables	where	Cp	≤	p.		In	other	words,	select	the	most
parsimonious	model	where	Cp	is	closest	to	p.

Hocking	(1976)	suggested	that	the	model	selection	criteria	should
take	into	account	the	purpose	of	the	analysis,	whether	prediction	or
estimation.	Hocking	suggested	the	use	of	Mallows’	Cp	with	the
following	selection	criteria	based	upon	the	purpose:

For	prediction,	use									Cp			≤		p	

For	estimation,	use								Cp		≤		2p	–	pfull	+	1

Consider	the	Ames	Housing	Case	where	the	analyst	is	interested	in
relating	the	outcome	variable,	SALEPRICE,	to	the	predictor	set
made	up	of	twelve	possible	predictors.

From	Program	9.13	Best	Subsets	Regression	Models	Ranked	by
Adjusted	R-Square,	we	can	see	that	the	REG	procedure	is	applied	to
the	Ames	Housing	data	set,	as	defined	by	the	DATA=	option.	The
MODEL	statement	is	used	to	define	the	linear	model	and	the
SELECTION=ADJRSQ	option	requests	that	the	models	are	ranked
from	best	to	worst	according	to	the	R2adj	value.	Including
RSQUARE	and	CP	in	the	selection	option	requests	that	those	values
are	printed	for	each	model	as	well.	The	BEST=200	option	requests
output	for	the	top,	or	best,	200	models	out	of	the	4095	total
possible	models.	The	PLOTS(ONLY)=(ADJRSQ)	option	requests
that	the	R2adj	values	be	plotted	by	each	subset	size	for	each	of	the
200	models.	

Finally,	note	that	the	MODEL	statement	is	prefaced	with	the	label,



ALL_MODELS.	This	is	especially	useful	when	there	are	multiple
MODEL	statements	and	allows	for	labeling,	or	describing,		each
model	in	the	output,	as	opposed	to	each	model	being	labeled	with
the	default	Model	1,	Model	2,	etc.		The	results	of	the	code	are
displayed	in	Output	9.14	Best	Subsets	Regression	Models	Ranked
by	Adjusted	R-Square.
Program	9.13	Best	Subsets	Regression	Models	Ranked	by	Adjusted	R-Square

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300

plots(only)=(adjrsq);

ALL_MODELS:	model	SalePrice	=	Gr_Liv_Area	Total_Bsmt_SF

Lot_Area	Age_At_Sale	High_Kitchen_Quality

Fullbath_2Plus	Fireplace_1Plus	TwoPlusCar_Garage

High_Exterior_Cond	CuldeSac	Has_Fence	Land_Level

/selection=ADJRSQ	rsquare	cp	best=200;

run;

Output	9.14	Best	Subsets	Regression	Models	Ranked	by	Adjusted	R-Square

Model:	ALL_MODELS
Dependent	Variable:	SalePrice

Adjusted	R-Square	Selection	Method

Model
Index

Number	in
Model

Adjusted
R-

Square
R-

Square C(p) Variables	in	Model

1 9 0.8565 0.8608 8.1014 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
Land_Level

2 10 0.8564 0.8612 9.2010 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
CuldeSac	Land_Level



3 8 0.8561 0.8600 7.7557 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage

4 10 0.8561 0.8609 9.8807 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
High_Exterior_Cond

Land_Level

5 9 0.8561 0.8604 8.8865 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
CuldeSac

6 9 0.8560 0.8604 8.9502 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage
CuldeSac	Land_Level

7 8 0.8560 0.8599 7.9867 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage

Land_Level

8 11 0.8560 0.8613 11.0068 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
High_Exterior_Cond
CuldeSac	Land_Level

9 10 0.8560 0.8608 10.0999 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
Has_Fence	Land_Level

10 9 0.8559 0.8603 9.1346 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale

High_Kitchen_Quality
Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
CuldeSac	Land_Level

11 11 0.8559 0.8612 11.1964 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale



High_Kitchen_Quality
Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
CuldeSac	Has_Fence

Land_Level

12 8 0.8558 0.8597 8.3876 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale

High_Kitchen_Quality
Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
Land_Level

13 8 0.8557 0.8596 8.5371 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale

High_Kitchen_Quality
Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
CuldeSac

14 8 0.8557 0.8596 8.6028 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage

CuldeSac

15 7 0.8557 0.8591 7.6048 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage

16 9 0.8557 0.8601 9.6123 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
High_Exterior_Cond

17 7 0.8556 0.8590 7.7305 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale

High_Kitchen_Quality
Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage

18 9 0.8556 0.8600 9.7550 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
Has_Fence

19 10 0.8556 0.8605 10.7644 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage



High_Exterior_Cond
CuldeSac

20 10 0.8556 0.8605 10.7712 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale

High_Kitchen_Quality
Fullbath_2plus
Fireplace_1plus

TwoPlusCar_Garage
High_Exterior_Cond
CuldeSac	Land_Level

	

Notice	at	the	top	of	the	output,	there	is	a	label	‘ALL_MODELS’
which	can	be	used	to	distinguish	the	output	from	the	output	of
other	models.	Included	in	the	heading	is	the	dependent	variable
and	the	type	of	method	used	for	sorting,	namely,	adjusted	r-
square.	

The	first	item	found	in	the	output	is	an	excerpt	from	the	line	listing
of	200	models	in	order	of	their	R2adj	values,	including	the	number

of	predictors	(k)	in	each	model,	R2adj,	R2,	Mallows’	Cp,	and	the
variables	that	make	up	the	model.	This	information	is	voluminous.



Therefore,	the	plot	of	R2adj	by	number	of	parameters	(included	in
the	figure	also)	can	be	used	to	aid	in	the	selection	process.
The	plot	shows	the	number	of	parameters	on	the	X-axis	and	the
R2adj	on	the	Y-axis.	There	are	several	things	to	note.	There	is

relatively	little	variation	in	the	R2adj	for	the	top	200	models,
ranging	in	values	from	around	0.8525	to	0.8565;	however,	among
those	200	models,	there	are	three	distinct	groups—the	top	set	with
R2adj	around	0.8550,	the	middle	with	R2adj	from	around	0.8475	to

0.8520,	and	the	lower	set	with	R2adj	below	0.8450.	Also,	the	‘best’
models	at	each	size,	represented	by	the	stars,	have	relatively	little
variation,	specifically	from	seven	to	thirteen	parameters	(six	to
twelve	predictors).

So	if	the	criterion	is	to	pick	the	single	best	model	based	upon	R2adj,

the	decision	is	the	model	labeled	as	Model	Index	1	(R2adj	=
0.8565)	with	nine	predictors	in	the	model	(k=9,	p=10).	If	the
analyst	wants	to	consider	the	most	parsimonious	model,	reviewing
the	difference	in	the	top	three	models	seems	to	indicate	that	they
all	have	the	first	eight	predictors	in	common	and	differ	only	by	the
inclusion	or	exclusion	of	LAND_LEVEL	or	CULDESAC.			

So	choosing	as	best	the	model	of	size	eight	seems	reasonable,	which
is	the	model	having	predictors	GR_LIV_AREA,	TOTAL_BSMT_SF,
LOT_AREA,	AGE_AT_SALE,	HIGH_KITCHEN_QUALITY,
FULLBATH_2PLUS,	FIREPLACE_1PLUS,	and
TWOPLUSCAR_GARAGE.		In	addition,	of	the	top	200	models,	all
200	models	contain	GR_LIV_AREA,	TOTAL_BSMT_SF,
AGE_AT_SALE,	and	HIGH_KITCHEN_QUALITY;	128	contain
FIREPLACE_1PLUS,	128	contain	TWOPLUSCAR_GARAGE,	104
contain	FULLBATH_2PLUS,	103	contain	LOT_AREA,	103	contain
LAND_LEVEL;	three	variables	show	up	in	a	little	less	than	half	of
those—99	models	contain	HIGH_EXTERIOR_CONDITION,	98
contain	CULDESAC,	and	98	contain	HAS_FENCE.	In	short,	eight	of
the	twelve	possible	predictors	showing	up	most	in	the	top	200	are
included	in	the	best	subset	of	size	eight.

Consider	now	using	Mallows’	Cp	for	the	selection	criterion.	The	SAS



code	would	be	identical	to	the	previous	code	with	two	exceptions
in	the	PLOT(ONLY)=	and	the	SELECTION=	options,	as	illustrated
in	Program	9.14	Best	Subsets	Regression	Models	Ranked	by
Mallows’	Cp.
Program	9.14	Best	Subsets	Regression	Models	Ranked	by	Mallows’	Cp

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300

plots(only)=(cp);

ALL_MODELS:	model	SalePrice	=	Gr_Liv_Area	Total_Bsmt_SF

Lot_Area	Age_At_Sale	High_Kitchen_Quality

Fullbath_2Plus	Fireplace_1Plus	TwoPlusCar_Garage

High_Exterior_Cond	CuldeSac	Has_Fence	Land_Level

/selection=cp	adjrsq	rsquare	best=200;

run;

The	output	is	displayed	in	Output	9.15a	Mallows’	Cp	Plot	for
Variable	Selection	and	Output	9.15b	Best	Subsets	Regression
Models	Ranked	by	Mallows’	Cp.

Upon	inspection	of	the	Mallows’	Cp,	plot,	first	note	the	solid	line
representing	Mallows’	criterion,	where	Cp	=	p.		Note		that	the
points	either	on	or	slightly	below	match	Mallows’	criterion.
Therefore,	the	analyst	should	select	the	one	that	has	the	least
number	of	variables	(remember	parsimony).	An	inspection	of	the
excerpt	from	the	line	listing	will	aid	in	identifying	the	top
candidate	models.		Those	are	Model	Index	2	(where	Cp=7.6048	<

p=k+1=8,	for	k=7,	R2adj	=	0.8557),	Model	Index	3	(where

Cp=7.7305	<	p=k+1=8,	for	k=7,	R2adj	=	0.8556),	Model	Index

12	(where	Cp=8.8728	<	p=k+1=9,	for	k=8,	R2adj	=	0.8556),
and	Model	Index	29	(where	Cp=9.9621	<	p=k+1=10,	for	k=9,

R2adj	=	0.8555).	



All	of	the	candidate	models	have	practically	the	same	R2adj	and
follow	Mallows’	criterion;	therefore,	selecting	the	model	with	the
least	number	of	predictors	seems	reasonable.	The	two	models
having	the	least	number	of	predictors	(k=7)	differ	by	the	variables
LOT_AREA	and	FULLBATH_2PLUS	and	match	on	all	other	variables.
Practically	speaking,	it	may	be	better	to	select	the	variable,
FULLBATH_2PLUS,	being	that	it	is	easier	to	measure	or	obtain	in
future	samples	than,	say,	LOT_AREA.
Output	9.15a	Mallows’	Cp	Plot	for	Variable	Selection

Output	9.15b	Best	Subsets	Regression	Models	Ranked	by	Mallows’	Cp

Model
Index

Number	in
Model C(p) R-Square

Adjusted
R-Square Variables	in	Model

1 6 7.5948 0.8581 0.8552 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage

2 7 7.6048 0.8591 0.8557 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage

3 7 7.7305 0.8590 0.8556 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage

4 8 7.7557 0.8600 0.8561 Gr_Liv_Area	Total_Bsmt_SF



Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage

5 8 7.9867 0.8599 0.8560 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage	Land_Level

6 9 8.1014 0.8608 0.8565 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage	Land_Level

7 7 8.2461 0.8588 0.8554 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage	CuldeSac

8 7 8.2856 0.8588 0.8554 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage	Land_Level

9 8 8.3876 0.8597 0.8558 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage	Land_Level

10 8 8.5371 0.8596 0.8557 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage	CuldeSac

11 8 8.6028 0.8596 0.8557 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage	CuldeSac

12 8 8.8728 0.8594 0.8556 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage	CuldeSac

Land_Level

13 9 8.8865 0.8604 0.8561 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage	CuldeSac

14 9 8.9502 0.8604 0.8560 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage	CuldeSac

Land_Level

15 9 9.1346 0.8603 0.8559 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus



TwoPlusCar_Garage	CuldeSac
Land_Level

16 10 9.2010 0.8612 0.8564 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage	CuldeSac

Land_Level

17 7 9.3591 0.8582 0.8548 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage
High_Exterior_Cond

18 8 9.4202 0.8592 0.8553 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage
High_Exterior_Cond

19 8 9.5110 0.8591 0.8553 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage
High_Exterior_Cond

20 8 9.5865 0.8591 0.8552 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage	Has_Fence

21 7 9.5926 0.8581 0.8547 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage	Has_Fence

22 9 9.6123 0.8601 0.8557 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage
High_Exterior_Cond

23 8 9.7174 0.8590 0.8552 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage	Has_Fence

24 9 9.7550 0.8600 0.8556 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage	Has_Fence

25 9 9.8304 0.8599 0.8556 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage

High_Exterior_Cond	Land_Level

26 10 9.8807 0.8609 0.8561 Gr_Liv_Area	Total_Bsmt_SF



26 10 9.8807 0.8609 0.8561 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage

High_Exterior_Cond	Land_Level

27 9 9.9462 0.8599 0.8555 Gr_Liv_Area	Total_Bsmt_SF
Lot_Area	Age_at_Sale
High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage	Has_Fence

Land_Level

28 8 9.9509 0.8589 0.8550 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage

High_Exterior_Cond	Land_Level

29 9 9.9621 0.8599 0.8555 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fullbath_2plus	Fireplace_1plus
TwoPlusCar_Garage

High_Exterior_Cond	Land_Level

30 8 10.0567 0.8589 0.8550 Gr_Liv_Area	Total_Bsmt_SF
Age_at_Sale	High_Kitchen_Quality

Fireplace_1plus
TwoPlusCar_Garage

High_Exterior_Cond	CuldeSac

Now	let’s	consider	Hocking’s	criteria	for	variable	selection	when
the	purpose	of	regression	analysis	is	estimation.	Upon	inspection	of
Output	9.15a	Mallows’	Cp	Plot	for	Variable	Selection,	notice	that
only	models	having	eleven	or	more	parameters	(ten	or	more
predictors)	fit	the	criterion,	where	the	Mallows’	Cp	falls	below	the
dotted	line.	Therefore,	the	analyst	could	select	the	smallest
predictor	set	(p=11,	k=10)	based	upon	parsimony.		Here,	for
p=11,

Cp		≤		2p	–	pfull	+	1	=	2(11)	–	13	+	1	=	10

where	pfull	=	13	(12	predictors	and	an	intercept).	So	for	ten
predictors	(k=10),	the	model	where	Cp	≤	10	is	best.	This

corresponds	to	Model	Index	16	(where	Cp=9.201		<	10,	R2adj	=

0.8564),	and	Model	Index	26	(where	Cp=9.8807	<	10,	R2adj	=
0.8561),	differing	only	by	the	variables	CULDESAC	and
HIGH_EXTERIOR_COND.	These	models	are	indistinguishable	in
performance;	however,	it	may	be	practical	to	have	a	model	with



CULDESAC	as	opposed	to	HIGH_EXTERIOR_COND,	as
HIGH_EXTERIOR_COND	may	be	harder	to	collect	and	may	be
subject	to	opinion.

Whether	selecting	a	model	for	either	explanation	or	prediction,	it	is
easy	to	see	that	there	are	many	equivalent	models	that	perform
equally	well	based	upon	the	selection	criterion;	therefore,	it	is
important	to	consider	the	subject	matter,	past	research,	and/or
industry	standards	when	selecting	the	model	that	makes	most
sense.	In	fact,	the	analyst	may	consider	validation	procedures	to	see
which	model	performs	best	on	an	external	data	set,	which	will	be
discussed	in	Chapter	11	“Measure	of	Model	Performance.”

Also	keep	in	mind,	that	while	the	best	subset	approach	provides	a
relatively	easy	way	to	select	from	the	top	performing	candidates,
one	drawback	is	that	the	model	selection	progresses	blindly
without	regard	to	actual	parameters	estimates	nor	p-values.
Investigating	the	details	of	each	model	can	aid	in	selecting	that
final	one.

Backward	Elimination

Backward	elimination	starts	with	the	model	containing	all
variables	specified	in	the	MODEL	statement,	and	then	the	variable
deemed	least	important	is	removed	when	that	variable	fails	to
satisfy	the	criterion	for	staying	in	the	model.	Each	subsequent
predictor	is	evaluated	for	removal,	and	predictors	are	removed,	one
at	time,	until	all	remaining	variables	are	considered	important
based	upon	their	p-values.	At	this	point,	the	variable	selection
process	ends.	Note	that,	for	backward	elimination,	once	a	variable
is	dropped,	it	cannot	be	added.

So	how	is	a	variable	deleted?	A	variable	is	deleted	if	its	presence	in
the	model	results	in	the	smallest	reduction	in	the	error	sums-of-
squares;	in	other	words,	if	its	presence	does	not	significantly
improve	the	fit	of	the	model.	This	is	equivalent	to	running	a	linear
regression	analysis	with	all	predictors,	reviewing	the	t-test	statistics
(equal	to	the	partial	F-test)	of	those	predictors,	and	dropping	the
predictor	having	the	largest	p-value	only	if	that	p-value	exceeds	the
criterion	to	stay.

To	illustrate	the	backward	elimination	process,	consider	the	Ames
Housing	Case.	Suppose	we	used	preliminary	analyses	to	arrive	at	a



candidate	set	of	twelve	possible	predictor	variables;	note	that	the
binary	predictors	are	already	dummy	coded,	so	using	the	PROC
REG	is	allowed.	The	goal	is	to	eliminate	those	variables	considered
unimportant,	using	Program	9.15	Backward	Elimination	for	the
Ames	Housing	Case.
Program	9.15	Backward	Elimination	for	the	Ames	Housing	Case

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300

plots(only)=(adjrsq);

BACKWARD:	model	SalePrice=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	High_Kitchen_Quality	Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage

High_Exterior_Cond	CuldeSac	Has_Fence	Land_Level

/selection=backward	slstay=0.01	details;

run;

In	Program	9.15	Backward	Elimination	for	the	Ames	Housing	Case,
the	MODEL	statement	is	used	to	define	the	outcome	variable,
SALEPRICE,	and	the	twelve	variables	to	be	included	in	the	selection
process.	The	PLOTS(ONLY)=(ADJRSQ)	option	requests	the	plot	of
the	R2adj	values	at	each	step	of	the	selection	process.

The	MODEL	statement	defines	the	linear	model	and	has	three
options.	First,	the	SELECTION=BACKWARD	requests	that	the
backward	elimination	method	be	used,	where	the	t-test	is	used	for
determining	the	removal	of	a	predictor	from	the	model.	Second,	the
SLSTAY	specifies	the	significance	level	for	the	test;	in	other	words,
it	defines	the	minimum	p-value	necessary	for	any	predictor	to	stay
in	the	model	(in	our	case,	that	is	0.01).	Finally,	the	DETAILS	option
requests	a	summary	of	each	step	in	the	elimination	process.	

Note	also	that	the	MODEL	statement	is	prefaced	with	the	label,
BACKWARD.		This	requests	that	the	analysis	output	have	the	label,
BACKWARD,	as	opposed	to	using	the	default	Model	1,	Model	2,
etc.;	and	can	be	used	to	distinguish	the	output	here	from,	for
example,	the	previous	output,	labeled	ALL_MODELS,	as	found	in



Program	9.14.	The	results	of	the	backward	elimination	method	are
displayed	in	Output	9.16a	Backward	Elimination	Step	0	through
Output	9.16f		Plot	of	Adjusted	R-Square	by	Backward	Elimination
Step.
In	Output	9.16a	Backward	Elimination	Step	0,	first	notice	that	the
label,	Model:	BACKWARD,	is	provided	to	distinguish	the	model
from	any	other	regression	models.	Step	0	is	displayed	first	and
includes	the	R2	value	(0.8613)	and	Mallows’	Cp	(13.0000)	for	the
full	model	containing	all	twelve	predictors.	Step	0	also	includes	the
list	of	parameter	estimates	for	the	full	model,	along	with	the	partial
F-values	and	associated	p-values.
Output	9.16a	Backward	Elimination	Step	0

Model:	BACKWARD
Backward	Elimination:	Step	0

All	Variables	Entered:	R-Square	=	0.8613	and	C(p)	=	13.0000

Variable
Parameter
Estimate

Standard
Error Type	II	SS F	Value Pr	>	F

Intercept 72826 6307.56022 23491999677 133.31 <.0001

Gr_Liv_Area 45.55652 3.47401 30304724751 171.96 <.0001

Total_Bsmt_SF 21.81672 2.81430 10590313390 60.09 <.0001

Lot_Area 0.29337 0.22044 312133280 1.77 0.1843

Age_at_Sale -454.62039 39.36062 23509636603 133.41 <.0001

High_Kitchen_Quality 10443 1865.65794 5521121968 31.33 <.0001

Fullbath_2plus 3216.45903 2425.98935 309777810 1.76 0.1859

Fireplace_1plus 6711.36945 1718.54076 2687662044 15.25 0.0001

TwoPlusCar_Garage 6314.38162 1980.70645 1790991211 10.16 0.0016

High_Exterior_Cond 1062.45435 2397.25317 34615036 0.20 0.6580

CuldeSac 3572.79614 3813.64165 154670947 0.88 0.3496

Has_Fence -147.80588 1792.54270 1198164 0.01 0.9343

Land_Level 4354.28123 3278.14701 310919624 1.76 0.1851

Step	1	is	displayed	in	Output	9.16b	Backward	Elimination	Step	1
and	contains	the	statistics	for	removal	for	all	twelve	predictors	in
the	model.	Note	that	the	variable,	HAS_FENCE,	is	the	least	related
to	SALEPRICE	as	indicated	by	the	largest	p-value	(0.9343);



therefore,	HAS_FENCE	is	removed	from	the	model.	As	a	result,	the
model	with	eleven	predictors,	excluding	HAS_FENCE,	has	an	R2
value	(0.8613)	and	Mallows’	Cp	(11.0068).

Output	9.16b	Backward	Elimination	Step	1

Model:	BACKWARD
Backward	Elimination:	Step	1

Statistics	for	Removal
DF	=	1,287

Variable
Partial
R-Square

Model
R-Square F	Value Pr	>	F

Gr_Liv_Area 0.0831 0.7782 171.96 <.0001

Total_Bsmt_SF 0.0290 0.8323 60.09 <.0001

Lot_Area 0.0009 0.8605 1.77 0.1843

Age_at_Sale 0.0645 0.7968 133.41 <.0001

High_Kitchen_Quality 0.0151 0.8462 31.33 <.0001

Fullbath_2plus 0.0008 0.8605 1.76 0.1859

Fireplace_1plus 0.0074 0.8539 15.25 0.0001

TwoPlusCar_Garage 0.0049 0.8564 10.16 0.0016

High_Exterior_Cond 0.0001 0.8612 0.20 0.6580

CuldeSac 0.0004 0.8609 0.88 0.3496

Has_Fence 0.0000 0.8613 0.01 0.9343

Land_Level 0.0009 0.8605 1.76 0.1851

Variable	Has_Fence	Removed:	R-Square	=	0.8613	and	C(p)	=	11.0068

Step	2	of	the	backward	elimination	is	displayed	in	Output	9.16c
Backward	Elimination	Step	2,	and	contains	the	statistics	for
removal	for	the	remaining	eleven	predictors	in	the	model.	Note
that	the	variable,	HIGH_EXTERIOR_COND,	is	the	least	related	to
SALEPRICE	as	indicated	by	the	largest	p-value	(0.6592);	therefore,
HIGH_EXTERIOR_COND	is	removed	from	the	model.	As	a	result,
the	model	with	ten	predictors,	excluding	now	HAS_FENCE	and
HIGH_EXTERIOR_COND,	has	an	R2	value	(0.8612)	and	Mallows’	Cp
(9.2010).
Output	9.16c	Backward	Elimination	Step	2

Model:	BACKWARD



Backward	Elimination:	Step	2

Statistics	for	Removal
DF	=	1,288

Variable
Partial
R-Square

Model
R-Square F	Value Pr	>	F

Gr_Liv_Area 0.0836 0.7777 173.68 <.0001

Total_Bsmt_SF 0.0290 0.8323 60.32 <.0001

Lot_Area 0.0009 0.8605 1.77 0.1844

Age_at_Sale 0.0645 0.7968 133.90 <.0001

High_Kitchen_Quality 0.0152 0.8461 31.57 <.0001

Fullbath_2plus 0.0009 0.8604 1.82 0.1790

Fireplace_1plus 0.0074 0.8539 15.38 0.0001

TwoPlusCar_Garage 0.0050 0.8563 10.33 0.0015

High_Exterior_Cond 0.0001 0.8612 0.19 0.6592

CuldeSac 0.0004 0.8609 0.88 0.3498

Land_Level 0.0008 0.8605 1.76 0.1852

	

Variable	High_Exterior_Cond	Removed:	R-Square	=	0.8612	and	C(p)	=
9.2010

The	process	continues	until	no	variables	are	removed;	in	other
words,	the	removal	stops	when	all	remaining	predictors	have	p-
values	less	than	0.01	as	defined	in	the	SLSTAY=0.01	option,	as
displayed	in	Output	9.16d	Backward	Elimination	Step	7.	In	Step	7,
notice	that	all	remaining	six	variables	meet	the	0.01	criterion	to
stay	in	the	model;	therefore,	the	backward	elimination	process
stops.
Output	9.16d	Backward	Elimination	Step	7

Model:	BACKWARD
Backward	Elimination:	Step	7

Statistics	for	Removal
DF	=	1,293

Variable
Partial
R-Square

Model
R-Square F	Value Pr	>	F

Gr_Liv_Area 0.1284 0.7298 265.09 <.0001



Total_Bsmt_SF 0.0325 0.8257 67.06 <.0001

Age_at_Sale 0.0831 0.7750 171.72 <.0001

High_Kitchen_Quality 0.0166 0.8415 34.28 <.0001

Fireplace_1plus 0.0074 0.8508 15.19 0.0001

TwoPlusCar_Garage 0.0067 0.8514 13.88 0.0002

	

All	variables	left	in	the	model	are	significant	at	the	0.0100	level

Because	the	DETAILS	option	is	included	with	the	SELECTION=
option,	a	summary	of	the	steps	is	provided	as	displayed	in	Output
9.16e	Summary	of	Backward	Elimination.	Here	the	analyst	can	see
the	six	variables	removed	from	the	initial	set	of	twelve	possible
predictors,	retaining	the	other	six	variables,	GR_LIV_AREA,
TOTAL_BSMT_SF,	AGE_AT_SALE,	HIGH_KITCHEN_QUALITY,
FIREPLACE_1PLUS,	and	TWOPLUSCAR_GARAGE	for	the	final
model.
Output	9.16e	Summary	of	Backward	Elimination

Summary	of	Backward	Elimination

Step
Variable
Removed

Number
Vars	In

Partial
R-Square

Model
R-Square C(p) F	Value Pr	>	F

1 Has_Fence 11 0.0000 0.8613 11.0068 0.01 0.9343

2 High_Exterior_Cond 10 0.0001 0.8612 9.2010 0.19 0.6592

3 CuldeSac 9 0.0004 0.8608 8.1014 0.91 0.3420

4 Land_Level 8 0.0008 0.8600 7.7557 1.67 0.1979

5 Fullbath_2plus 7 0.0009 0.8591 7.6048 1.86 0.1740

6 Lot_Area 6 0.0010 0.8581 7.5948 1.99 0.1591

Finally,	the	plot	of	R2adj		is	provided	in	Output	9.16f	Plot	of
Adjusted	R-Square	by	Backward	Elimination	Step,	illustrating	that
the	fit	improved	through	the	third	step,	after	CULDESAC	was
removed,	and	then	diminished	for	the	remaining	steps.	While	the
drop	seems	drastic,	notice	that	the	range	of	the	Y-axis	is	small	so
that	a	relatively	small	difference	in	R2adj		seems	large.	In	fact,	the

difference	between	the	largest	and	smallest	R2adj	is	about	0.0012;



therefore,	opting	to	delete	six	variables	provides	a	much	simpler
model	at	very	little	expense	to	fit.
Output	9.16f	Plot	of	Adjusted	R-Square	by	Backward	Elimination	Step

Forward	Selection

Forward	selection	starts	with	the	model	containing	only	the
intercept,	and	then	adds	variables	one	at	a	time	as	long	as	each
satisfies	the	criterion	for	entry	in	the	model.	Once	a	model	is	fit
such	that	no	other	remaining	variables	meet	the	criterion	for	entry,
the	variable	selection	process	ends.	Note,	again,	in	forward
selection,	once	a	variable	is	added,	it	can	never	be	removed.

So	how	is	a	variable	selected	for	entry	into	the	model?	A	variable	is
selected	if	it	explains	the	most	variation	in	the	outcome	variable	of
all	variables	considered	for	entry;	this	is	equivalent	to	selecting	the
single	predictor	having	the	highest	correlation	with	the	outcome
variable.	This	can	be	determined	by	conducting	k	simple	linear
regression	models	and	selecting	the	single	predictor	with	the
smallest	p-value	(largest	F-test	statistic).

Once	the	first	predictor	is	entered	into	the	model,	all	(k-1)	two-



predictor	models	are	run,	where	each	model	is	made	up	of	the	first
predictor	paired	with	one	of	the	remaining	(k-1)	predictors.	The
next	(second)	variable	selected	for	entry	is	that	variable	having	the
largest	correlation	with	the	outcome	variable,	after	adjusting	for
the	presence	of	the	first	predictor.	This	is	determined	again	by	the
smallest	p-value	(largest	partial	F-test	statistic).	The	process	of
adding	predictors	continues	until	no	variable	meets	the	criterion	for
entry.

To	illustrate	the	forward	selection	process,	consider	the	Ames
Housing	Case,	where	the	analyst	is	starting	with	a	candidate	set	of
twelve	possible	predictor	variables.	The	goal	is	to	add	those
variables	considered	important,	using	Program	9.16	Forward
Selection	for	the	Ames	Housing	Case:
Program	9.16	Forward	Selection	for	the	Ames	Housing	Case

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300

plots(only)=(adjrsq);

FORWARD:	model	SalePrice=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	High_Kitchen_Quality	Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage

High_Exterior_Cond	CuldeSac	Has_Fence	Land_Level

/selection=forward	slentry=0.01	details;

run;

In	Program	9.16	Forward	Selection	for	the	Ames	Housing	Case,	the
MODEL	statement	is	used	to	define	the	outcome	variable,
SALEPRICE,	and	the	twelve	variables	to	be	included	in	the	selection
process.	Like	the	backward	elimination,	here	we	are	including	the
PLOTS(ONLY)=(ADJRSQ)	option	so	that	we	can	observe	the	R2adj
values	at	each	step	of	the	selection	process.

Note	also	that	the	MODEL	statement	is	used	to	define	the	linear
model,	and	three	options	are	included.	First,	the
SELECTION=FORWARD	requests	that	the	forward	selection
method	be	used,	where	the	F-test	is	used	for	determining	the	entry



of	a	predictor	into	the	model.	Second,	the	SLENTRY	specifies	the
significance	level	for	the	test;	in	other	words,	it	defines	the
minimum	p-value	necessary	for	any	predictor	to	enter	the	model.
Finally,	the	DETAILS	option	requests	a	summary	of	each	step	in	the
selection	process.
The	model	statement	is	prefaced	with	the	label,	FORWARD,	so	that
the	output	is	labeled	to	distinguish	it	from	the	output	of	other
regression	analyses.	The	results	of	the	code	are	displayed	in	Output
9.17a	Forward	Selection	Step	1	through	Output	9.17e	Plot	of
Adjusted	R-Square	by	Forward	Selection	Step.

In	Output	9.17a	Forward	Selection	Step	1,	first	notice	that	the
label,	Model:	FORWARD,	is	provided	to	distinguish	the	model	from
any	other	regression	models.	Step	1	is	displayed	next	and	includes
the	list	of	parameter	estimates	for	each	model	containing	only	the
single	predictor,	along	with	their	respective	F-values,	p-values,	and
R2	values.		

The	smallest	p-value	is	associated	with	both	the	largest	F-value	and
R2	value	and	is	considered	the	best	one-predictor	model;	therefore,
the	model	with	GR_LIV_AREA	is	selected	first,	having	R2	equal	to
0.5529	and	Mallows’	Cp	=	629.2392.	Note	that	the	tolerance
equals	1.0	indicating	that	the	addition	of	that	variable	results	in	no
collinearity—which	makes	sense	being	that	its	addition	results	in	a
model	with	only	one	predictor.		
Output	9.17a	Forward	Selection	Step	1

Model:	FORWARD

Forward	Selection:	Step	1

	

Statistics	for	Entry
DF	=	1,298

Variable Tolerance
Model

R-Square F	Value Pr	>	F

Gr_Liv_Area 1.000000 0.5529 368.51 <.0001

Total_Bsmt_SF 1.000000 0.2073 77.94 <.0001

Lot_Area 1.000000 0.0993 32.87 <.0001



Age_at_Sale 1.000000 0.5428 353.80 <.0001

High_Kitchen_Quality 1.000000 0.2464 97.45 <.0001

Fullbath_2plus 1.000000 0.5051 304.18 <.0001

Fireplace_1plus 1.000000 0.1363 47.03 <.0001

TwoPlusCar_Garage 1.000000 0.3430 155.61 <.0001

High_Exterior_Cond 1.000000 0.0035 1.05 0.3064

CuldeSac 1.000000 0.0421 13.09 0.0003

Has_Fence 1.000000 0.0285 8.74 0.0034

Land_Level 1.000000 0.0147 4.44 0.0358

	
Variable	Gr_Liv_Area	Entered:	R-Square	=	0.5529	and	C(p)	=	629.2392

Step	2	of	the	forward	elimination	is	displayed	in	Output	9.17b
Forward	Selection	Step	2,	and	contains	the	statistics	for	entry	for
the	remaining	eleven	predictors	in	the	model.	Note	that	the
variable,	AGE_AT_SALE,	is	related	to	SALEPRICE,	after	controlling
for	the	presence	of	the	first	predictor	GR_LIV_AREA,		as	indicated
by	the	smallest	p-value	(largest	F-value	=	334.62);	therefore,
AGE_AT_SALE	is	added	to	the	model.	As	a	result,	the	model	with
the	two	predictors	has	an	R2	value	(0.78698)	and	Mallows’	Cp
(141.0667).	Also,	AGE_AT_SALE	has	tolerance	equal	to	0.849906,
indicating	that	its	addition	to	the	model	does	not	result	in
collinearity.			
Output	9.17b	Forward	Selection	Step	2

Model:	FORWARD
Forward	Selection:	Step	2

Statistics	for	Entry
DF	=	1,297 	

Variable Tolerance
Model

R-Square F	Value Pr	>	F 	

Total_Bsmt_SF 0.963607 0.6549 87.76 <.0001 	

Lot_Area 0.947292 0.5749 15.39 0.0001 	

Age_at_Sale 0.849906 0.7898 334.62 <.0001 	

High_Kitchen_Quality 0.925716 0.6461 78.24 <.0001 	



Fullbath_2plus 0.583943 0.6444 76.38 <.0001 	

Fireplace_1plus 0.830426 0.5577 3.21 0.0742 	

TwoPlusCar_Garage 0.822817 0.6433 75.26 <.0001 	

High_Exterior_Cond 0.995966 0.5530 0.10 0.7564 	

CuldeSac 0.946641 0.5541 0.78 0.3773 	

Has_Fence 0.967962 0.5542 0.88 0.3493 	

Land_Level 0.994639 0.5574 3.01 0.0839 	

	
Variable	Age_at_Sale	Entered:	R-Square	=	0.7898	and	C(p)	=	141.0667

The	process	continues	until	variables	are	no	longer	added;	in	other
words,	the	forward	selection	stops	when	all	remaining	predictors
have	p-values	greater	than	0.01	as	defined	in	the	SLSTAY=0.01
option,	as	displayed	in	Output	9.17c	Forward	Selection	Step	7.	In
Step	7,	notice	that	all	remaining	six	variables	fail	the	0.01	criterion
to	enter	into	the	model;	therefore,	the	forward	selection	process
stops.
Output	9.17c	Forward	Selection	Step	7

Model:	FORWARD
Forward	Selection:	Step	7

Statistics	for	Entry
DF	=	1,292 	

Variable Tolerance
Model

R-Square F	Value Pr	>	F 	

Lot_Area 0.874069 0.8591 1.99 0.1591 	

Fullbath_2plus 0.419825 0.8590 1.87 0.1730 	

High_Exterior_Cond 0.970758 0.8582 0.23 0.6285 	

CuldeSac 0.925089 0.8588 1.35 0.2466 	

Has_Fence 0.941464 0.8581 0.00 0.9623 	

Land_Level 0.984457 0.8588 1.31 0.2537 	



	
No	other	variable	met	the	0.0100	significance	level	for	entry	into	the

model.

As	illustrated	previously,	the	DETAILS	option	requests	a	summary
of	the	variable	selection	steps,	as	displayed	in	Output	9.17d
Summary	of	Forward	Selection.	Here	the	analyst	can	see	the	six
variables	selected	from	the	initial	set	of	twelve	possible	predictors;
in	short,	the	final	model	contains	the	variables	GR_LIV_AREA,
AGE_AT_SALE,	TOTAL_BSMT_SF,	HIGH_KITCHEN_QUALITY,
FIREPLACE_1PLUS,	and	TWOPLUSCAR_GARAGE.		Note	that	this	is
the	same	model	selected	using	backward	elimination;	this	will	not
always	be	the	case.
Output	9.17d	Summary	of	Forward	Selection

Summary	of	Forward	Selection

Step
Variable
Entered

Number
Vars	In

Partial
R-Square

Model
R-Square C(p) F	Value Pr	>	F

1 Gr_Liv_Area 1 0.5529 0.5529 629.239 368.51 <.0001

2 Age_at_Sale 2 0.2369 0.7898 141.067 334.62 <.0001

3 Total_Bsmt_SF 3 0.0373 0.8271 65.8910 63.83 <.0001

4 High_Kitchen_Quality 4 0.0160 0.8431 34.7471 30.11 <.0001

5 Fireplace_1plus 5 0.0083 0.8514 19.5050 16.48 <.0001

6 TwoPlusCar_Garage 6 0.0067 0.8581 7.5948 13.88 0.0002

Finally,	the	plot	of	R2adj	is	provided	in	Output	9.17e	Plot	of
Adjusted	R-Square	by	Forward	Selection	Step,	illustrating	that	the
fit	improved	through	the	last	step	where	six	variables	are	included.
Output	9.17e	Plot	of	Adjusted	R-Square	by	Forward	Selection	Step



Stepwise	Selection

Stepwise	selection	combines	both	the	forward	selection	and
backward	elimination	methods.		Variables	considered	important	are
added	one	at	a	time	based	upon	their	p-values;	however,	at	any
point,	a	variable	can	be	removed	from	the	model	when	it	is	no
longer	significant	in	the	context	of	the	set	of	variables	in	the	model
at	that	time.

To	illustrate	the	stepwise	selection	process,	consider	again	the
Ames	Housing	Case,	using	Program	9.17	Stepwise	Selection	for	the
Ames	Housing	Case.

Program	9.17	Stepwise	Selection	for	the	Ames	Housing	Case	here	is
identical	to	that	used	for	both	the	backward	elimination	and	the
forward	selection	methods,	with	the	exception	that
SELECTION=STEPWISE.	Note	also	that	because	a	variable	can	be
entered	or	eliminated	at	any	point,	the	analyst	can	include	both	the
SLENTRY=	and	SLSTAY=	options.	Finally,	note	that	the	label
STEPWISE	is	used	to	distinguish	this	output	from	other	models
considered	by	the	analyst.
Program	9.17	Stepwise	Selection	for	the	Ames	Housing	Case

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;



run;

	

proc	reg	data=amesreg300

plots(only)=(adjrsq);

STEPWISE:	model	SalePrice=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	High_Kitchen_Quality	Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage

High_Exterior_Cond	CuldeSac	Has_Fence	Land_Level

/selection=stepwise	slentry=0.01	slstay=0.01		

details;

run;

When	running	the	code,	the	analyst	will	see	that	the	results	of	the
stepwise	analysis	are	identical	to	the	results	of	the	forward
selection	approach	(this	is	not	always	the	case).	For	this	particular
example,	once	a	variable	was	added,	it	did	not	meet	the	threshold
for	elimination	at	any	point;	as	a	result,	variables	were	added	until
no	other	variables	met	the	threshold	for	entry.

Now	that	we	have	described	the	three	sequential	methods,	consider
the	following.	Because	PROC	REG	allows	multiple	MODEL
statements,	the	three	sets	of	analyses	illustrated	previously	could
have	been	run	in	a	single	REG	procedure	as	shown	in	Program	9.18
Three	Variable	Selection	Methods	for	the	Ames	Housing	Case.
Program	9.18	Three	Variable	Selection	Methods	for	the	Ames	Housing	Case

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300

plots(only)=(adjrsq);

BACKWARD:	model	SalePrice=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	High_Kitchen_Quality	Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage

High_Exterior_Cond	CuldeSac	Has_Fence	Land_Level

/selection=backward	slstay=0.01	details;

FORWARD:	model	SalePrice=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	High_Kitchen_Quality	Fullbath_2Plus



Fireplace_1Plus	TwoPlusCar_Garage

High_Exterior_Cond	CuldeSac	Has_Fence	Land_Level

/selection=forward	slentry=0.01	details;

STEPWISE:	model	SalePrice=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	High_Kitchen_Quality	Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage

High_Exterior_Cond	CuldeSac	Has_Fence	Land_Level

/selection=stepwise	slentry=0.01	slstay=0.01		

details;

run;

The	GLMSELECT	Procedure	for	Variable	Selection
Now	that	you	understand	the	basic	concepts	behind	variable
selection	using	the	REG	procedure,	let’s	consider	the	GLMSELECT
procedure	which	provides	for	variable	selection	when	one	or	more
predictors	are	categorical.

The	syntax	for	the	GLMSELECT	procedure	is	as	follows:

PROC	GLMSELECT	DATA=SASdataset	<PLOTS=options>;

CLASS	variables;

MODEL	dependents=independents	</	options>;

RUN;

Consider	the	Ames	Housing	Case	where	the	analyst	in	interested	in
predicting	the	outcome	variable,	SALEPRICE.	In	the	previous
section	on	stepwise	selection,	twelve	possible	predictors	were	under
investigation.	Here	we	will	add	two	categorical	variables,
OVERALL_QUALITY	and	LOT_SHAPE.

OVERALL_QUALITY	has	values	1,	2,	and	3,	corresponding	to	Below
Average,	Average,	and	Above	Average,	respectively.	LOT_SHAPE
has	two	values;	namely,	‘Reg’	for	regular	shape	and	‘IRR’	for
irregular	shape.	The	analysis	will	also	include	VINYL_SIDING
(already	dummy	coded	1	for	Yes	and	0	for	No),	OPEN_PORCH_SF
(porch	area),	GARAGE_AREA	(garage	area),	and	BEDROOM_ABVGR
(number	of	bedrooms	above	ground)	to	see	if	including	any	other
variables	will	improve	the	fit.		In	all,	eighteen	variables	will	be
under	consideration.	The	analysis	will	be	conducted	using	the
Program	9.19	PROC	GLMSELECT	with	Stepwise	Selection	for	the



Ames	Housing	Case.
Program	9.19	PROC	GLMSELECT	with	Stepwise	Selection	for	the	Ames	Housing	Case

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	glmselect	data=amesreg300

plots=candidates;

class	Overall_Quality	Lot_Shape;

model	SalePrice=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	Overall_Quality	High_Kitchen_Quality

Fullbath_2Plus	Fireplace_1Plus	TwoPlusCar_Garage

Vinyl_Siding	Lot_Shape	High_Exterior_Cond	CuldeSac

Has_Fence	Land_Level	Open_Porch_SF	Garage_Area

Bedroom_AbvGr

/selection=stepwise	select=sl	slentry=0.01	slstay=0.01

details=all;

run;

From	Program	9.19	PROC	GLMSELECT	with	Stepwise	Selection	for
the	Ames	Housing	Case,	we	can	see	that	the	GLMSELECT	procedure
is	applied	to	the	Ames	Housing	data	set,	as	defined	by	the	DATA=
option.	The	CLASS	statement	defines	the	two	categorical	variables
(OVERALL_QUALITY	and	LOT_SHAPE)	to	be	considered	in	the
linear	model.

The	MODEL	statement	defines	the	outcome	variable,	SALEPRICE,
and	the	eighteen	variables	to	be	considered	for	prediction.	The
SELECTION=	option	defines	the	selection	procedure,	namely,
STEPWISE.	

The	SELECT=	option	defines	the	criterion	used	to	determine	the
order	in	which	variables	are	added	or	removed	at	each	step	of	the
selection	method.	SELECT=SL	requests	the	traditional	significance
level	as	the	selection	criterion;	the	significance	levels	for	entry	and
removal	are	defined	as	0.01,	using	SLENTRY=0.01	and
SLSTAY=0.01.	

Note	that	SLENTRY	and	SLSTAY	are	invoked	when	SELECT=SL;	if



those	are	not	explicitly	stated,	the	default	is	0.15.	
The	DETAILS=ALL	option	provides	the	following:

	statistics	for	entry	(or	removal)	for	the	top	ten	candidate
variables	at	each	step	in	the

variable	selection	process

	ANOVA	tables,	fit	statistics,	and	parameters	estimates	after	a
variable	is	selected	(or

removed)

	a	summary	table	of	all	steps	in	the	variable	selection	process.

Finally,	the	PLOTS=CANDIDATES	requests	plots	at	each	variable
selection	step.	The	plots	are	determined	by	the	selection	criterion,
SELECT=SL;	therefore,	in	this	case,	plots	of	p-values	(or	log	p-
values)	are	displayed	to	show	the	next	variable	to	be	added	to	the
model.	

The	partial	results	of	the	SAS	program	are	found	in	Output	9.18a
PROC	GLMSELECT	for	Stepwise	Selection	Step	1	through	Output
9.18d		The	Selected	Model	from	Stepwise	Selection	in	PROC
GLMSELECT.	The	first	page	of	SAS	output	provides	a	summary	of
the	analysis	request,	including	the	data	set	name,	the	variable	name
of	the	dependent	variable,	the	selection	method	(Stepwise),	the
selection	criterion	(Significance	Level),	the	stop	criterion
(Significance	Level),	entry	significance	level	(0.01),	and	the	stay
significance	level	(0.01).	

A	Class	Level	Information	table	is	displayed,	indicating	that
OVERALL_QUALITY	has	three	levels	(1,	2,	and	3)	and	LOT_SHAPE
has	two	levels	(IRR	and	Reg).	Finally,	a	Dimensions	table	is
displayed,	indicating	that	there	are	19	effects	and	22	parameters
under	consideration.

The	output	then	provides	information	for	Step	0	where	only	the
intercept	is	estimated.	Following	is	Step	1,	as	displayed	in	Output
9.18a		PROC	GLMSELECT	for	Stepwise	Selection	Step	1,	where	the
variable,	GR_LIV_AREA	is	entered	into	the	model.		The	output
includes	the	ANOVA	table	for	testing	the	significance	of
GR_LIV_AREA,	along	with	the	fit	statistics	(RMSE=23,391,	R2adj	=
0.5514,	etc.),	and	the	table	of	parameter	estimates.

●					

●					

●					



Step	1	also	includes	the	table,	Best	10	Entry	Candidates,	which
ranks	the	variables	in	order	of	their	worth	in	predicting	SALEPRICE
as	measured	by	the	smallest	p-value	(equivalent	to	the	smallest	log
p-value),	accompanied	by	the	log	p-value	plot	by	variables	as	a
visual	for	identifying	the	variable	selected	for	entry,	namely,
GR_LIV_AREA.
Output	9.18a	PROC	GLMSELECT	for	Stepwise	Selection	Step	1

The	GLMSELECT	Procedure
Effect	Entered:	Gr_Liv_Area

	

Analysis	of	Variance

Source DF
Sum	of
Squares

Mean
Square F	Value

Model 1 2.016341E11 2.016341E11 368.51

Error 298 1.63052E11 547154248 	

Corrected
Total

299 3.646861E11 	 	

	

Root	MSE 23391

Dependent
Mean

154910

R-Square 0.5529

Adj	R-Sq 0.5514

AIC 6340.06570

AICC 6340.14678

SBC 6045.47326

	

Parameter	Estimates

Parameter DF Estimate
Standard
Error t	Value

Intercept 1 44081 5929.177724 7.43

Gr_Liv_Area 1 82.505608 4.297900 19.20



	

Best	10	Entry	Candidates

Rank Effect
Log

pValue Pr	>	F

1 Gr_Liv_Area -122.7218 <.0001

2 Age_at_Sale -119.3869 <.0001

3 Fullbath_2plus -107.5534 <.0001

4 TwoPlusCar_Garage -65.1481 <.0001

5 Overall_Quality -56.8268 <.0001

6 Garage_Area -50.0664 <.0001

7 High_Kitchen_Quality -44.5427 <.0001

8 Vinyl_Siding -40.1855 <.0001

9 Total_Bsmt_SF -36.9192 <.0001

10 Bedroom_AbvGr -27.4951 <.0001

	

The	results	of	Step	2	are	displayed	in	Output	9.18b	PROC
GLMSELECT	for	Stepwise	Selection	Step	2,	where	the	variable,
AGE_AT_SALE	is	entered	into	the	model.	The	output	includes	the
ANOVA	table	for	testing	the	significance	of	both	GR_LIV_AREA	and
AGE_AT_SALE,	along	with	the	fit	statistics	(RMSE=16,607,	R2adj	=
0.7883,	etc.),	and	the	table	of	parameter	estimates.	Obviously	the



measures	of	fit	indicate	an	improvement	in	fit,	with	an	increase	in
R2adj	and	a	reduction	in	RMSE.		Finally,	the	table	of	Best	10	Entry
Candidates	and	the	plot	of	log	p-values	provide	the	evidence	for
selecting	AGE_AT_SALE	for	entry	into	the	model.
Output	9.18b	PROC	GLMSELECT	for	Stepwise	Selection	Step	2

The	GLMSELECT	Procedure
Effect	Entered:	Age_at_Sale

	

Analysis	of	Variance

Source DF
Sum	of
Squares

Mean
Square F	Value

Model 2 2.880157E11 1.440078E11 557.85

Error 297 76670419313 258149560 	

Corrected
Total

299 3.646861E11 	 	

	

Root	MSE 16067

Dependent
Mean

154910

R-Square 0.7898

Adj	R-Sq 0.7883

AIC 6115.69980

AICC 6115.83539

SBC 5824.81115

	

Parameter	Estimates

Parameter DF Estimate
Standard
Error t	Value

Intercept 1 103565 5211.590360 19.87

Gr_Liv_Area 1 59.811765 3.202224 18.68

Age_at_Sale 1 -671.549476 36.711592 -18.29



	

Best	10	Entry	Candidates

Rank Effect
Log

pValue Pr	>	F

1 Age_at_Sale -114.8099 <.0001

2 Total_Bsmt_SF -40.7897 <.0001

3 High_Kitchen_Quality -37.0246 <.0001

4 Fullbath_2plus -36.2804 <.0001

5 TwoPlusCar_Garage -35.8253 <.0001

6 Garage_Area -33.9371 <.0001

7 Vinyl_Siding -26.7316 <.0001

8 Overall_Quality -20.0060 <.0001

9 Lot_Area -9.1280 0.0001

10 Lot_Shape -7.5678 0.0005

	

Recall	that	for	stepwise	analysis,	once	a	variable	is	entered,	the
resulting	model	is	tested	to	see	if	any	variable	in	the	model	fails	the
criterion	for	staying.	So,	the	process	discussed	in	steps	1	and	2
continues	until	variables	are	no	longer	added	(when	all	remaining
predictors	have	p-values	greater	than	0.01	as	defined	in	the
SLSTAY=0.01)	nor	removed	(when	all	predictors	in	the	model



have	p-values	greater	than	0.01	as	defined	in	the	SLSTAY=0.01).
In	our	example,	the	process	continues	for	seven	steps	and	is
summarized	in	Output	9.18c	Summary	for	Stepwise	Selection	in
PROC	GLMSELECT.
Output	9.18c	Summary	for	Stepwise	Selection	in	PROC	GLMSELECT

Stepwise	Selection	Summary

Step
Effect
Entered

Effect
Removed

Number
Effects	In

Number
Parms	In F	Value Pr	>	F

0 Intercept 	 1 1 0.00 1.0000

1 Gr_Liv_Area 	 2 2 368.51 <.0001

2 Age_at_Sale 	 3 3 334.62 <.0001

3 Total_Bsmt_SF 	 4 4 63.83 <.0001

4 High_Kitchen_Quality 	 5 5 30.11 <.0001

5 Overall_Quality 	 6 7 10.94 <.0001

6 Garage_Area 	 7 8 17.97 <.0001

7 Fireplace_1plus 	 8 9 13.64 0.0003

From	the	output	displayed	in	Output	9.18c	Summary	for	Stepwise
Selection	in	PROC	GLMSELECT,	the	analyst	can	see	the	order	in
which	the	variables	were	added,	while	no	variables	met	the
criterion	for	removal.	Notice	that	there	are	eight	effects	in	the
model,	namely,	the	intercept	and	seven	predictors.	The	number	of
parameters	estimated	in	the	final	linear	regression	model	is	nine;
namely,	the	intercept,	two	levels	of	the	categorical	predictor
OVERALL_QUALITY,	and	the	remaining	six	predictors.

The	last	portion	of	the	output	contains	information	related	to	the
final	model	and	is	displayed	in	Output	9.18d	The	Selected	Model
from	Stepwise	Selection	in	PROC	GLMSELECT.	First	note	that	the
nine	effects	are	listed,	including	the	intercept,	followed	by	the
ANOVA	table,	indicating	a	significantly	good	fit	using	the	k	=	8
predictors.	The	fit	statistics	show	a	considerable	improvement	in	fit
(RMSE=12,833,	R2adj	=	0.8650,	etc.).	Finally,	using	the	parameter
estimates,	the	final	model	has	the	following	prediction	equation:

	82,707	+	45.22(Gr_Liv_Area)	+	20.29(Total_Bsmt_SF)	–



475.78(Age_at_Sale)
							-	11258(Overall_Quality	1)	–	7029.19(Overall_Quality	2)	+
8666.76(High_Kitchen_Quality)
						+	6097.74(Fireplace_1plus)	+	23.68(Garage_Area)

Notice	for	a	house	with	below	average	quality	(Overall_Quality
1=1	and	Overall_Quality	2=0),	the	intercept	is	82,707	–	11,258	=
71,449;	for	a	house	with	average	quality	(Overall_Quality	1=0	and
Overall_Quality	2=1),	the	intercept	is	82,707	–	7029.19	=
75,677.81;	a	house	with	above	average	quality	has	an	intercept	of
82,707.

Holding	all	other	variables	constant,	the	expected	sale	price	will
increase	by	$45.22	for	every	additional	square	foot	of	above
ground	living	area.	Each	additional	square	foot	of	basement	area	is
associated	with	a	$20.29	increase;	and	each	additional	square	foot
of	garage	area	is	associated	with	a	$23.68	increase.	Having	a	high
quality	kitchen	is	associated	with	an	increase	in	sale	price	of
$8666.76,	all	other	factors	held	constant;	having	at	least	one
fireplace	is	associated	with	an	additional	$6097.74.	For	this
population	of	houses,	each	additional	year	in	age	is	associated	with
a	$475.78	decrease	in	sale	price,	with	all	other	factors	held
constant.
Output	9.18d	The	Selected	Model	from	Stepwise	Selection	in	PROC	GLMSELECT

The	selected	model	is	the	model	at	the	last	step	(Step	7).

Effects: Intercept	Gr_Liv_Area	Total_Bsmt_SF	Age_at_Sale	Overall_Quality
High_Kitchen_Quality	Fireplace_1plus	Garage_Area

	

Analysis	of	Variance

Source DF
Sum	of
Squares

Mean
Square F	Value

Model 8 3.16766E11 39595752470 240.45

Error 291 47920062420 164673754 	

Corrected
Total

299 3.646861E11 	 	

	



Root	MSE 12833

Dependent
Mean

154910

R-Square 0.8686

Adj	R-Sq 0.8650

AIC 5986.70529

AICC 5987.46653

SBC 5718.03933

	

Parameter	Estimates

Parameter DF Estimate
Standard
Error t	Value

Intercept 1 82707 5729.095596 14.44

Gr_Liv_Area 1 45.219105 3.006767 15.04

Total_Bsmt_SF 1 20.287345 2.715321 7.47

Age_at_Sale 1 -475.782142 34.198190 -13.91

Overall_Quality							1 1 -11258 2922.041666 -3.85

Overall_Quality							2 1 -7029.186383 1828.576866 -3.84

Overall_Quality							3 0 0 . .

High_Kitchen_Quality 1 8666.760442 1802.809359 4.81

Fireplace_1plus 1 6097.736909 1651.066636 3.69

Garage_Area 1 23.675454 5.571781 4.25

	

Other	Features	of	the	GLMSELECT	Procedure

The	GLMSELECT	procedure	allows	for	extensive	capabilities	in	the
variable	selection	process.		In	this	section,	we	add	comments	to
familiarize	you	with	some	of	those	capabilities.

The	example	just	described	utilized	the	SELECTION=STEPWISE	in
the	MODEL.		Other	selection	options	include	NONE,	FORWARD,
and	BACKWARD.		The	GLMSELECT	procedure	also	offers	LAR
(least	angle	regression),	and	LASSO	(least	absolute	shrinkage	and
selection	operator),	neither	of	which	are	offered	in	PROC	REG.



Similarly,	the	SELECT=SL	option	was	used	in	the	MODEL
statement	to	illustrate	the	traditional	approach	where	variables	are
either	added	or	removed	based	upon	the	defined	significance
level.		The	SELECT=SBC	(Schwarz	Bayesian	information	criterion)
is	the	default;	other	selection	criteria	include	ADJRSQ,	CP,
RSQUARE,	all	discussed	in	this	chapter,	in	addition	to	AIC	(Akaike
information	criterion)	,	AICC	(Corrected	Akaike	information
criterion),	BIC	(Sawa	Bayesian	information	criterion),	PRESS
(predicted	residual	sum	of	squares),	and	VALIDATE.

In	the	Ames	Housing	example	just	discussed,	the	default	fit
statistics	were	displayed	and	include	RMSE	(root	mean	square
error),	R2,	R2adj,	AIC,	AICC,	and	SBC.	If	the	analyst	adds	the
STATS=ALL	option	to	the	MODEL	statement,	additional	statistics
are	supplied.	These	include	BIC,	CP	(Mallows’	Cp),	PRESS,	and	ASE
(the	average	square	errors	if	training,	test,	and	validation	data	are
specified);	these	are	not	included	as	defaults	because	their	inclusion
has	increased	computational	costs.

Notice	also	that	the	output	for	the	GLMSELECT	procedure	is
voluminous	by	using	DETAILS=ALL	in	the	MODEL.	In	order	to
reduce	that	volume,	the	analyst	can	use	the	default,
DETAILS=SUMMARY,	which	produces	only	the	selection	summary
table.

Finally,	the	GLMSELECT	procedure	provides	a	plethora	of	graphics
capabilities	by	way	of	the	PLOT=	option.	Our	illustration	provided
the	log	p-value	plot	(PLOT=CANDIDATES)	which	provided	a
graphical	representation	of	the	selection	criterion	(defined	by
SELECT=SL)	at	each	step.		Other	PLOT	options	include	ASE,
CRITERIA	(which	provides	a	panel	of	the	requested	fit	criteria),
and	COEFFICIENTS	(which	shows	how	the	estimates	of	slope
stabilize	as	the	variable	selection	steps	progress),	to	name	a	few.

When	conducting	variable	selection	methods,	keep	in	mind	the
default	selection	criteria,	as	displayed	in	Table	9.4	Default
SLENTRY	and	SLSTAY	Settings	by	Model	Selection	Method.
Table	9.4	Default	SLENTRY	and	SLSTAY	Settings	by	Model	Selection	Method.

	 SLENTRY SLSTAY



PROG	REG,
BACKWARD

	 0.10

PROC	REG,	FORWARD 0.50 	

PROC	REG,	STEPWISE 0.15 0.15

PROC	GLMSELECT,
BACKWARD

	 0.10

PROC	GLMSELECT,
FORWARD

0.50 	

PROC	GLMSELECT,
STEPWISE

0.15 0.15

	

Cautionary	Note	on	Sequential	Selection	Methods

When	using	sequential	selection	methods,	the	analyst	should
exercise	caution.	First,	when	collinearity	exists,	the	model	selection
process	is	very	unstable.		In	other	words,	if	conducted	on	repeated
random	samples,	the	model	(or	models)	appearing	as	best	does	not
show	up	in	a	consistent	manner.	In	fact,	it	is	very	possible	that
important	variables	may	be	overlooked	in	the	variable	selection
process.

As	a	result,	it	is	important	that	the	analyst	resolve	any	collinearity
(redundancy)	issues	before	selecting	variables	(relevancy).	In	fact,
when	collinearity	does	not	exist,	the	analyst	will	almost	always
arrive	at	the	same	model	(or	models)	using	each	of	the	three
sequential	methods	(Hosmer	and	Lemeshow,	2000).

Another	problem	with	sequential	methods	is	their	reliance	on	p-
values.	In	these	methods,	p-values	are	repeated	and	used	to	test	the
significance	for	adding	or	deleting	variables.	Of	the	many	tests,	just
by	chance,	there	are	significant	conclusions	when	in	reality	those
conclusions	are	in	error.	In	short,	the	probability	of	making	a	Type
I	error,	in	reality,	is	larger	than	the	stated	p-value.	In	other	words,
the	inferences	made	using	models	selected	in	this	way	become	less
accurate	as	the	number	of	tests	increases	(Chatfield,	1995).	To
overcome	this	problem,	the	analyst	may	try	splitting	the	sample,
and	using	one	portion	for	variable	selection,	and	the	other	portion



for	confirming	hypotheses	through	inference	(t-	and	F-tests).

In	short,	if	the	number	of	predictors	is	small,	then	specifying	all
possible	subsets	is	the	best	route	to	take.		Otherwise,	when	the
number	of	variables	is	large	so	that	an	all	possible	subsets	is	time
prohibitive,	the	analyst	should	use	the	sequential	methods	as	a
guide	to	reduce	the	candidate	models,	and	use	subject	matter
expertise	to	select	a	model	that	makes	sense.

Assessing	the	Validity	of	Results	Using	Regression
Diagnostics
The	topics	covered	so	far	have	concentrated	on	describing	the
linear	relationship	between	the	outcome	variable	(Y)	and	the
predictors	(Xs)	and	using	those	descriptions	to	make	inferences
about	the	population.	The	calculations	discussed	are	derived	using
certain	assumptions,	and	if	those	assumptions	are	violated,	then
any	inferences	about	the	relationship	between	X	and	Y	are	in	error.
In	this	section,	we	will	list	the	assumptions	of	linear	regression,
discuss	a	set	of	tools	for	assessing	those	assumptions,	and	provide
possible	recommendations	on	how	to	alleviate	the	violations.

The	Assumptions	of	Linear	Regression
There	are	four	key	assumptions	that	must	be	verified	before	the
analyst	can	conclude	that	the	linear	regression	analysis	results	are
valid.	The	assumptions	are:

	The	predictor	terms	enter	the	model	equation	linearly.

	The	errors	in	prediction		(Y- 	are	normally	distributed
having	a	mean	of	zero.

	The	variance	of	the	errors	in	prediction		(Y- 	are	constant
for	each	value	of	X.	In	other	words,	the	observations	have	the
same	variance	around	the	estimated	regression	line	for	each
X,	across	the	range	of	X.	The	condition	of	equal	variances	is
also	referred	to	as	homoscedasticity.

	The	errors	in	prediction	(Y- 	are	independent	of	each	other.

The	first	assumption	implies	that	the	form	of	the	predictor	itself
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can	also	be	nonlinear,	either	a	higher	order	term	or	the	result	of	a
transformation.

When	the	linearity	assumption	is	violated,	the	model	fit	is
obviously	reduced	indicating	that	accurate	predictions	break	down,
specifically	at	different	ranges	of	the	predictor	in	question.	When
the	equal	variance	assumption	is	violated,	while	the	parameter
estimates	of	the	slope	are	unbiased,	their	standard	errors	are
overestimated,	resulting	in	non-significant	slopes	(errors	in
hypothesis	tests)	and	inflated	confidence	intervals.	When	the	errors
are	dependent,	the	standard	errors	are	underestimated	and,
similarly,	non-significant	relationships	may	show	up	as	significant.
Finally,	non-normal	errors	may	indicate	that	either	the	form	of	the
model	is	misspecified	or	an	important	variable	is	left	out	of	the
model.	

There	are	other	conditions	that	compromise	the	validity	of	the
linear	regression	results.	These	are:

	collinearity,	where	the	predictor	variables	are	‘highly’
correlated,	which	was	addressed

earlier	in	this	chapter,	and

	the	existence	of	outliers,	or	observations	that	have	‘extreme’
Y	values	and	large	errors,	which	will	be	covered	later	in	this
chapter.

Residual	Analysis	for	Checking	Assumptions
In	regression	analysis,	the	analyst	should	always	begin	with	an
exploration	of	the	data	using	bivariate	scatter	plots	in	order	to
make	some	preliminary	observations	about	the	reasonableness	of
the	assumptions.	However,	departures	from	the	assumptions
sometimes	go	undetected	using	the	ordinary	scatter	plot	of	Y	by	X;
therefore,	additional	data	visualizations	should	follow	in	order	to
specifically	assess	the	violations	of	assumptions	and	ensure	linear
regression	is	the	appropriate	model.	Because	the	assumptions
address	requirements	for	the	errors,	a	residual	analysis	is	the
appropriate	tool	for	detecting	any	violations.	

A	residual	analysis	requires	first	that	the	regression	model	be	fit	to
the	data	and	the	errors,	or	residuals,	are	computed	for	all
observations.	The	residuals	are	used	to	create	various	residual
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plots	for	testing	the	assumptions	and	include:
	a	scatter	plot	of	the	residuals	by	the	predictor	variable	(X)	for
each	X

	a	scatter	plot	of	the	residuals	by	the	predicted	values	(

	the	normal	probability	plot	of	the	standardized	residuals

Let’s	now	consider	examples	of	regression	analysis	with	one
predictor,	accompanied	by	the	scatter	plot	of	X	and	Y	and	the
resulting	plot	of	residual	by	the	predictor.	In	Figure	9.3	Fit	Plot	and
Residual	Plot	for	Illustrating	a	Linear	Trend	with	Constant	Variance
the	left	panel	displays	a	scatter	of	Y	by	X	where	there	appears	to	be
a	linear	trend	and	the	points	are	somewhat	evenly	spread	around
the	estimated	regression	line,	indicating	that	the	equal	variance
assumption	is	reasonably	met.	

The	residual	for	each	point	is	computed	and	the	resulting	plot	of
the	residual	by	the	predictor	variable	is	produced,	as	seen	on	the
right	panel.	Note	also	that	the	residual	plot	seems	to	indicate	a
linear	trend	around	the	expected	line	of	zero	and	has	an	even
spread	indicating	that	both	the	linearity	and	equal	variance
assumptions	are	reasonable.	

In	general,	any	analyses	having	a	residual	plot	which	resembles
that	in	Figure	9.3	Fit	Plot	and	Residual	Plot	for	Illustrating	a	Linear
Trend	with	Constant	Variance	indicates	that	those	assumptions	are
reasonably	met,	and	the	analyst	can	proceed	with	the	analysis.	Of
course,	in	practice,	there	will	be	slight	deviations	from	this
standard;	however,	knowledge	of	the	subject	matter	should	aid	in
the	interpretation.
Figure	9.3	Fit	Plot	and	Residual	Plot	for	Illustrating	a	Linear	Trend	with	Constant
Variance
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An	inspection	of	the	residual	plot	in	Figure	9.4	Residual	Plot
Illustrating	a	Curvilinear	Trend	indicates	that	the	linearity
assumption	is	in	question.	When	a	curvilinear	trend	exists,	the
analyst	can	transform	the	predictor	variables	using	either	log,
square	root,	quadratic,	or	inverse,	to	name	a	few.	An	example	when
the	analyst	uses	a	natural	log	transformation	will	be	provided	later
in	this	section.
Figure	9.4	Residual	Plot	Illustrating	a	Curvilinear	Trend

In	the	Figure	9.5	Residual	Plot	Illustrating	Unequal	Variance,	we
can	see	from	the	residual	plot	that	the	unequal	variance	assumption
is	violated.	Again	the	analyst	can	transform	the	predictor	variable.
In	fact,	many	transformations	used	to	fix	nonlinearity	problems	are
also	effective	in	stabilizing	the	variances.	Other	solutions	include
using	a	weighted	least	squares	analysis	or	the	GLIMMIX	or
GENMOD	procedures	to	fit	a	generalized	linear	model	that
accounts	for	non-constant	variance.
Figure	9.5	Residual	Plot	Illustrating	Unequal	Variance



	
Finally,	there	are	times	where	the	residual	plot	may	resemble	that
in	Figure	9.6	Residual	Plot	Illustrating	Autocorrelation.	Note	that
the	residuals	here	are	not	randomly	scattered	around	the	expected
line	of	zero;	in	fact,	points	with	positive	residuals	tend	to	be	next	to
points	with	positive	residuals	and	points	with	negative	residuals
tend	to	be	next	to	points	with	negative	residuals.	This	sometimes
occurs	when	observations	are	collected	over	time	and	the	residuals
are	characterized	as	autocorrelated.	In	this	case,	the	analyst
should	model	the	data	using	a	time	series	analysis.
Figure	9.6	Residual	Plot	Illustrating	Autocorrelation

In	the	next	example,	we	will	illustrate	how	to	generate	the	plot	of
the	residual	by	the	predictor,	in	addition	to	the	plot	of	the	residual
by	the	predicted	value	and	the	normal	probability	plot	of	the
standardized	residuals.	



Consider	the	following	example	where	a	sample	of	companies	are
purchasing	advertising	to	generate	sales.	Suppose	the	marketing
analyst	wants	to	determine	if	the	ads	are	effective	and	wants	to
quantify	the	impact	of	sales	on	revenue.	Specifically,	the	analyst
conducts	a	linear	regression	to	predict	revenue	from	advertising
expenses	using	Program	9.20	Linear	Regression	Analysis
Diagnostics	Panel.
Program	9.20	Linear	Regression	Analysis	Diagnostics	Panel

libname	sasba	‘c:\sasba\data’;

data	Revenue;

set	sasba.revenue;

run;

	

proc	reg	data=Revenue;

model	Revenue	=	AdExpense;

output	out=diagnostics	predicted=yhat	residual=residual;

run;

	

data	res;

set	diagnostics;

proc	print	data=res	(obs=5);

var	AdExpense	Revenue	yhat	residual;

run;

From	Program	9.20	Linear	Regression	Analysis	Diagnostics	Panel,
we	can	see	that	the	REG	procedure	is	applied	to	the	Revenue	data
set,	as	defined	by	the	DATA=	option.	The	MODEL	statement	is
used	to	define	the	linear	model,	namely	REVENUE	is	equal	to	linear
function	of	ADEXPENSE.	The	output,	including	all	tables	and
scatter	plots,	is	illustrated	in	Output	9.19a	Linear	Regression	on
Revenue	with	Diagnostics	Panel.
Output	9.19a	Linear	Regression	on	Revenue	with	Diagnostics	Panel

Root	MSE 7.13262 R-Square 0.6548

Dependent
Mean

37.05000 Adj	R-Sq 0.6457

Coeff	Var 19.25134 	 	

	



Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

Intercept 1 21.76874 2.12411 10.25 <.0001

AdExpense 1 1.65203 0.19459 8.49 <.0001

	

Note	first	that	the	plot	of	residuals	by	AdExpense	shows	a	clear
curvilinear	relationship	between	ADEXPENSE	and	REVENUE.	It
does	make	perfect	business	sense	that	revenue	increases	as
advertising	expenses	increase,	but	at	some	point,	the	revenue	may



increase	at	a	lesser	rate	indicating	that	the	additional	money	spent
on	advertising	has	a	lesser	effect	on	revenue.	Notice	that	the
curvilinear	relationship	is	more	obvious	in	the	residual	plot
compared	to	the	scatter	plot	of	the	original	data.

The	output	also	includes	the	panel	of	Fit	Diagnostics	for	Revenue.
In	the	upper	left	corner	is	the	plot	of	the	residual	by	predicted
value—when	there	is	only	one	predictor,	this	plot	is	identical	in
shape	to	the	residual	by	ADEXPENSE	plot	because	the	predicted
value	is	a	linear	function	of	ADEXPENSE.	This	plot	shows	the	same
nonlinear	relationship	between	REVENUE	and	ADEXPENSE.	It
should	be	noted	that	when	the	analyst	conducts	a	multiple	linear
regression,	the	plot	of	the	residual	by	predicted	value	detects
violations	across	all	predictors	because	the	predicted	value	is	a
function	of	all	Xs.	If	violations	are	detected,	the	analyst	must	look
at	each	predictor	separately	in	order	to	detect	from	which	predictor
the	violation	originates.

The	panel	of	Fit	Diagnostics	also	includes	the	quantile	plot	of
residuals	for	assessing	the	normality	of	error	assumption.	As
described	in	Chapter	6,	“Two-Sample	t-Test,”	if	data	is	normal,	the
points	on	the	quantile	plot	follow	a	straight	line	and	have	a	45-
degree	angle.	Here	the	points	seem	to	follow	fairly	closely	to	the
line;	therefore,	the	normal	errors	assumption	seems	reasonable.	The
analyst	could	apply	the	UNIVARIATE	procedure	to	the	residuals	to
test	the	normality	assumption	using	the	Kolmogorov–Smirnov.

Finally,	on	the	Fit	Diagnostics	panel,	note	the	REVENUE	by
predicted	revenue	plot	displays	a	curvilinear	relationship,	further
indicating	that	the	linearity	assumption	is	suspect.

In	order	to	illustrate	how	the	data	in	the	residual	plot	is	created,
we	illustrate	the	use	of	the	OUTPUT	statement	to	create	a
temporary	data	set	called	DIAGNOSTICS.	This	new	data	set
includes	the	original	data	and	additional	information	for	each
observation	as	defined	by	the	keywords.	Note	that	the	analyst
creates	a	new	variable	called	YHAT	as	defined	by	the
PREDICTED=	option	and	RESIDUAL	as	defined	by	the
RESIDUAL=	option.		

For	example,	in	observation	1,	after	plugging	in	the	amount	spent
on	advertising	($1	thousand),	the	predicted	revenue	is	$23.421
($1000),	resulting	in	an	error	of	-2.4208.	This	observation	has	the



ordered	pair	(1,	-2.4208)	on	the	residual	by	ADEXPENSE	plot,
displayed	in	Output	9.19a	Linear	Regression	on	Revenue	with
Diagnostics	Panel	and	listed	in	Output	9.19b	Predicted	Revenue
and	Residuals	Using	the	Predictor	AdExpense.
Output	9.19b	Predicted	Revenue	and	Residuals	Using	the	Predictor	AdExpense

Obs AdExpense Revenue yhat residual

1 1 21 23.4208 -2.4208

2 1 13 23.4208 -10.4208

3 7 45 33.3329 11.6671

4 14 47 44.8971 2.1029

5 17 54 49.8532 4.1468

When	looking	at	the	p-value	for	ADEXPENSE	and	the	adjusted	R2,
it	appears	that	ADEXPENSE	is	a	good	predictor,	having	a	relatively
good	fit.	However,	because	the	linearity	assumption	is	violated,	the
strength	of	that	relationship	is	stunted.	Once	the	form	of	the	correct
relationship	is	used,	the	analyst	expects	the	measures	of	fit	and	the
test	statistic	to	increase.

So,	when	the	linearity	assumption	is	violated,	the	analyst	should
consider	transforming	the	predictor	variable	in	an	attempt	to	fit	a
curve	to	the	data.	For	this	specific	example,	we	tried	several
transformations	of	X	(X-square,	natural	log	of	X,	square	root	of	X,
and	the	inverse	of	X);	the	natural	log	seemed	to	be	the	best
transformation.	Higher	order	terms	can	also	be	used	when	dealing
with	nonlinear	relationships.

To	see	if	the	transformation	was	effective	in	correcting	the
violation	of	the	linearity	assumption,	the	analyst	would	use
Program	9.21	Linear	Regression	Analysis	Using	Transformed	Ad
Expense	(LnAdExp).
Program	9.21	Linear	Regression	Analysis	Using	Transformed	Ad	Expense	(LnAdExp)

libname	sasba	‘c:\sasba\data’;

data	Revenue;

set	sasba.revenue;

LnAdExp	=	log(AdExpense);

run;



	

proc	reg	data=Revenue

plots(only)=(QQ	residuals	residualbypredicted	fitplot);

model	Revenue	=	LnAdExp;

run;

Program	9.21	Linear	Regression	Analysis	Using	Transformed	Ad
Expense	(LnAdExp)	is	identical	to	the	code	used	previously	for
predicting	REVENUE,	with	two	exceptions.	First,	notice	that	the
analyst	created	a	new	transformed	predictor,	named	LNADEXP.
Second,	the	PLOT(ONLY)=	option	was	added	to	PROC	REG	to
specifically	request	the	QQ	(quantile-quantile)	plot,	the	residual	by
predictor	plot,	the	residual	by	the	predicted	plot	and	the	scatter
plot	of	Y	by	X,	as	defined	by	QQ,	RESIDUAL,
RESIDUALBYPREDICTED,	and	FITPLOT.

From	Output	9.20	Linear	Regression	on	Revenue	Using
Transformed	Ad	Expense	(LnAdExp),	notice	that	both	residual	plots
give	identical	information	and	seem	to	show	a	linear	trend	of
residuals	evenly	spread	around	the	expected	value	of	zero,
indicating	that	the	natural-log	transformation	is	effective	in
modeling	the	curvilinear	trend.	This	is	further	evidenced	by	the
scatter	plot	of	the	original	data.	Note	also	that	the	adjusted	R2

increased	to	0.7518	(compared	to	R2adj	=	0.6457	before	the
transformation)	and	the	standard	error	decreased	to	5.96960
(compared	to	7.13262).
Output	9.20	Linear	Regression	on	Revenue	Using	Transformed	Ad	Expense
(LnAdExp)

Root	MSE 5.96960 R-Square 0.7582

Dependent
Mean

37.05000 Adj	R-Sq 0.7518

Coeff	Var 16.11227 	 	

	

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

Intercept 1 14.45638 2.27497 6.35 <.0001



LnAdExp 1 11.72517 1.07421 10.92 <.0001

	

The	p-value	for	slope	indicates	that	the	natural	log	of	AdExpense	is
a	good	predictor	of	Revenue.		Using	the	parameter	estimates,	the
prediction	equation	is:

While	the	slope	has	the	same	interpretation	(change	in	Y	per	unit
change	in	X),	how	do	you	interpret	the	fact	that	as	the	natural	log
of	ADEXPENSE	increases	by	one	unit,	revenue	increases	by
11.72517	($1000s).	Suffice	it	to	say	that	the	analyst	can	simply
explain	that	as	ADEXPENSE	increases,	REVENUE	increases;
however,	REVENUE	increases	at	a	smaller	rate	as	for	larger
amounts	spent	on	advertising.

Now	that	we	have	discussed	diagnostics	when	using	one	predictor,
how	does	that	translate	to	the	case	of	multiple	predictors?	Consider
again	the	Ames	Housing	Case,	with	fit	measures	summarized	earlier
in	Table	9.3	Measures	of	Fit	for	Multiple	Linear	Regression,	where



we	want	to	predict	SALEPRICE	using	the	five	predictors,
GR_LIV_AREA,	FULLBATH_2PLUS,	TOTAL_BSMT_SF,	AGE_AT_SALE,
and	GARAGE_AREA.	In	order	to	assess	the	linear	regression
assumptions,	the	analyst	would	use	Program	9.22	Diagnostics	for
Multiple	Linear	Regression.
Program	9.22	Diagnostics	for	Multiple	Linear	Regression

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	

proc	reg	data=amesreg300

plots(only)=(QQ	residuals	residualbypredicted);

model	SalePrice=	Gr_Liv_Area	Fullbath_2plus	Total_Bsmt_SF

Age_at_Sale	Garage_Area;

run;

Program	9.22	Diagnostics	for	Multiple	Linear	Regression	is
identical	to	the	previous	code	used	for	one	predictor,	with	one
exception;	the	bivariate	fitplot	is	not	requested	for	each	of	the
predictors.		The	output	is	found	in	Output	9.21a	Multiple	Linear
Regression	for	Predicting	SalePrice	through	Output	9.21c	Panel	of
Residual	by	Regressors	for	SalePrice.
Output	9.21a	Multiple	Linear	Regression	for	Predicting	SalePrice

	

Number	of	Observations
Read

300

Number	of	Observations
Used

300

	

Analysis	of	Variance

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

Model 5 3.063503E11 61270068111 308.79 <.0001

Error 294 58335741627 198420890 	 	

Corrected 299 3.646861E11 	 	 	



Total

	

Root	MSE 14086 R-Square 0.8400

Dependent
Mean

154910 Adj	R-Sq 0.8373

Coeff	Var 9.09315 	 	

	

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

Intercept 1 74606 5751.64527 12.97 <.0001

Gr_Liv_Area 1 51.27981 3.41774 15.00 <.0001

Fullbath_2plus 1 5975.69610 2495.63000 2.39 0.0173

Total_Bsmt_SF 1 21.14003 2.96472 7.13 <.0001

Age_at_Sale 1 -511.85215 39.00605 -13.12 <.0001

Garage_Area 1 24.99176 6.07009 4.12 <.0001

Before	interpreting	the	regression	model	in	Output	9.21a	Multiple
Linear	Regression	for	Predicting	SalePrice,	there	must	be	an
assessment	of	the	assumptions.	First,	note	the	residual	by	predicted
plot—specifically	the	x-axis,	representing	by	the	predicted	value,	as
displayed	in	Output	9.21b	Residual	by	Predicted	Plot	and	Q-Q	Plot
of	Residuals	for	SalePrice.	The	predicted	value	is	a	function	of	all
predictors;	therefore,	if	any	deviation	from	linearity	or	equal
variance	exists,	the	analyst	must	investigate	further	what	specific
assumption	is	violated	and	for	which	predictor	(or	predictors).	An
inspection	of	the	plot	seems	to	suggest	that	the	assumptions	of
linearity	and	equal	variance	are	reasonably	met.	Note	also	that	the
Q-Q	plot	suggests	that	the	residuals	are	normally	distributed.

If	the	residual	by	predicted	plot	indicated	issues	concerning
assumptions,	the	analyst	would	review	the	panel	of	residual	by
regressors	for	each	of	the	five	predictors,	as	displayed	in	Output
9.21c	Panel	of	Residual	by	Regressors	for	SalePrice,	in	order	to
diagnose	where	the	problem	(or	problems)	exist.	Once	the	problem
is	diagnosed,	the	analyst	can	proceed	to	the	remedy.	An	inspection



of	the	panel	of	residuals	shows	that	there	are	no	violations,	which
concurs	with	the	conclusions	made	previously	based	upon	Output
9.21b	Residual	by	Predicted	Plot	and	Q-Q	Plot	of	Residuals	for
SalePrice.
Output	9.21b	Residual	by	Predicted	Plot	and	Q-Q	Plot	of	Residuals	for	SalePrice

Output	9.21c	Panel	of	Residual	by	Regressors	for	SalePrice

Studentized	Residuals

Many	regression	books	illustrate	the	use	of	standardized	residual
when	assessing	the	assumptions	of	linear	regression	(Chatterjee	and
Hadi,	2006).	The	studentized	residual,	also	known	as	the
standardized	residual,	is	calculated	using	the	following	formula:



The	patterns	found	in	a	standardized	residual	plot	are	identical	to
those	found	in	a	residual	plot;

however,	the	scale	is	obviously	different.	If	the	residuals	are
normal,	then	95%	of	the	time	the	standardized	residuals	are
expected	to	be	within	-1.96	and	+1.96;	therefore,	the	rule	of
thumb	is	that	the	standardized	residuals	are	expected	to	fall
between	-2	and	+2.	Using	this	fact	with	standardized	residual	plots
makes	interpretation	somewhat	easier.

Let’s	revisit	the	example	where	the	marketing	analyst	wants	to
determine	if	the	advertising	expense	is	related	to	revenue.	Consider
Program	9.23	Residuals	and	Studentized	Residuals	by	AdExpense
for	Saleprice.
Program	9.23	Residuals	and	Studentized	Residuals	by	AdExpense	for	Saleprice

libname	sasba	‘c:\sasba\data’;

data	Revenue;

set	sasba.revenue;

run;

	

proc	reg	data=Revenue;

model	Revenue	=	AdExpense;

output	out=diagnostics	predicted=yhat	residual=residual

stdr=stderr_residual	student=student	;

plot	residual.*adexpense	modelht=3	statht=3;

plot	student.*adexpense	modelht=3	statht=3;

run;

	

data	res;

set	diagnostics;

run;

proc	print	data=res	(obs=5);

var	adexpense	revenue	yhat	residual	stderr_residual	student;

run;

Program	9.23	Residuals	and	Studentized	Residuals	by	AdExpense
for	Saleprice	is	identical	to	the	code	used	previously	for	predicting
revenue,	with	several	additions.	First,	notice	that	the	OUT=	option
in	the	OUTPUT	statement	is	used	to	create	a	temporary	SAS
data,set	called	DIAGNOSTICS,	containing	original	variables	in	the



REVENUE	data	set,	in	addition	to	the	new	variables	created	using
PREDICTED=,	RESIDUAL=,	STDR=,	and	STUDENT=,	to
represent	the	predicted	revenue,	the	residual,	the	standard	error
of	the	residual,	and	the	studentized	residual,	respectively,	to	name
a	few.
The	first	PLOT	statement	requests	the	residual	by	predictor	plot,	as
displayed	in	the	left	plot	of	Output	9.22a	Residual	and	Studentized
Residuals	by	AdExpense	for	SalePrice,	and	is	identical	to	that
displayed	in	Output	9.19a	Linear	Regression	on	Revenue	with
Diagnostics	Panel.	The	second	PLOT	statement	requests	the
studentized	residual	by	predictor	plot,	as	displayed	in	the	right	plot
of	Output	9.22a	Residual	and	Studentized	Residuals	by	AdExpense
for	SalePrice.		The	MODELHT=	and	STATHT=	plot	options	were
added	so	that	the	prediction	equation	and	statistics	included	on	the
plots	are	readable;	otherwise	the	print	size	is	too	small.		Note,
specifically,	that	the	Y-axis	of	the	studentized	residual	usually
ranges	from	-2	to	+2.		
Output	9.22a	Residual	and	Studentized	Residuals	by	AdExpense	for	SalePrice

Finally,	the	PRINT	procedure	is	supplied	to	provide	the	output,	as
displayed	in	Output	9.22b	Residuals	and	Studentized	Residuals	by
AdExpense	for	SalePrice,	so	that	you	can	apply	the	formula.
Consider	observation	1	as	follows:

Observation	1	spent	$1000	in	advertising	(AdExpense=1)	and
experienced	$21,000	in	revenues	(Y=21).	Based	upon	the
estimated	regression	equation,	the	predicted	revenue	for
observation	1	is	$23,420.80	( 	=	23.4208),	resulting	in	a	residual
of	-2.4208.	The	standard	error	of	that	residual	is	6.85749,	resulting



in	a	studentized	residual	=	-2.4208	/	6.85749	=	-0.35301.
Output	9.22b	Residuals	and	Studentized	Residuals	by	AdExpense	for	Saleprice

Obs AdExpense Revenue yhat residual stderr_residual student

1 1 21 23.4208 -2.4208 6.85749 -0.35301

2 1 13 23.4208 -10.4208 6.85749 -1.51962

3 7 45 33.3329 11.6671 7.02928 1.65978

4 14 47 44.8971 2.1029 6.98198 0.30118

5 17 54 49.8532 4.1468 6.87954 0.60277

	

Using	Statistics	to	Identify	Potential	Influential
Observations
Every	regression	analysis	should	be	accompanied	by	an	inspection
of	the	data	for	outliers.	An	outlier	is	an	observation	that	has	a
large	residual	(Chatterjee	and	Hadi,	1986);	in	other	words,	the
observation	has	a	Y	value	that	is	relatively	far	from	the	predicted	Y.
So	why	is	outlier	detection	important?	In	short,	an	outlier	can	be
influential	in	the	sense	that	its	removal	produces	significantly
different	linear	regression	results,	and	consequently,	inferences	to
the	population	can	be	in	error.

So	how	does	the	analyst	detect	outliers?	As	with	any	regression
analysis,	the	inspection	of	data	should,	first,	be	accompanied	by
bivariate	scatter	plots	to	see	if	any	unusual	trends	occur	in	the	data,
including	the	existence	of	outliers.	However,	there	are	many
situations	where	outliers	and/or	influential	observations	exist	but
are	not	easily	identified,	especially	when	multiple	predictors	are
involved.	So	the	analyst	must	supplement	visual	displays	with
regression	diagnostics.

Consider	the	following	generic	housing	data	where	the	analyst	is
interested	in	predicting	sale	price	using	living	area	of	the	house,	as
illustrated	in	Output	9.23	Comparing	Regression	Lines	Based	on
Influence	of	Obs	15,	and	generated	by	Program	9.24	Comparing
Regression	Lines	Based	on	Influence	of	Obs	15.
Program	9.24	Comparing	Regression	Lines	Based	on	Influence	of	Obs	15



data	housing;

input	Example	SqFt	SalePrice		@@;

datalines;

1	1050	175	1	2100	120	1	1050	80		1	2800	170

1	3150	155	1	3000	275	1	6500	370	1	3500	280

1	700		90		1	1750	218	1	3800	325	1	2100	210

1	2450	120	1	3850	270	1	4300	275

2	1050	175	2	2100	120	2	1050	80		2	2800	170

2	3150	155	2	3000	275	2	6500	50		2	3500	280

2	700		90		2	1750	218	2	3800	325	2	2100	210

2	2450	120	2	3850	270	2	4300	275

;

run;

	

proc	sgplot	data=housing;

reg	x=SqFt	Y=SalePrice/group=example;

run;

The	DATA	step	creates	a	temporary	data	set	called	HOUSING	and
reads	in	data	for	the	variables	EXAMPLE,	SQFT,	and	SALEPRICE.
Note	that	the	first	fifteen	observations	have	a	value	of	‘1’	for	the
variable	EXAMPLE	and	the	second	fifteen	observations	have	a	value
of		‘2’	for	the	variable	EXAMPLE.	PROC	SGPLOT	requests	a	scatter
plot	of	SALEPRICE	by	SQFT	and	a	fitted	regression	line	for	each
group,	EXAMPLE=1	and	EXAMPLE=2,	as	illustrated	in	Output
9.23	Comparing	Regression	Lines	Based	on	Influence	of	Obs	15.
Output	9.23	Comparing	Regression	Lines	Based	on	Influence	of	Obs	15



The	solid	line	represents	the	prediction	equation	fitted	to	the	15
observations	represented	by	‘o.’	The	dotted	line	represents	the
prediction	equation	fitted	to	the	15	observations	represented	by
‘+.’		Note	that	14	observations	are	identical	as	indicated	by	the	‘o’
and	‘+’	so	that	the	two	data	sets	differ	only	on	their	fifteenth
observation.	The	fifteenth	observation	in	the	lower	right	corner	has
a	sale	price	of	50	($1000)	with	6500	square	feet;	this	observation	is
considered	influential	in	that	its	inclusion	results	in	a	prediction
line	(the	dotted	line)	that	is	much	different	than	that	prediction
line	(solid	line)	which	has	its	fifteenth	observation	in	the	upper
right	corner.

Notice	that	the	fifteenth	observation	(for	both	data	sets)	is	far,	on
the	X-axis,	from	the	X-values	of	the	remaining	fourteen	points;	as	a
result,	both	observations	are	said	to	have	high	leverage.	It	turns
out	that,	in	general,	an	observation	with	high	leverage	has	a	larger
influence	on	the	prediction	line	if	it	is	also	an	outlier,	that	is,	when
its	Y-value	is	far	from	the	Y-values	of	the	remaining	points.	The
deviation	on	the	Y-axis	is	referred	to	as	discrepancy.

In	order	to	identify	‘problem’	observations	in	a	data	set,	the	analyst
will	review	various	statistics	for	each	observation	to	determine	if
an	observation	has	any	of	the	following	three	characteristics
(Chatterjee	and	Hadi,	2006):



1.						High	Leverage—when	an	observation	has	an	extreme	X-
value	that	deviates	from	the	X-values	of	the	other	points	as
represented	by	the	 .

2.			High	Discrepancy	(distance	squared)—when	an	observation
has	an	extreme	Y-value	that	deviates	from	the	Y-values	of	the
other	points,	where	its	residual	is	large;	this	observation	is
considered	an	outlier.

3.			Influence—the	extent	to	which	regression	estimates	change
once	the	outlier	is	removed.	This	measure	reflects	the
combination	of	leverage	and	discrepancy.

There	are	statistics	that	represent	each	of	the	three	characteristics
(leverage,	discrepancy,	and	influence),	and	when	generating	the
regression	diagnostics,	these	statistics	are	provided	for	every
observation.	Consequently,	these	statistics	are	referred	to	as	case
statistics,	or	deletion	statistics.		So,	for	example,	if	you	have	50
observations,	or	cases,	in	your	regression	analysis,	you	will	have	50
sets	of	statistics.	Following	we	will	discuss	each	set	of	statistics.

Leverage	(hii)

Leverage	indicates	how	far	an	observation’s	X	value	is	from	the
mean	of	the	Xs	calculated	from	all	observations,	and	is	basically
used	to	determine	if	an	observation	is	considered	an	outlier	on	the
X-axis.	The	formula	is

where	hii	is	the	leverage	for	observation	i,	n	is	the	sample	size,	Xi	is

the	value	of	X	for	observation	i,	 	is	a	number

that	measures	the	variation	across	all	Xs.	Note	that	leverage	is
based	upon	the	difference	between	an	observation’s	vector	of	X’s
and	the	centroid	of	X’s.

If	an	Xi	has	the	same	value	as	 ,	then	its	leverage	is	1/n;	in	this
case,	leverage	is	a	function	of	only	sample	size.	In	fact,	as	sample
size	gets	larger,	1/n	approaches	zero,	and	the	leverage	approaches
zero	as	well.	In	other	words,	if	an	observation	has	an	X-value	close



to	the	mean	( ,		then	an	observation	has	low	leverage;	and,	for
large	sample	sizes,	the	leverage	is	reduced	further.

As	X	gets	further	from	the	mean	( ,	the	leverage	increases.	The
range	of	the	leverage	value	is	[0,	1];	in	short,	the	maximum	value
of	leverage	is	1.0,	when	n=1	and	Xi	=	 ,	and	the	minimum	value
of	leverage	is	0	as	n→∞.		(as	sample	size	gets	larger).

Observations	with	higher	leverage	(X	values	further	from	 )
potentially	have	large	influence	on	the	regression	results;		however,
leverage	alone	does	not	tell	the	whole	picture.	Just	because	an
observation	has	a	‘large’	leverage	does	not	mean	it	is	problematic,
but	should	be	flagged	for	further	review.

The	rule	of	thumb	for	identifying	observations	with	high	leverage
(Belsley,	Kuh,	and	Welsch,	1980)	is	as	follows:	

	then	the	observation	has	high	leverage,

where	k	=	number	of	predictors	and	n=sample	size

Discrepancy	(RSTUDENTi)

Now	consider	a	measure	that	indicates	how	far	an	observation’s	Y
value	is	from	the	prediction	line	( ).	As	displayed	in	Output
9.23		Comparing	Regression	Lines	Based	on	Influence	of	Obs	15,
the	influential	observation	‘pulls’	the	estimated	regression	equation
closer	to	it	so	that	the	residual,	Yi- ,	is	deflated.	So	this	deflated
value	of	the	residual	may	mask	the	true	effect	of	the	influential
observation.	

Therefore,	when	diagnosing	potential	influential	observations,	an
‘external’	method	is	applied.		This	requires	using	the	studentized
deleted	residual	for	each	observation,	sometimes	referred	to	as	the
externally	studentized	residuals	(Belsley,	Kuh,	and	Welsch,
1980).	The	n	studentized	deleted	residuals	for	a	data	set	are
calculated	as	follows:

1.						Delete	observation	1	and	conduct	the	regression	analysis
using	the	remaining	(n-1)	observations,	to	get	the	equation	for

	and	value	of	MSE(1).

2.						For	observation	1,	plug	its	X	value	into	the	equation	fitted	in



#1	to	get	the	value	of	 ,	which	is	the	predicted	value	for
observation	1	using	the	equation	with	observation	1	deleted.

3.						For	observation	1,	calculate	the	deleted	residual,	e1(1),

using	 ,	where	Y1	is	the	actual	Y	value	for
observation	1.In	general,	ei(i)	is	the	residual	of	observation	i
using	the	equation	with	i	deleted.

4.						Repeat	steps	1	through	3	for	observation	2	to	get	the	deleted
residual,	 .

5.						Continue	the	steps	through	observation	n	to	get	the	deleted
residual,	 .

6.			For	each	observation,	calculate	the	studentized	deleted
residual,	by	dividing	its	deleted	residual	by	the	standard	error
of	the	deleted	residual.The	formula	is	as	follows:
							

where	MSE(i)	is	the	mean-square-error	with	observation	i
deleted.

This	externally	studentized	residual	(ti),	referred	to	in	SAS	as
RSTUDENT,	is	a	deletion	statistic.		The	criterion	for	identifying
observations	with	high	discrepancy	is	based	upon	the	idea	that
approximately	95%	of	t-values	fall	between	-2.0	and	+2.0.;
therefore,	the	rule	of	thumb	for	identifying	highly	discrepant
observations	is	as	follows:

	,			then	the	observation	has	high	discrepancy

Now	that	we	have	established	the	criteria	for	both	high	leverage
and	high	discrepancy,	let’s	consider	how	both	of	those	are	used	to
identify	observations	that	are	influential.

Influence

Measures	of	influence	use	both	leverage	and	discrepancy	to	provide
information	about	how	the	regression	equation	will	change	if
observation	i	were	removed	from	the	data	set,	and	are,	therefore,
referred	to	as	deletion	statistics.	There	are	global	measures	of



influence	(which	include	Cook’s	D	and	DFFITS)	and	local	measures
of	influence	(DFBETAS).	

The	first	global	measure	of	influence	is	Cook’s	D	(Cook,	1977)	and
is	defined	as	follows:

where	 	is	the	difference	in	the	predicted	Y	based	upon
the	model	with	all	observations	and	the	model	with	observation	i
deleted,	k	is	the	number	of	predictors,	MSE	is	the	mean-square-
error	for	the	model	with	all	observations,	and	n	is	the	sample	size.	

If	observation	i	is	influential,	where	inclusion	of	the	observation
results	in	a	regression	line	that	is	relatively	far	from	the	other
points	and	minimizes	the	fit,	then	the	numerator	of	Cook’s	D	will
be	relatively	large,	resulting	in	a	relatively	large	Cook’s	D	value.	If
observation	i	has	no	influence,	the	numerator	corresponds	to	the
least	squares	criterion	for	fitting	the	line	and	has	the	minimum
possible	value;	therefore,	Cook’s	D	is	at	a	minimum.	Note	that	the
smallest	possible	value	of	Cook’s	D	is	zero	being	that	it	can	never
be	negative.

There	are	several	rules	of	thumb	for	identifying	potential
influential	observations	using	Cook’s	D:

								(Cook	and	Weisberg	1982)

								(Bollen	and	Jackman,	1990)

Chatterjee	and	Hadi	(2006)	make	several	suggestions	with	respect
to	cutoff	values.	First,	they	suggested	using	a	critical	F	value,	using
.50	level	of	significance	with	k	and	(n-k)	degrees	of	freedom	for	a
sample	size	of	n	with	k	predictors.	Secondly,	for	ease	of	use,	they
concur	with	Cook	and	Weisberg’s	suggested	cutoff	of	1.0.	

Finally,	they	suggest	an	approach	that	departs	from	the	more	rigid
cutoff	by	taking	into	account	the	size	of	an	observation’s	Cook’s	D
relative	to	the	Cook’s	D	of	all	other	observations.	This	approach
requires	either	a	ranking	or	plotting	of	the	Cook’s	D	for	comparison
purposes.	In	general,	if	the	values	are	all	the	same,	then	the	analyst
can	conclude	that	no	observations	are	influential.	If	there	are



values	that	deviate	significantly	from	the	other	values,	then	those
should	be	flagged	for	further	inspection.	Of	course,	this	approach
relies	heavily	on	experience	and	subject-matter	expertise	in
determining	what	values	constitute	a	large	deviation.

A	second	measure	of	global	influence	is	the	DFFITS	(Welsch	and
Kuh,	1977)	and	is	calculated	for	each	observation	i	as	follows:

Notice,	from	the	latter	formula,	that	as	discrepancy	(ti)	increases,
with	leverage	(hii)	constant,	DFFITS	increases	indicating	that
observation	i	is	influential;	for	a	fixed	discrepancy	(as	measured	by
ti),	as	leverage	increases,	the	term	 	inceases,
resulting	in	an	increase	in	DFFITS,	or	influence.	Finally,	the	largest
impact	is	when	both	discrepancy	(ti)	and	leverage	are	large.

The	rule	of	thumb	for	identifying	potential	influential	observations
using	DFFITS	(Belsley,	Kuh,	and	Welsch,	1980)	is:

Where	k	=	the	number	of	predictors	and	n	=	sample	size.	As
stated	previously,	the	analyst	should	also	consider	looking	at	the
values	of	DFFITS	to	see	if	any	values	deviate	significantly	from	the
others,	as	opposed	to	relying	on	a	hard	rule.

Let’s	revisit	the	generic	housing	case	from	Output	9.23	Comparing
Regression	Lines	Based	on	Influence	of	Obs	15	which	includes	the
one	observation	that	seems	to	be	influential.	Consider	Program
9.25	Identifying	Suspicious	Observations	Using	Measures	of
Influence	for	generating	measures	of	leverage,	discrepancy,	and
influence	for	identifying	suspicious	observations:
Program	9.25	Identifying	Suspicious	Observations	Using	Measures	of	Influence

data	housing;

input	ID	SqFt	SalePrice		@@;

datalines;

1		1050	175	2		2100	120	3		1050	80		4		2800	170		4	3150	155

6		3000	275	7		6500	50		8		3500	280	9		700		90		10	1750	218



11	3800	325	12	2100	210	13	2450	120	14	3850	270	15	4300	275

;

run;

	

proc	reg	data=housing

plots	(only)=(rstudentbyleverage	cooksd	dffits);

model	SalePrice	=	SqFt;

output	out=diagnostics

h=leverage	rstudent=rstudent	cookd=cooksd	dffits=dffits;

run;

	

data	review;

set	diagnostics;

flag=0;	n=15;	k=1;	cooksd_cut	=	4/n;	h_cut=2*(k+1)/n;
dffits_cut=2*sqrt((k+1)/n);

if	cooksd	>	cooksd_cut	then	flag+1;

if	abs(dffits)	>	dffits_cut	then	flag+1;

if	abs(rstudent)>	2	then	flag+1;

if	leverage	>		h_cut	then	flag+1;

run;

	

proc	print	data=review;

var	ID	SalePrice	SqFt	leverage	rstudent	cooksd	dffits	flag;

run;

The	DATA	step	creates	a	temporary	data	set	called	HOUSING	and
reads	in	data	for	the	variables	ID,	SQFT,	and	SALEPRICE.	PROC
REG	with	the	MODEL	statement	requests	a	linear	regression	for
predicting	SALEPRICE	by	SQFT.	The	PLOTS(ONLY)=	option
requests	visual	displays	for	RSTUDENT	by	LEVERAGE,	COOKSD,
and	DFFITS.	The	OUTPUT	statement	with	the	OUT=option
requests	that	the	listed	deletion	statistics	are	saved	to	a	temporary
SAS	data	set	called	DIAGNOSTICS	for	further	review.	

The	second	DATA	step	creates	a	temporary	data	set	called	REVIEW
where	the	cutoffs	for	each	deletion	statistic	are	computed	and	a
counter	variable	called	FLAG	is	incremented	by	1	every	time	an
observation	is	flagged	for	exceeding	the	cutoff	for	the	deletion
statistic.	Finally,	the	PRINT	procedure	is	included	so	that	the
deletion	statistics	can	be	reviewed.	The	output	can	be	found	in



Output	9.24a	Linear	Regression	Output	for	SalePrice	with
Influential	Observation	through	Output	9.24d	Deletion	Statistics	for
Detecting	Influence.

Before	reviewing	the	output,	let’s	first	determine	the	cutoff	values
for	each	of	the	deletion	statistics:

Leverage	cutoff:							 	=	0.2667

Rstudent:																		

Cook’s	D:																	

DFFITS:																			

First,	note	that	the	output	seems	to	indicate	that	square	footage	is
not	a	good	predictor	(p-value	=	0.4775)	and	the	fit	is	very	poor
with	R2adj	=	-0.0344.	However,	we	know	that	this	is	because
observation	15	is	influential.	Knowing	that,	let’s	review	the
remaining	output	to	see	how	the	deletion	diagnostics	will	aid	in
identifying	observation	15	as	influential.
Output	9.24a	Linear	Regression	Output	for	SalePrice	with	Influential	Observation

Root	MSE 86.64727 R-Square 0.0395

Dependent
Mean

187.53333 Adj	R-Sq -0.0344

Coeff	Var 46.20366 	 	

	

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

Intercept 1 155.80562 48.80515 3.19 0.0071

SqFt 1 0.01130 0.01545 0.73 0.4775

	

Consider	first	Output	9.24b	Leverage	by	RStudent	Plot	for	detecting
leverage	and	discrepancy.	The	X-axis	represents	leverage	and	has



the	vertical	reference	line	at	0.2667;	therefore,	any	observation	to
the	right	of	that	line	has	high	leverage.	One	observation,	indicated
by	the	triangle,	has	high	leverage.

The	Y-axis	represents	the	RStudent	values	which	measure
discrepancy	and	have	two	horizontal	reference	lines	at	-2	and	+2
indicating	that	any	observation	falling	outside	of	those	values	has
high	discrepancy.	Again,	one	observation,	indicated	by	the	triangle,
has	its	RStudent	value	below	-2.		This	observation	is	a	great
candidate	to	review	for	possible	influence	on	the	regression	results.
Output	9.24b	Leverage	by	RStudent	Plot

To	further	identify	influence,	the	analyst	can	inspect	the	plots
provided	in	Output	9.24c	Cook’s	D	and	DFFITS	Plots	for	Detecting
Influence.	Consider	first	the	plot	of	Cook’s	D.	The	cutoff	for	Cook’s
D	is	0.2667	as	shown	by	the	horizontal	reference	line.		The	X-axis
identifies	the	observation	number.	Observation	7	is	determined	to
have	influence	because	its	Cook’s	D	exceeds	the	cutoff.	Similarly,
Observation	7	is	shown	to	have	influence	because	its	DFFITS		falls
outside	of	the	range	of	±	0.7303.
Output	9.24c	Cook’s	D	and	DFFITS	Plots	for	Detecting	Influence



The	specific	values	of	the	deletion	statistics	for	Observation	7	can
be	found	in	Output	9.24d	Deletion	Statistics	for	Detecting
Influence.	In	particular,	Observation	7	has	exceeded	four	of	the
displayed	deletion	statistics	(flag=4)	with	leverage	=	0.50061	>
0.2667,	Rstudent	=	-4.82064	<	-2.0,	Cook’s	D	=	4.29699	>
0.2667,	and	DFFITS	=	-4.82652	<	-0.7303.	Also	note	that	while
the	cutoffs	were	used	here	to	diagnose	influence,	the	fact	that	all	of
the	deletion	statistics	for	Observation	7	deviated	from	the	deletion
statistics	of	the	other	observations,	is	evidence	enough	that
Observation	7	is	influential.
Output	9.24d	Deletion	Statistics	for	Detecting	Influence

	

Obs ID SalePrice SqFt leverage Rstudent cooksd dffits flag

1 1 175 1050 0.16484 0.08890 0.00084 0.03950 0

2 2 120 2100 0.08255 -0.70338 0.02316 -0.21099 0

3 3 80 1050 0.16484 -1.11780 0.12098 -0.49660 0

4 4 170 2800 0.06667 -0.20071 0.00155 -0.05364 0

5 4 155 3150 0.07042 -0.42188 0.00720 -0.11611 0

6 6 275 3000 0.06786 1.02110 0.03783 0.27550 0

7 7 50 6500 0.50061 -4.82064 4.29699 -4.82652 4

8 8 280 3500 0.08196 1.02104 0.04638 0.30508 0

9 9 90 700 0.20785 -0.95250 0.11988 -0.48791 0

10 10 218 1750 0.10219 0.50149 0.01519 0.16919 0

11 11 325 3800 0.09806 1.62865 0.12792 0.53700 0

12 12 210 2100 0.08255 0.35440 0.00606 0.10631 0

13 13 120 2450 0.07071 -0.74722 0.02199 -0.20612 0



14 14 270 3850 0.10130 0.85121 0.04172 0.28577 0

15 15 275 4300 0.13761 0.86891 0.06139 0.34710 0

If	the	analyst	does	not	want	to	create	a	temporary	data	set	with
diagnostic	information,	but	instead	wants	a	simple	table,	the
INFLUENCE	option	can	be	used	in	MODEL	statement	which
requests	the	deletion	statistics	suggested	by	Belsley,	Kuh,	and
Welsch	(1980).	The	option	is	used	as	follows:
model	SalePrice	=	SqFt/influence;

The	resulting	output	is	displayed	in	Output	9.25	Influence	Statistics
Using	the	INFLUENCE	Option	which	gives	identical	information	for
flagging	possible	influential	observations.	Keep	in	mind	that	the
Hat	Diag	H	column	in	the	output	corresponds	to	the	leverage.
Using	the	previously	defined	cutoffs,	the	analyst	can	see	that
Observation	7	should	be	investigated	further	for	possible	influence.
(Note:	DFBETAS	will	be	discussed	in	the	next	section).
Output	9.25	Influence	Statistics	Using	the	INFLUENCE	Option

Output	Statistics

Obs Residual RStudent
Hat	Diag

H
Cov
Ratio DFFITS

DFBETAS

Intercept SqFt

1 7.3248 0.0889 0.1648 1.4034 0.0395 0.0386 -0.0305

2 -59.5449 -0.7034 0.0826 1.1799 -0.2110 -0.1692 0.0926

3 -87.6752 -1.1178 0.1648 1.1527 -0.4966 -0.4854 0.3832

4 -17.4580 -0.2007 0.0667 1.2490 -0.0536 -0.0248 0.0002

5 -36.4145 -0.4219 0.0704 1.2259 -0.1161 -0.0280 -0.0268

6 85.2811 1.0211 0.0679 1.0658 0.2755 0.0928 0.0365

7 -179.2843 -4.8206 0.5006 0.2725 -4.8265 3.1863 -4.4937

8 84.6289 1.0210 0.0820 1.0822 0.3051 0.0090 0.1318

9 -73.7187 -0.9525 0.2079 1.2806 -0.4879 -0.4840 0.4021

10 42.4117 0.5015 0.1022 1.2541 0.1692 0.1513 -0.0997

11 126.2376 1.6287 0.0981 0.8727 0.5370 -0.0671 0.3038

12 30.4551 0.3544 0.0826 1.2529 0.1063 0.0852 -0.0466

13 -63.5014 -0.7472 0.0707 1.1531 -0.2061 -0.1356 0.0493

14 70.6724 0.8512 0.1013 1.1614 0.2858 -0.0422 0.1671



15 70.5854 0.8689 0.1376 1.2045 0.3471 -0.1107 0.2492

The	deletion	statistics	discussed	so	far	are	used	to	diagnose
influence,	in	general,	and	are	referred	to	as	global	measures.		In	the
previous	example,	where	we	determined	that	Observation	7	was
influential,	it	was	obvious	from	the	scatter	plot	that	the	observation
had	an	influence	on	both	the	slope	of	that	one	predictor	and	its
intercept.	

When	multiple	predictors	are	involved,	the	‘location’	of	the
influence	is	usually	not	obvious.		It	could	be	that	an	observation	is
influential	on	b1	because	of	its	value	on	X1,	but	has	no	influence	on
the	other	parameter	estimates	with	respect	to	its	values	on	X2	nor
X3	nor	…	nor	Xk.	The	analyst	must	dig	deeper	to	find	exactly	where
the	influence	occurs	and	must	use	local	measures	of	influence,
referred	to	as	DFBETAS.	

DFBETAS	are	computed	for	each	observation	i	and	each	(k+1)
parameter,	including	the	intercept	to	see	if	the	deletion	statistic
exceeds	the	cutoff.		The	formula	for	the	DFBETASij,	which	measures
the	influence	of	observation	i	on	parameter	j,	is	defined	as:

where	bj	is	the	slope	for	parameter	j	using	all	observations,	bj(i)	is
the	slope	for	parameter	j	with	observations	i	deleted,	and	SEbj(i)	is
the	standard	error	of	the	jth	parameter	estimate	with	observation	i
deleted.

The	cutoff	value	for	DFBETAS	is:							

For	the	hypothetical	housing	example,	the	cutoff	is:	

.	To	get	a	visual	display,	the

analyst	will	add	DFBETAS	to	the	PLOTS	statement.	The
INFLUENCE	option	is	used	to	get	a	listing	of	the	deletion	statistics,
including	the	DFBETAS	for	the	slope	and	the	intercept,	as
illustrated	in	Program	9.26	DFBETA	Plots	for	Assessing	Local
Influence.
Program	9.26	DFBETA	Plots	for	Assessing	Local	Influence



data	housing;

input	ID	SqFt	SalePrice		@@;

datalines;

1		1050	175	2		2100	120	3		1050	80		4		2800	170		4	3150	155

6		3000	275	7		6500	50		8		3500	280	9		700		90		10	1750	218

11	3800	325	12	2100	210	13	2450	120	14	3850	270	15	4300	275

;

run;

	

proc	reg	data=housing

plots	(only)=(rstudentbyleverage	cooksd	dffits	dfbetas);

model	SalePrice	=	SqFt/influence;

run;

The	output	is	displayed	in	Output	9.26	DFBETA	Plots	for	Assessing
Local	Influence	and	shows	the	value	of	the	DFBETAS	for	each	of
the	15	observations	for	both	the	intercept	(left	panel)	and	the	slope
for	SQFT	(right	panel).		Note	for	both	panels	the	reference	lines
show	the	cutoffs	of	±0.5614.		

A	large	positive	DFBETA	on	the	intercept	panel	shows	that	the
inclusion	of	Observation	7	has	a	large	positive	influence	on	the
intercept	(pushes	the	intercept	up);	a	large	negative	DFBETA	on	the
right	panel	shows	that	the	inclusion	of	Observation	7	has	a	large
negative	influence	on	the	slope	(pushes	the	slope	downward).	See
also	in	Output	9.25	Influence	Statistics	using	the	INFLUENCE
Option	that	the	DFBETAS	for	Observation	7	are	+3.1863	and
-4.4937	for	the	intercept	and	slope,	respectively.
Output	9.26	DFBETA	Plots	for	Assessing	Local	Influence



Consider	now	the	Ames	Housing	Case	where	we	are	interested	in
predicting	SALEPRICE	using	GR_LIV_AREA	and	AGE_AT_SALE.	The
cutoffs	for	two	predictors	(k=2)	and	300	houses	(n=300)	are
defined	as	follows:

Leverage	cutoff:									 	=	0.0200

Rstudent:																				

Cook’s	D:																			

DFFITS:																					

Program	9.27	Regression	Diagnostics	for	the	Ames	Housing	Case	is
identical	to	the	previous	program	with	two	exceptions.	The	flag	is
incremented	only	if	the	observation	exceeds	either	the	Cook’s	D	or
DFFITS;	the	observation	is	printed	if	it	exceeds	at	least	one	of	the
cutoffs	(where	flag	>	0),	as	shown	in	Output	9.27b	Observations
Flagged	as	Influential	for	Ames	Housing.
Program	9.27	Regression	Diagnostics	for	the	Ames	Housing	Case

libname	sasba	‘c:\sasba\ames’;

data	amesreg300;

set	sasba.amesreg300;

run;

	



proc	reg	data=amesreg300

plots	(only)=(rstudentbyleverage	cooksd	dffits	dfbetas);

model	SalePrice=	Gr_Liv_Area	Age_at_Sale/influence;

output	out=diagnostics

h=leverage	rstudent=rstudent	cookd=cooksd	dffits=dffits;

run;

	

data	review;

set	diagnostics;

flag=0;	n=300;	k=2;	cooksd_cut	=	4/n;	h_cut=2*(k+1)/n;
dffits_cut=2*sqrt((k+1)/n);

if	cooksd	>	cooksd_cut	then	flag+1;

if	abs(dffits)	>	dffits_cut	then	flag+1;

if	flag>0;

run;

	

proc	sort	data=review;

by	cooksd;

run;

	

proc	print	data=review;

var	SalePrice	Gr_Liv_Area	Age_at_Sale

leverage	rstudent	cooksd	dffits	flag;

run;

A	review	of	the	leverage	by	Rstudent	plot,	Output	9.27a	Influence
Panels	and	Influential	Observations	for	Ames	Housing	shows	one
observation	(indicated	by	the	triangle)	that	has	both	high	leverage
and	high	discrepancy.	The	line	listing	shows	that	Observation	15
exceeds	both	cutoffs.	

Of	course	because	the	sample	size	is	much	larger	than	our
hypothetical	example,	the	cutoffs	are	much	smaller.	As	a	result,	we
have	15	observations	that	are	flagged	for	potential	influence	using
the	Cook’s	D	as	shown	in	Output	9.27a	Influence	Panels	and
Influential	Observations	for	Ames	Housing.
Output	9.27a	Influence	Panels	and	Influential	Observations	for	Ames	Housing



Output	9.27b	Observations	Flagged	as	Influential	for	Ames	Housing

	

Obs SalePrice Gr_Liv_Area Age_at_Sale leverage rstudent cooksd dffits flag

1 130000 1630 54 0.008304 -2.18847 0.013199 -0.20026 1

2 147000 1143 1 0.017198 -1.52639 0.013530 -0.20192 2

3 228500 1689 17 0.008466 2.22282 0.013878 0.20539 2

4 227000 1573 7 0.009332 2.14214 0.014236 0.20790 2

5 228000 1592 13 0.007898 2.38975 0.014918 0.21322 2

6 165400 1656 5 0.010616 -2.13102 0.016051 -0.22074 2

7 79000 1096 84 0.010899 -2.12194 0.016345 -0.22274 2

8 154900 1343 88 0.013815 1.89493 0.016622 0.22428 2

9 139900 1428 106 0.026097 1.39652 0.017364 0.22860 2

10 153575 1396 92 0.016793 1.78254 0.017959 0.23296 2

11 153900 1416 93 0.017778 1.77072 0.018782 0.23822 2

12 220000 1346 2 0.012149 2.35169 0.022331 0.26080 2

13 94000 1020 135 0.041024 1.27795 0.023239 0.26432 2



14 240000 1578 2 0.010966 2.74553 0.027258 0.28909 2

15 135000 1174 107 0.021922 2.09310 0.032362 0.31336 2

	

Recommendations	for	Handling	Influential	Observations

First,	all	observations	that	exceed	any	of	the	deletion	statistics
should	be	flagged	for	further	inspection.	Once	those	are	flagged,
the	first	step	is	to	verify	that	the	variables	values	are	valid	and	not
the	result	of	recording	errors.	Once	all	errors	are	resolved,	special
care	should	be	taken	to	further	resolve	the	problem.

One	strategy	involves	digging	deeper	to	see	if	the	outliers	have	any
similarities.	For	example,	it	could	be	that	most	of	the	flagged
houses	come	from	a	specific	neighborhood	where	the	linear
regression	equation	does	not	account	for	the	fact	that	location
drives	up	the	sale	price.	In	that	case,	the	analyst	could	consider
including	a	dummy	variable	code	as	1	if	the	house	is	in	the
neighborhood	or	0	otherwise,	to	see	if	that	variable	is	significant
and	resolves	the	existence	of	influential	observations.

It	could	be	that	the	observation	is	unusual.	For	example,	everyone
knows	of	a	neighborhood	with	a	huge	house	having	extraordinary
amenities	that	costs	several	times	more	than	the	other
houses.		Obviously	this	observation	should	be	removed.

The	analyst	could	try	running	the	regression	analysis	with	and
without	the	observation	to	see	the	extent	of	the	influence	(never
delete	multiple	observations	at	the	same	time	as	the	source	of	the
impact	will	be	confounded).	If	a	low	cutoff	value	is	used	and	most
observations	have	no	obvious	impact	on	the	regression	coefficients
after	their	removals,	then	you		should	use	a	higher	cutoff	value
(Bollen	&	Jackman,	1990).	

As	a	last	resort,	the		analyst	may	exclude	an	observation	(or
observations);	in	that	case,	the	reason	for	deletion	and	the	impact
should	be	reported	to	ensure	maximized	transparency.	

As	a	final	note,	consider	the	fact	that	outliers	can	influence	the
assumptions.	For	example,	if	you	fit	a	straight	line	to	curved	data,
observation	on	either	ends	of	the	X	axis	are	further	from	the	line,
therefore	showing	up	as	highly	discrepant.	Fitting	a	curved	line	will
eliminate	discrepancy	in	that	case.		Also,	outliers	can	contribute	to



violation	of	the	equal	variance	assumption.	Therefore,	outliers
should	be	investigated	in	conjunction	with	the	assessment	of
assumptions.

Concluding	Remarks
Many	topics	have	been	covered	to	ensure	the	analyst	has	the
necessary	tools	to	conduct	a	regression	analysis	for	both
explanation	and	prediction	purposes.	The	tools	include	how	to
construct	the	models	and	ways	to	ensure	their	validity.	After	a
thorough	review,	the	analyst	may	ask	the	question:	in	which	order
should	these	tools	be	applied?

Should	the	analyst	fit	the	model,	and	then	look	for	collinearity,
outliers,	and	violations	of	assumptions?		Or	does	the	existence	of
collinearity,	outliers,	and/or	violations	to	assumptions	affect	the
modeling	process—in	other	words,	should	the	assessment	of	the
various	issues	be	done	first,	before	model	building?		

Remember	our	initial	example	of	an	outlier	showed	where	its
influence	deflated	the	slope	so	that	the	inferences	showed	no
significant	relationship	between	X	and	Y.	Also,	in	the	case	of
collinearity,	the	significance	of	one	potential	predictor	may	be
masked	by	the	existence	of	another,	ultimately	affecting	the	model
building	process.

Keeping	these	considerations	in	mind,	we	suggest	the	following
steps	for	carrying	out	a	linear	regression	project:

1.						Always	conduct	exploratory	analyses	to	produce	univariate
and	bivariate	descriptive	statistics	and	data	visualizations	as	a
way	to	familiarize	yourself	with	the	data	and	to	warn	of	any
data	problems	that	may	jeopardize	the	validity	of	your
project.

2.						As	a	preliminary	analysis,	consider	data	reduction	methods,
mentioned	earlier	in	this	book,	to	eliminate	predictors	that
may	be	highly	correlated	as	a	way	to	mitigate	redundancy
and	collinearity.

3.						Review	bivariate	analyses,	including	simple	linear
regression,	to	assess	any	violations	to	the	linearity	or	equal
variance	assumption	so	that	predictors	can	be	transformed	if



necessary.	If	any	transformations	are	needed,	care	should	be
taken	in	selecting	the	correct	form	(natural	log,	square	root,
quadratic,	etc.).

4.						Once	the	data	is	in	an	adequate	form	(after	completing	steps
2	and	3	above),	the	analyst	is	ready	for	the	model	building
process.	Once	candidate	models	are	considered,	the	analyst
should	once	more	consider	verifying	the	assumptions	and
checking	for	outliers	and	collinearity.

In	the	age	of	big	data,	the	analyst	should	consider	carrying	out
steps	1	through	4	above	on	a	training	data	set,	and	then	apply	the
resulting	candidate	models	on	an	external	data	set	to	validate	an
assess	which	model	performs	best.	For	more	information	on	the
validation	process	for	building	classifiers,	refer	to	Chapter	11,
“Measure	of	Model	Performance.”

Finally,	when	the	purpose	of	linear	regression	is	prediction,	many
times	the	analyst	prefers	to	develop	a	model	and	save	it	for	future
use.	In	this	case,	the	analyst	can	use	the	STORE	statement	within
the	REG	procedure	to	save	the	model	in	a	binary	file	format,
followed	presumably	later	by	the	RESTORE	option	and	SCORE
statement	within	the	PLM	procedure	when	new	data	needs	to	be
scored.

The	purpose	of	the	PLM	procedure	is	to	recall	stored	models	from
various	statistical	procedures	and	apply	those	models	to	new	data.
While	we	will	not	cover	PLM	in	the	context	of	linear	regression,
you	are	referred	to	Chapter	10	,	“Logistic	Regression	Analysis,”	for
a	discussion	of	the	PLM	procedure	and	how	it	is	used	for	model
production.

Key	Terms

adjusted	R2

all-possible	subsets

analysis	of	variance	(ANOVA)

autocorrelated

backward	elimination



Bonferroni	correction

case	statistics

coefficient	of	determination	(R2)

collinearity

condition	number	(C)

confidence	interval	for	the	slope

Cook’s	D

correlation	coefficient.	

deleted	residual

deletion	statistic

dependent	variable

discrepancy

design	variables

DFBETAS

DFFITS

eigenvalue	(λj)

eigenvector

error	in	prediction	(e)

error-sum-of-squares	(SSE)

externally	studentized	residuals

forward	selection

full	model

general	linear	model	(GLM)

homoscedasticity

independent	variable

influential

least	squares	criterion

leverage



listwise	deletion

Mallows’	Cp

mean-square	(MS)

mean-square-error	(MSE)

mean-square-error	(MSE)

mean-square-regression	(MSR)

multiple	linear	regression

ordinary	least	squares	(OLS)

orthogonal

outlier

outliers

overparameterization

pairwise	deletion

parsimony

prediction	equation

predictor

principal	component

reduced	model

redundancy

reference	group	

regression	diagnostics.

regression-sum-of-squares	(SSR)

relevancy

residual	analysis

residual	plots

residuals

restriction	of	range

r-square



scatter	plot

selection	criterion

sequential	searches

simple	linear	regression

squared	semi-partial	correlation

standard	error	of	the	regression	(Se)

standard	error	of	the	residual

standardized	residual

stepwise	selection

stored	model

studentized	deleted	residual

studentized	residual

tolerance	

total-sum-of-squares	(SST)

t-test	of	slope

variance	inflation	factor	(VIF)

	



Chapter	Quiz
1.						Which	of	the	following	is	an	assumption	of	linear	regression?

a.						The	parameters	enter	the	model	equation	linearly.

b.						The	residuals	have	a	normal	distribution.

c.						The	variance	of	the	outcome	is	equal	across	all	values	of
the	predictor.

d.						All	of	the	above.

e.						None	of	the	above.

2.						Suppose	you	have	a	model	r-square=.84	and	adjusted	r-
square=.75.	Which	statement	below	best	explains	which
value	you	should	report?

a.						Report	either	r-square	or	adjusted	r-square	as	both	values
are	valid.

b.						Report	only	r-square	because	it	is	most	often	reported	in
prior	research.

c.						Report	only	adjusted	r-square	because	it	is	less	influenced
by	the	number	of

predictors	in	the	model.

d.						Report	none	of	the	values	as	long	as	the	slope	is
considered	zero.

e.						None	of	the	above	statements	is	true.

3.						Which	of	the	following	MODEL	statements	will	provide
Mallows’	Cp	for	model	selection?

a.						model	SalePrice	=	Gr_Liv_Area	Total_Bsmt_SF

Lot_Area	Age_At_Sale	High_Kitchen_Quality

/selection=cp;

b.						model	SalePrice	=	Gr_Liv_Area	Total_Bsmt_SF

Lot_Area	Age_At_Sale	High_Kitchen_Quality

/best=cp;



c.						model	SalePrice	=	Gr_Liv_Area	Total_Bsmt_SF

Lot_Area	Age_At_Sale	High_Kitchen_Quality

/plot=cp;

d.							model	SalePrice	=	Gr_Liv_Area	Total_Bsmt_SF

Lot_Area	Age_At_Sale	High_Kitchen_Quality

/cp;

e.						None	of	the	above.

4.						Which	of	the	following	statements	is	true	about	PROC	REG
and	PROC	GLMSELECT?	

a.						PROC	GLMSELECT	can	be	used	to	select	variables,
whereas	PROC	REG	does	not	provide	options	for	variable
selection.		

b.						PROC	REG	and	PROC	GLMSELECT	both	provide	options
in	the	MODEL	statement	for	outlier	detection.

c.						PROC	REG	and	PROC	GLMSELECT	provide	options	in	the
MODEL	statement	for	best	subsets	analysis.

d.						PROC	GLM	uses	a	CLASS	statement	to	allow	for
categorical	predictors,	whereas	PROC	REG	does	not.

e.						None	of	the	above.

Refer	to	the	following	SAS	output	for	questions	5	through	7.

	

Number	of	Observations
Read

990

Number	of	Observations
Used

990

	

Analysis	of	Variance

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

Model 5 1.022351E12 2.044702E11 1027.14 <.0001

Error 984 1.958829E11 199068030 	 	



Corrected
Total

989 1.218234E12 	 	 	

	

Root	MSE 14109 R-Square 0.8392

Dependent
Mean

154845 Adj	R-Sq 0.8384

Coeff	Var 9.11179 	 	

	

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

95%	Confidence
Limits

Intercept 1 74063 3188.57981 23.23 <.0001 67806 80321

Gr_Liv_Area 1 53.45849 1.51279 35.34 <.0001 50.48982 56.42716

Total_Bsmt_SF 1 19.94240 1.65322 12.06 <.0001 16.69815 23.18664

Lot_Area 1 0.32838 0.14583 2.25 0.0246 0.04220 0.61456

Age_at_Sale 1 -554.57738 19.74839 -28.08 <.0001 -593.33118 -515.82359

Garage_Area 1 25.83541 3.11126 8.30 <.0001 19.72994 31.94088

	

5.						Which	of	the	following	statements	is	true?

a.						Age_at_Sale	is	most	important	because	it	has	the	largest
slope	in	magnitude.

b.						Lot_Area	is	non-significant	because	its	slope	is	close	to
zero.

c.						It	is	expected	that	adding	a	garage	adds	$25,835	to	the
sale	price	of	the	house.

d.						This	model	is	the	best	model	because	the	r-square	is
significant.

e.						None	of	the	above.

6.						Which	statement	was	used	to	generate	the	output?

a.						The	MODEL	statement	with	the	VIF	option

b.						The	MODEL	statement	with	the	clb	option



c.						The	cli	and	vif	options	within	the	MODEL	statement

d.						The	MODEL	statement	with	the	SCORR2	option

7.						What	value	do	you	report	to	explain	how	well	your	model
fits	the	data?

a.						1027.14

b.						<.0001

c.						0.8384

d.						None	of	the	above.

Refer	the	following	SAS	output	to	answer	questions	8,	9,	and	10.

	

Analysis	of	Variance

Source DF
Sum	of
Squares

Mean
Square F	Value Pr	>	F

Model 5 1.022351E12 2.044702E11 1027.14 <.0001

Error 984 1.958829E11 199068030 	 	

Corrected
Total

989 1.218234E12 	 	 	

	

Root	MSE 14109 R-Square 0.8392

Dependent
Mean

154845 Adj	R-Sq 0.8384

Coeff	Var 9.11179 	 	

	

	

Parameter	Estimates

Variable DF
Parameter
Estimate

Standard
Error t	Value Pr	>	|t|

Squared
Semi-
partial

Corr	Type	II
Variance
Inflation

Intercept 1 74063 3188.57981 23.23 <.0001 . 0

Gr_Liv_Area 1 53.45849 1.51279 35.34 <.0001 0.20405 1.22562

Total_Bsmt_SF 1 19.94240 1.65322 12.06 <.0001 0.02378 1.21184



Lot_Area 1 0.32838 0.14583 2.25 0.0246 0.00082855 1.13940

Age_at_Sale 1 -554.57738 19.74839 -28.08 <.0001 0.12886 1.42589

Garage_Area 1 25.83541 3.11126 8.30 <.0001 0.01127 1.29628

	

8.						What	variable	contributes	most	to	the	explanation	of
saleprice?

a.						Gr__Liv_Area

b.						Total_Bsmt_SF			

c.						Lot_Area

d.						Age_at_Sale

9.						What	do	you	report	when	determining	if	there	is	collinearity
in	your	model?

a.						Squared	semi-partial	correlation	type	II

b.						Variance	inflation

c.						F-value

d.						Adjusted	r-square

10.			Which	model	statement	would	generate	the	output?

a.						model	saleprice=	Gr_Liv_Area	Total_Bsmt_SF
Lot_Area		Garage_Area/	scorr2	vif;													

b.						model	saleprice=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area
Age_at_Sale	Garage_Area/	scorr2	vif;				

c.						model	saleprice=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area
Age_at_Sale	Garage_Area/	scorr2;

d.						model	saleprice=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area
Age_at_Sale	Garage_Area;
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Introduction			
In	this	chapter,	we	continue	to	explore	statistical	models	aimed	at
answering	various	business	questions.		As	seen	in	Chapter	1,
“Statistics	and	Making	Sense	of	Our	World,”	if	the	analyst	is
interested	in	determining	whether	or	not	a	categorical	response
variable	is	related	to	a	set	of	predictors	(whether	categorical	or
numeric),	then	the	appropriate	statistical	analysis	is	logistic
regression	analysis.		Now,	we	will	provide	the	basis	for	the
logistic	regression	model	by	defining	the	logit	and	a	model	for
developing	a	linear	relationship	between	the	logit	and	a	set	of	input
variables,	or	predictors.		This	chapter	will	provide	the	syntax	for
using	the	LOGISTIC	procedure,	describe	the	output	of	the	logistic
regression	analysis,	and	explain	how	the	parameters	estimates	are
obtained,	how	to	test	their	significance,	and	how	they	are	used	for
both	prediction	and	explanation	via	the	odds	ratio.		This	chapter
will	describe	the	design,	or	dummy,	variables	needed	when
categorical	predictors	are	used	and	how	to	interpret	the	output



depending	on	how	the	design	variables	are	created.		Once	the	basic
model	is	introduced,	this	chapter	will	continue	with	multiple
logistic	regression	analysis,	the	interpretation	of	output,	followed
by	a	description	of	the	code	needed	for	the	variable	selection
methods,	including	forward,	backward,	and	stepwise	methods.		The
multiple	logistic	regression	analysis	is	extended	to	the	case	where
interaction	effects	exist,	with	a	description	of	the	code	needed	to
produce	the	output,	and	how	to	interpret	using	conditional	odds
ratios	and	data	visualization.		Finally,	this	chapter	will	describe	the
various	ways	to	score	new	observations	once	the	final	model	is
selected	for	deployment.

In	this	chapter,	you	will	learn	how	to:

	identify	situations	that	require	the	use	of	logistic	regression
analysis

	identify	the	assumptions	of	logistic	regression

	understand	concepts	related	to	logistic	regression,	such	as
log-odds,	logit	transformation,	and	sigmoidal	relationship
between	the	probability	of	success	and	a	predictor

	use	the	LOGISTIC	procedure	with	the	MODEL	and	CLASS
statements	to	fit	a	binary	logistic	regression

	use	the	LOGISTIC	procedure	to	fit	a	multiple	logistic
regression	model

	interpret	the	output	from	the	LOGISTIC	procedure,	including
the	Model	Convergence	section,	the	Testing	Global	Null
Hypothesis	table,	the	Type	3	Analysis	of	Effects	table,	the
Analysis	of	Maximum	Likelihood	Estimates	table,	and	the
Association	of	Predicted	Probabilities	and	Observed	Responses
table

	perform	model	selection	using	stepwise,	forward	selection,
and	backward	elimination

	use	the	SELECTION=SCORE	option	to	run	a	best	subset
analysis

	understand	the	concept	of	scoring

	use	the	SCORE	statement	within	the	LOGISTIC	procedure	for
scoring	new	cases
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	use	the	SCORE	statement	within	the	PLM	procedure	for
scoring	new	cases

	use	the	CODE	statement	within	the	LOGISTIC	procedure	for
scoring	new	cases

	use	the	OUTMODEL	and	INMODEL	options	within	the
LOGISTIC	procedure	to	score	new	cases

	describe	the	fundamental	differences	between	the	methods
for	coding	new	cases

The	Logistic	Regression	Model
There	are	many	applications	of	logistic	regression	where	the	goal	is
to	predict	a	binary	outcome.	For	example,	in	retail,	the	analyst	may
be	interested	in	determining	factors	associated	with	whether	or	not
a	customer	churns;	or	a	manager	may	be	interested	in	the
characteristics	of	salespeople	associated	with	meeting	or	falling
short	of	monthly	sales	goals.	Similarly,	human	resource	managers
are	interested	in	determining	the	factors	associated	with	employee
turnover,	that	is,	if	the	employee	will	have	resigned	or	not	in	a
specified	period	of	time.	In	education,	administrators	are	interested
in	finding	factors	associated	with	whether	or	not	a	student
graduates;	or	in	healthcare,	caregivers	are	interested	in	what
conditions	lead	to	a	patient	being	discharged	from	a	hospital	in	a
standard	length	of	time	or	not.	In	each	of	these	situations,	if	the
event	of	interest	exists	(defined	as	success),	the	observation	under
investigation	has	a	value	of	1	assigned	to	its	outcome	variable;
otherwise	its	outcome	is	defined	as	a	failure	and	assigned	a	value	of
0.

Development	of	the	Logistic	Regression	Model
As	described	in	Chapter	9,	“Linear	Regression	Analysis,”	when
developing	a	model	to	predict	a	numeric	continuous	outcome,
analysts	use	ordinary	least	squares	estimation.	However,	this
approach	is	not	reasonable	when	the	goal	is	to	predict	a	binary
outcome.	A	linear	combination	of	predictors	can	assume	any	real-
numbered	values	and	would	fail	at	predicting,	specifically,	ones
and	zeros.	In	addition,	modeling	a	binary	outcome	in	this	way
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would	violate	the	assumptions	of	linear	regression,	namely,	the
normality	of	the	error	term	and	homoscedasticity.

As	an	illustration,	consider	the	Ames	Housing	Case	introduced	in
Chapter	1,	“Statistics	and	Making	Sense	of	Our	World.”		Suppose
we	were	to	predict	BONUS	(1=Yes	or	0=No)	using	the	predictor
above	ground	living	area	(GR_LIV_AREA)	and	applied	the	ordinary
least	squares	regression	to	the	data	set	AMES300.		Consider	the
output	as	depicted	in	Figure	10.1	Scatter	Plot	of	Gr_Liv_Area	by
Bonus.
Figure	10.1	Scatter	Plot	of	Gr_Liv_Area	by	Bonus

Note	that,	while	it	seems	that	larger	values	of	living	area	are
associated	with	a	bonus	(BONUS=1)	and	smaller	values	of	living
area	are	associated	with	not	receiving	a	bonus	(BONUS=0),	the
relationship	is	certainly	not	linear,	and	accordingly,	the	errors	are
not	normal.	From	the	range	of	the	prediction	line,	it	is	also	evident
that	predicted	values	have	no	real	meaning,	in	addition	to	falling
outside	of	the	range	of	0	and	1.

As	an	alternative,	because	probabilities	have	numeric	continuous
values,	modeling	the	probability	of	a	binary	outcome,	say,	the



probability	a	success	may	seem	reasonable;	however,	that	approach
has	the	same	inherent	problem	in	that	a	linear	combination	of
predictors	is	not	constrained	to	values	between	0	and	1.		Again,	the
assumptions	of	linear	regression	are	violated.	In	addition,	the
relationship	between	the	probability	of	success	and	a	predictor
variable	is	non-linear,	similar	to	an	S-shaped,	or	sigmoid,	curve,	as
illustrated	in	Output	10.1	Scatter	Plot	of	Binned	Living	Area	by
Proportion	of	Successes	using	Program	10.1	Scatter	Plot	of	Binned
Living	Area	by	Proportion	of	Successes.
Program	10.1	Scatter	Plot	of	Binned	Living	Area	by	Proportion	of	Successes

libname	sasba	‘c:\sasba\ames’;

data	ames300;

set	sasba.ames300;

If	Gr_Liv_Area	le	500	then	Living_Area=1;

If	Gr_Liv_Area	gt	500	and	Gr_Liv_Area	le	1000	then
Living_Area=2;

If	Gr_Liv_Area	gt	1000	and	Gr_Liv_Area	le	1500	then
Living_Area=3;

If	Gr_Liv_Area	gt	1500	and	Gr_Liv_Area	le	2000	then
Living_Area=4;

If	Gr_Liv_Area	gt	2000	and	Gr_Liv_Area	le	2500	then
Living_Area=5;

If	Gr_Liv_Area	gt	2500	and	Gr_Liv_Area	le	3000	then
Living_Area=6;

If	Gr_Liv_Area	gt	3000	and	Gr_Liv_Area	le	3500	then
Living_Area=7;

run;

	

	proc	format;

value	LA	1=’<500’	2=‘500-<1000’	3=‘1000-<1500’

4=‘1500-<2000’	5=‘2000-<2500’	6=‘2500-<3000’

7=‘3000-<3500’;

run;

	

proc	means	data=ames300	noprint;

class	Living_Area;

var	bonus;

output	out=propbonus	mean=ProportionOfSuccesses;

run;



	

proc	sgplot	data=propbonus;

reg	x=Living_Area	y=ProportionOfSuccesses	/	degree=1;

format	Living_Area	LA.;

run;

Output	10.1	Scatter	Plot	of	Binned	Living	Area	by	Proportion	of	Successes

	

The	Logit	Transformation

There	are	several	functions	that	serve	as	linear	transformations	for
probabilities.	One	such	function	is	the	logit	transformation	and	is
defined	as	follows:

where	pi	is	the	probability	of	success	and	pi/(1-pi)	is	the	odds	of
success	for	observation	i,	respectively.		The	logit	function
transforms	the	range	of	probabilities	[0,1]	to	the	set	of	real
numbers	ranging	from	-∞	to	+∞.		In	fact,	if	the	odds	for	an
observation	are	greater	than	1.0,	then	the	logit	will	be	positive;	if
the	odds	are	less	than	1.0,	the	logit	will	be	negative;	an	odds	of	1.0



results	in	a	logit	of	0.	Consequently,	the	logistic	regression	model
makes	the	assumption	that	the	logit	can	be	represented	as	a	linear
combination	of	predictors,	or	inputs,	and	can	be	written	as	follows:

where	the	parameters,	β1	through	βk	are	estimated	from	the	data.
This	logistic	regression	model	addresses	the	aforementioned	issues
and	provides	a	functional	means	of	arriving	at	probability	values
ranging	from	0	to	1.	Algebraically	solving	for	pi	results	in	the
following:

where	pi	is	now	referred	to	as	the	posterior	probability	of	success
for	observation	i	given	the	set	of	predictor	values,	X1,	X2,	…,	Xk	for
observation	i,	and	can	be	represented	by	the	term	P(Y=1|X1,	X2,…,
Xk).

Estimating	the	Logistic	Regression	Parameters

When	estimating	the	unknown	parameters,	β0,	β1,…,	βk,	we	want
values	that	will	result	in	the	largest	possible	probability	of	success,
pi,	for	all	of	those	observations	where	Y=1	(success)	and	the
largest	possible	probability	of	failure,	1-pi,	for	all	observations
where	Y=0	(failure).	For	each	observation	i,	this	probability	can
also	be	written	as	follows:

									for	Yi	=	0	or	1;	for	observation	i	=	1,…,

n

We	want	this	probability	to	be	maximized	for	all	n	observations.
Because	each	observation’s	outcome	is	independent	of	the	other,
the	probability	that	Y1	occurs	for	observation	1	and	Y2	occurs	for
observation	2,	…	and	Yn	occurs	for	observation	n	is	equal	to	the
product	of	the	individual	probabilities	and	can	be	written	as:



This	probability	over	all	observations	is	called	the	likelihood	(L),	so
the	estimates	that	result	in	the	maximum	value	of	the	likelihood
are	called	Maximum	Likelihood	Estimates	(MLEs).	In	reality,	it	is
mathematically	more	expedient	to	solve	for	values	that	maximize
the	log	of	the	likelihood.		The	methods	used	to	arrive	at	the
solutions	are	iterative;	that	is,	the	methods	involve	plugging	in
various	values	until	arriving	at	the	maximum	value	of	the	log-
likelihood.	Fisher	scoring	is	one	of	the	most	popular	methods	for
estimating	logistic	regression	parameters	and	is	the	default	method
used	in	SAS.	The	details	of	this	approach,	along	with	other
computational	methods	that	are	used	in	the	LOGISTIC	procedure,
can	be	found	in	Hirji,	Mehta,	and	Patel	(1987),	Hirji	(1992),	and
Mehta,	Patel,	and	Senchaudhuri	(1992).

Syntax	for	the	Logistic	Regression	Procedure
PROC	LOGISTIC	is	a	procedure	used	to	establish	the	relationship
between	a	categorical	response	variable	and	categorical	and/or
numeric	predictors	and	has	the	general	form:

PROC	LOGISTIC	DATA=SAS-data-set	<options>;

CLASS	variables	</	options>;

MODEL	response=predictors	</	options>;

ODDSRATIO	<‘label’>	variable	</	options>;

SCORE	<options>;

STORE	<options></LABEL=’label’>

CODE	<options>;

UNITS	predictor1=list1	…	</	options>;

RUN;

Before	discussing	logistic	regression	analysis,	it	should	be	noted
that	all	analyses	in	this	chapter	will	be	conducted	on	training	data,
the	SAS	data	set	called	AMES70,	created	from	the	Ames	Housing
data	and	that	validation	procedures	using	the	AMES30	data	set	will
be	discussed	in	Chapter	11,	“Measure	of	Model	Performance.”

To	illustrate	the	LOGISTIC	procedure,	consider	the	Ames	Housing
Case	where	the	analyst	wants	to	predict	whether	or	not	a	real
estate	agent	earns	a	bonus	in	the	sale	of	a	house	(target=BONUS)



based	upon	its	above	ground	living	area	(GR_LIV_AREA).		Program
10.2	Simple	Logistic	Regression	would	be	used	to	carry	out	the
analysis.
Program	10.2	Simple	Logistic	Regression

libname	sasba	‘c:\sasba\ames’;

run;

	

proc	logistic	data=sasba.ames70;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area

/link=logit;

run;

From	Program	10.2	Simple	Logistic	Regression,	we	can	see	that	the
LOGISTIC	procedure	is	applied	to	the	Ames	Housing	data	set,	as
defined	by	the	DATA=	option.	The	MODEL	statement	defines
BONUS	as	the	dependent	variable	and	the	above	ground	living
area,	GR_LIV_AREA,	as	the	independent	variable.	Note	that	the
(EVENT=)	option	is	included	in	the	MODEL	statement	to	ensure
that	the	event	of	interest	to	be	modeled	is	BONUS=1,	or	those
houses	where	a	bonus	is	earned;	if	the	(EVENT=)	option	had	been
omitted,	the	default	response	would	be	to	model	the	first	ordered
category,	which	is	‘0’	as	opposed	to	‘1.’	Finally,	there	are	several
functions	that	‘link’	probabilities	to	a	linear	combination	of
predictors.	While	the	default	link	function	is	logit,	we	have
included	the	LINK=	option	to	illustrate	that	there	are	other	options
as	well.

The	output	generated	is	voluminous	and	is	illustrated	in	Output
10.2a	Model	Information	and	Response	Profile	for	Simple	Logistic
Regression	through	Output	10.2e	Association	of	Predicted
Probabilities	and	Observed	Responses.	First,	Output	10.2a	Model
Information	and	Response	Profile	for	Simple	Logistic	Regression
provides	preliminary	information	about	the	analysis.	The	Model
Information	table	gives	the	data	set	name	and	indicates	that	there
are	two	levels	of	the	binary	response	variable,	BONUS.	The	output
verifies	that	the	model	transformation	utilizes	the	logit
transformation	(which	is	the	default	model	when	there	are	only
two	response	levels);	and	defines	the	estimation	technique	for
maximizing	the	log-odds,	namely,	Fisher’s	scoring	method.



The	second	table	reports	the	number	of	observations	read	and	will
match	the	number	of	records	contained	in	the	data	set.	The	number
of	observations	used	reflects	the	number	of	observations	that	have
complete	data,	or	nonmissing	values,	on	all	variables	listed	in	the
MODEL	statement.	Here	we	can	see	that	the	Ames	Housing	data	set
(AMES70)	has	1389	observations	and	that	all	1389	observations
have	complete	data	on	the	variables,	BONUS	and	GR_LIV_AREA.	If
the	number	used	is	less	than	the	number	read,	that	is	an	indication
that	some	observations	are	missing	on	at	least	one	variable	listed	in
the	MODEL	statement.

The	third	table	reports	the	profile	of	the	response	variable,	BONUS,
where	the	values	are	listed	by	their	ordered	values,	0	and	1,
respectively,	including	the	number	of	houses	in	each	group.	Here
we	can	see	that	826	(59.47%)	are	houses	where	the	agent	did	not
earn	a	bonus,	and	563	(40.53%)	are	houses	where	the	agent	did
earn	a	bonus.	Under	the	response	profile	table	is	the	model
response	intended,	namely,	BONUS=1,	as	defined	in	the
(EVENT=)	option.
Output	10.2a	Model	Information	and	Response	Profile	for	Simple	Logistic
Regression

Model	Information

Data	Set SASBA.AMES70

Response	Variable Bonus

Number	of	Response
Levels

2

Model binary	logit

Optimization	Technique Fisher’s	scoring

	

Number	of	Observations
Read

1389

Number	of	Observations
Used

1389

	

Response	Profile



Ordered
Value Bonus

Total
Frequency

1 0 826

2 1 563

	

Probability	modeled	is	Bonus=1.

	

There	are	times	when	the	nature	of	the	data	structure	prevents	the
logistic	regression	algorithm	from	converging	on	a	maximum
likelihood	solution,	specifically	when	either	complete	or	quasi-
complete	separation	occurs,	as	described	in	Chapter	8,	“Preparing
the	Input	Variables	for	Prediction.”	If	the	convergence	criterion	is
not	satisfied,	the	results	of	the	logistic	regression	are	erroneous	and
should	not	be	used.	As	illustrated	in	Output	10.2b	Model
Convergence,	Fit	Statistics,	and	Testing	Global	Null,	in	the	Model
Convergence	Status	table,	we	can	see	that	the	estimation	algorithm
does	converge.	Therefore,	we	can	continue	with	interpreting	the
remaining	output.	For	situations	where	the	model	does	not
converge,	see	Allison	(2008)	for	an	explanation	on	why	estimation
algorithms	for	logistic	regression	fail	to	converge	and	how	SAS
procedures	can	be	used	to	resolve	the	problem.

The	next	table	provides	the	Model	Fit	Statistics,	namely,	the
Akaike	Information	Criterion	(AIC),	the	Schwarz	Criterion	(SC),
and	-2LogL,	as	shown	in	Output	10.2b	Model	Convergence,	Fit
Statistics,	and	Testing	Global	Null.	These	measures	have	no	real
meaning	and	are	used	for	model	comparison	purposes	only,	where
the	model	with	the	smaller	values	has	the	better	fit.	However,	note
that	-2LogL	should	be	used	only	when	comparing	models	having
the	same	number	of	predictors,	as	its	value	can	be	reduced	by
adding	more	variables,	regardless	of	their	contribution	to	the
fit.		AIC	is	an	adjusted	version	of	the	-2LogL	value	and	penalizes	for
the	number	of	predictors.	The	formula	for	AIC	is:

AIC	=	-2LogL	+2(k+1)

where	k+1	is	the	number	of	parameters	to	be	estimated,	including
the	intercept.	SC	adjusts	for	both	the	sample	size	and	number	of



predictors	and	is	calculated	using:

SC	=	-2LogL	+	(k+1)Log(n)

where	n	is	the	sample	size.	It	is	obvious	from	the	formula	that,	as
the	number	of	predictors	and/or	sample	size	increases,	the	values
of	these	indices	increase	as	well.	For	the	Ames	Housing	Case,	where
we	are	estimating	one	slope	and	the	intercept,	(k+1=2),	we	have:

AIC	=	1099.405	+	2(2)	=	1103.405

																	SC	=	1099.405	+	(2)Log(1389)	=	1113.878

Finally,	the	table	used	for	Testing	the	Global	Null	Hypothesis	is
displayed.	This	is	the	most	important	table	of	all	in	that	it	provides
a	statistical	test	for	determining	if	any	predictors	are	significant.	It
tests	the	hypothesis:

Ho:	β1	=	β2	=	…	βk		=	0				(none	of	the	predictors	are	good)
for	predictors,	1,	2,	…,	k

H1:	at	least	one	βj		≠	0				(at	least	one	predictor	is	good),	for
any	j	=	1,…,k

	

The	null	hypothesis	represents	the	case	where	no	predictors	are
related	to	the	categorical	response	variable;	the	alternative
hypothesis	represents	the	case	where	at	least	one	of	the	predictors
is	related	to	the	response	variable.	This	test	is	analogous	to	the
global	F-test	used	in	multiple	linear	regression	analysis.

The	first	test	statistic	is	the	Likelihood	Ratio	statistic	and	compares
the	goodness	of	fit	between	two	models;	specifically	here,	we	are
comparing	the	model	with	k-predictors	and	the	model	with	no
predictors,	having	just	an	intercept.	The	difference	(D)	in	fit	can	be
rewritten	in	terms	of	a	ratio:

D	=	-2LogL(baseline)	–	(-2LogL(model	with	k	predictors))

=	-2[LogL(baseline)-LogL(model	with	k	predictors)]

where	the	likelihood	ratio	has	a	chi-square	distribution	with



degrees	of	freedom	equal	to	the	difference	between	the	number	of
predictors	in	the	baseline	and	k	in	the	proposed	model.	So	in	our
Ames	Housing	Case,	if	we	are	testing	the	significance	of	our	model
(with	the	intercept	and	one	predictor,	GR_LIV_AREA)	against	the
model	with	no	predictors	(intercept	only),	the	difference	in	fit	is

D	=	1875.463	–	1099.405	=	776.058

with	p-value	<.0001	(degrees	of	freedom=1),	as	shown	in	Output
10.2b	Model	Convergence,	Fit	Statistics,	and	Testing	Global	Null.
Because	our	p-value	is	less	than,	say,	0.05,	we	reject	the	null
hypothesis;	therefore,	we	have	evidence	that	above	ground	living
area	is	related	to	whether	or	not	a	bonus	is	earned.

The	output	also	includes	the	score	chi-square	test	statistic	and	the
Wald	test	statistic.	Based	upon	the	p-values	found	in	Output	10.2b
Model	Convergence,	Fit	Statistics,	and	Testing	Global	Null,	we	can
see	that	both	tests	support	the	evidence	that	above	ground	living
area	is	related	to	bonus.	Using	these	tests	is	asymptotically
equivalent;	in	other	words,	as	the	sample	size	increases,	the
distributional	properties	of	the	estimators	are	identical	(Hosmer
and	Lemeshow,	2000).
Output	10.2b	Model	Convergence,	Fit	Statistics,	and	Testing	Global	Null

Model	Convergence	Status

Convergence	criterion	(GCONV=1E-8)
satisfied.

	

Model	Fit	Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 1877.463 1103.405

SC 1882.700 1113.878

-2	Log	L 1875.463 1099.405

	

Testing	Global	Null	Hypothesis:	BETA=0



Test Chi-
Square

DF Pr	>	ChiSq

Likelihood
Ratio

776.0584 1 <.0001

Score 584.5319 1 <.0001

Wald 333.8138 1 <.0001

	
The	next	table,	found	in	Output	10.2c	Analysis	of	Maximum
Likelihood	Estimates,	provides	the	Analysis	of	Maximum	Likelihood
Estimates.	From	the	column	of	estimates,	we	can	see	that	the
logistic	regression	equation	is:

Logit(pi)	=	-8.0903	+	0.00513(Gr_Liv_Area)

The	slope	indicates	that	we	expect	the	logit,	or	log-odds,	to
increase	by	0.00513	for	every	additional	square	foot	in	the	above
ground	living	area.	(Note:	In	the	next	section,	we	will	relate	the
slope	to	the	odds	ratio.)		The	table	also	includes	the	standard	error
of	the	parameter	estimate,	0.000281,	and	is	used	to	test	the
hypothesis	that	the	slope	is	significantly	different	from	zero:

o:	βj	=	0					for	predictor	j=1,	2,	…,	or,	…,	k

H1:	βj		≠	0

Recall,	from	Chapter	4,	“The	Normal	Distribution	and	Introduction
to	Inferential	Statistics,”	that	a	test	statistic	is	a	parameter	estimate
divided	by	its	standard	error.	Here	the	Wald	Chi-Square	test
statistic	is	that	ratio	squared	and	defined	by:

where	bj	is	the	parameter	estimate	for	predictor	j,	with	degrees	of
freedom	equal	to	1.	For	the	Ames	Housing	Case,	the	Wald	test
statistic	is	333.8138,	with	p-value	<.0001,	so	we	reject	the	null
hypothesis,	and	conclude	we	have	evidence	that	β1	is	significantly
different	from	zero.	In	other	words,	there	is	evidence	that	above
ground	living	area	is	related	to	bonus.	Note	that	when	the	number
of	predictors	equals	1,	the	results	of	the	global	hypothesis,	found	in
Output	10.2b	Model	Convergence,	Fit	Statistics,	and	Testing	Global



Null,	are	identical	to	the	Wald	Chi-		Square	test	of	β1.

Output	10.2c	Analysis	of	Maximum	Likelihood	Estimates

Analysis	of	Maximum	Likelihood	Estimates

Parameter DF Estimate
Standard

Error

Wald
Chi-

Square Pr	>	ChiSq

Intercept 1 -8.0903 0.4313 351.8515 <.0001

Gr_Liv_Area 1 0.00513 0.000281 333.8138 <.0001

	

Estimating	the	Odds	Ratio	from	the	Parameter	Estimates

As	seen	in	linear	regression,	the	slope	gives	an	estimated	change	in
Y	per	unit	change	in	X.		In	logistic	regression,	the	slope	gives	an
estimated	change	in	the	logit	per	unit	change	in	X.	Because	the
change	in	probability	is	not	constant	for	a	unit	change	in	X,	a
common	approach	in	logistic	regression	is	to	transform	the	logit	to
odds	and	describe	the	change	in	odds	ratio	per	unit	change	in	X.
Consider	the	logistic	regression	equation:

Solving	for	odds,	we	get:

Now	consider	comparing	the	Oddsi	of	success	when	a	value	of	X	is
incremented	by	1	to	the	base	Odds	at	X	in	the	form	of	an	odds
ratio:

	=	

To	simplify,	remember	that	dividing	like	bases	with	exponents	is
equivalent	to	subtracting	the	exponents.	Therefore,	the	odds	ratio
reduces	to:

In	other	words,	the	odds	ratio	for	β1	tells	us	that	for	every	one-unit



increase	in	X,	the	odds	that	the	event	of	interest	occurs	increases	by
.	So,	in	the	Ames	Housing	Case,	the	odds	ratio,	as	provided	in

Output	10.2d	Odds	Ratio	Estimate	for	GR_LIV_AREA	based	upon
Default	UNITS=1,	is:

Odds	Ratio	=	e0.00513	=	1.005143
Output	10.2d	Odds	Ratio	Estimate	for	Gr_Liv_Area	Based	upon	Default	UNITS=1

Odds	Ratio	Estimates

Effect
Point

Estimate
95%	Wald

Confidence	Limits

Gr_Liv_Area 1.005 1.005 1.006

This	means	for	every	1-square	foot	increase	in	above	ground	living
area,	the	agent	is	1.005	times	more	likely	to	receive	a	bonus.	This
odds	ratio	is	obviously	small	(remember	an	odds	ratio	of	1.0	means
that	the	two	events	under	consideration	are	equally	likely	to
occur);	however,	we	are	talking	about	the	change	in	likelihood
when	comparing	one	house	and	another	house	with	one	additional
square	foot.	In	order	to	make	a	more	reasonable	statement	about
the	association,	the	analyst	could	add	the	UNITS	statement	to	the
LOGISTIC	procedure	as	follows:
units	Gr_Liv_Area=100;

Here,	the	analyst	is	requesting	that	the	odds	ratio	be	reported	in
terms	of	a	100-square	foot	change	in	the	above	ground	living	area,
as	indicated	in	Output	10.3	Odds	Ratio	Estimate	for	Gr_Liv_Area
Based	upon	UNITS=100,	under	the	heading	Unit.	The	odds	ratio
now	indicates	that	the	agent	is	1.670	times	more	likely	to	earn	a
bonus	for	every	100-unit	increase	in	above	ground	living	area.
Another	interpretation	is	that	the	odds	of	earning	a	bonus	increases
by	67%	for	a	100-unit	increase	in	square	footage.
Output	10.3	Odds	Ratio	Estimate	for	Gr_Liv_Area	Based	upon	UNITS=100

Odds	Ratios

Effect Unit Estimate

Gr_Liv_Area 100.0 1.670

Changing	the	unit	is	common	when	the	predictor	variable	is



numeric	continuous.	You	may	want	to	know	the	odds	ratio	when
the	predictor	is	incremented	by	a	constant	C.	In	this	case,	the	odds
ratio	has	the	form:

So,	in	our	example,	the	odds	ratio	when	comparing	one	house	to
another	house	with	an	additional	100	square	feet	(C=100)	is	the
odds	ratio	provided	in	Output	10.3	Odds	Ratio	Estimate	for
Gr_Liv_Area	Based	upon	UNITS=100,	and	can	be	obtained	by

It	should	be	noted	that	the	confidence	interval	for	the	odds	ratio
can	be	used	for	testing	the	significance	of	the	predictor’s
relationship	with	the	outcome.	Remember	that	an	odds	ratio	of	1.0
means	that	both	outcomes	(BONUS=0	or	BONUS=1)	are	equally
likely.	So	if	the	confidence	interval	does	not	contain	1.0,	we	can
basically	say	that	the	estimate	of	the	odds	ratio	is	far	enough	from
1.0	that	the	interval	does	not	contain	1.0.	In	essence,	using	that
rule	with	a	90%,	95%,	or	99%	confidence	interval	is	equivalent	to
using	the	Wald	Chi-Square	statistic	to	test	the	null	hypothesis	H0:	βi
≠	0	at	0.10,	0.05,	or	0.01	level	of	significance,	respectively.

As	far	as	the	Ames	Housing	Case,	we	can	see	that	the	95%
confidence	interval	(1.580,	1.764)	does	not	contain	1.0;	therefore
we	would	reject	the	null	concluding	that	there	is	evidence	that	β1
≠	0	and	that	above	ground	living	area	(GR_LIV_AREA)	is
significantly	related	to	bonus.

Additional	Measures	of	Fit

Another	way	to	assess	the	model	performance	has	more	to	do	with
how	well	the	logistic	regression	model	predicts	the	event	(either
BONUS=1	or	BONUS=0).	These	are	provided	in	Output
10.2e		Association	of	Predicted	Probabilities	and	Observed
Responses	(and	was	generated	using	Program	10.2	Simple	Logistic
Regression).	The	first	three	measure	the	degree	to	which	pairs	of
observations	are	either	concordant,	discordant,	or	tied.	But	first
consider	how	the	pairs	are	created.

The	data	set	is	split	into	two	groups,	namely,	those	563	houses



receiving	a	bonus	(BONUS=1)	and	those	826	not	receiving	a	bonus
(BONUS=0).	Every	observation	in	the	bonus	group	(BONUS=1)	is
paired	with	every	observation	in	the	no	bonus	group	(BONUS=0),
resulting	in	465,038	pairs	of	observations	with	different	outcomes,
as	indicated	in	Output	10.2e		Association	of	Predicted	Probabilities
and	Observed	Responses.	For	each	pair,	if	the	observation	having	a
value	of	1	for	bonus	has	the	highest	predicted	probability	of	being
a	1,	then	that	pair	is	considered	concordant;	if	the	observation
having	a	value	of	1	for	bonus	has	the	lowest	predicted	probability
of	being	a	1,	then	that	pair	is	considered	discordant.	If	both
observations	have	the	same	predicted	probability	of	being	a	1,	then
that	pair	is	considered	a	tie.

For	the	Ames	Housing	Case,	we	can	see	that	90.3%	of	the	465,038
pairs	are	concordant,	whereas	9.6%	are	discordant;	none	of	the
pairs	are	tied.	The	goal	is	to	get	a	high	percent	concordant	and	low
percent	discordant;	so	for	our	example,	there	is	some	evidence	that
the	logistic	regression	model	fits	the	actual	data.

Finally,	in	the	last	four	measures	in	Output	10.2e	Association	of
Predicted	Probabilities	and	Observed	Responses,	Somer’s	D,
Gamma,	Tau-a,	and	the	concordance	statistic	(c),	are	rank
correlations	indices.	When	the	analyst	uses	these	indices	to
compare	models,	the	model	with	the	highest	values	is	better	at
predicting	the	event	of	interest	than	those	models	with	lower
values.

The	concordance	statistic	(c),	in	particular,	measures	the
probability	that	a	randomly	selected	observation	with	the	outcome
of	interest	(BONUS=1)	has	a	higher	predicted	probability	than	a
randomly	selected	observation	without	the	outcome	of	interest
(BONUS=0).	The	value	of	c	is	equivalent	to	the	area	under	the
ROC	(Receiver	Operating	Curve)	and	is	covered	in	detail	in	Chapter
11,	“Measure	of	Model	Performance.”	The	value	ranges	from	.50,
indicating	no	predictive	power,	to	1.0,	indicating	perfect	prediction
(Hosmer	and	Lemeshow,	2000).	For	our	example,	where	c	=
0.904,	we	can	see	that	our	model	has	relatively	strong	predictive
power.
Output	10.2e		Association	of	Predicted	Probabilities	and	Observed	Responses

Association	of	Predicted	Probabilities	and
Observed	Responses



Percent
Concordant

90.3 Somers’
D

0.807

Percent
Discordant

9.6 Gamma 0.807

Percent	Tied 0.0 Tau-a 0.389

Pairs 465038 C 0.904

	

Assumptions	of	Logistic	Regression

The	assumptions	of	logistic	regression	are	somewhat	similar	to
those	of	linear	regression.	While	the	logistic	regression	model	does
not	require	that	the	dependent	variable	and	predictor	variables	be
linearly	related,	it	does,	however,	require	that	the	logit,	or	log-
odds,	is	linearly	related	to	the	predictor	variables,	as	assessed	in
Chapter	11,	“Measure	of	Model	Performance.”

Logistic	regression	does	require	that	observations	are	independent
of	each	other	and	that	there	is	little	correlation,	or	collinearity,
among	the	predictor	variables.	In	fact,	the	same	diagnostic
procedures	for	detecting	collinearity,	as	described	in	Chapter	9,
“Linear	Regression	Analysis,”	can	also	be	used	for	logistic
regression	because	those	procedures	deal	only	with	the	predictor
variables,	not	the	response	variable.	Like	linear	regression	analysis,
the	analyst	should	pay	close	attention	to	outliers,	as	well.	Unlike
linear	regression	analysis,	there	is	no	normality	assumption	nor
constant	variance	assumption	when	conducting	a	logistic	regression
analysis.

Plots	for	Probabilities	of	an	Event	and	for	the	Odds
Ratios
Recall	that	the	analyst	can	use	the	parameter	estimates	to	arrive	at
a	formula	for	calculating	the	posterior	probabilities	of	the	event	of
interest	for	any	observation.		Consider	the	Ames	Housing	Case
where	we	are	interested	in	predicting	whether	the	agent	earns	a
bonus	or	not	from	the	sale	of	a	house	based	upon	the	above	ground
living	area	(GR_LIV_AREA).		Using	the	parameter	estimates	from
Output	10.2c	Analysis	of	Maximum	Likelihood	Estimates,	we	get
the	probability	of	the	event	(Y=1)	as	follows:



where	Y=1	corresponds	to	getting	a	bonus	(BONUS=1)	and
X1=Gr_LIV_AREA.		Suppose	you	want	to	know	the	probability	that
the	agent	will	earn	a	bonus	for	a	house	with	2000	square	feet	of
above	ground	living	area.		You	would	simply	plug	in	X1=2000	to
get:

	=	0.8975

Ordinarily,	the	analyst	uses	a	cutoff	of	0.50,	so	because	the
posterior	probability	of	earning	a	bonus	(BONUS=1)	for	a	house
with	2000	square	feet	of	above	ground	living	area	is	greater	than
0.50,	you	would	classify	that	observation	as	a	Yes	(BONUS=1).

In	order	to	get	the	plot	of	the	posterior	probability	function	for	all
possible	values	of	X1,	the	analyst	could	include	the	PLOTS	option
below	within	the	logistic	procedure	as	indicated	in	the	syntax,	and
as	shown	in	Figure	10.2		Plot	of	Gr_Living	Area	by	Probability	for
Bonus=1.
proc	logistic	data=sasba.ames70	plots(only)=effect;

Figure	10.2		Plot	of	Gr_Living	Area	by	Probability	for	Bonus=1



From	the	plot,	it	is	evident	that	as	above	ground	living	area
increases,	the	probability	of	BONUS=1	increases	as	well.	In	fact,
there	is	a	point	on	the	S-curve	where	the	value	of	X1
(GR_LIV_AREA)	has	probability	exactly	equal	to	0.50.	Solving	the
following	equation	for	X1:

				reduces	to		

and	finally	to	 	square	feet.	So	for	any
house	having	above	ground	living	area	greater	than	1577.06	square
feet,	the	posterior	probability	of	BONUS=1	is	greater	than	0.50
and	will	be	classified	as	BONUS=1.	For	any	house	having	above
ground	living	area	less	than	1577.06	square	feet,	the	posterior
probability	of	BONUS=1	is	less	than	0.50	and	will	be	classified	as
BONUS=0.

Another	useful	plot	represents	the	confidence	interval	for	the	odds
ratio.	There	are	several	ways	to	generate	that	plot.	First,	the	analyst
can	include	the	PLOTS=	option	within	the	logistic	procedure	as
displayed	in	Program	10.3	Odds	Ratio	with	95%	Confidence
Interval	for	Gr_Liv_Area	(UNITS=100).



Program	10.3	Odds	Ratio	with	95%	Confidence	Interval	for	Gr_Liv_Area
(UNITS=100)		

libname	sasba	‘c:\sasba\ames’;

run;

	

proc	logistic	data=sasba.ames70	plots(only)=oddsratio;

model	Bonus	(Event=‘1’)=Gr_Liv_Area

/selection=none	link=logit	alpha=0.05;

units	Gr_Liv_Area=100;

run;

The	PLOTS=	option	with	the	ONLY	option	requests	that	only	the
odds	ratios	be	displayed,	suppressing	all	default	plots,	as	seen	in
Output	10.4	Plot	of	Odds	Ratio	with	95%	Confidence	Interval	for
Gr_Liv_Area	(UNIT=1).	Note	that,	while	the	UNITS	statement
requests	the	odds	ratio	be	reported	for	a	100	square	foot	change	in
above	ground	living	area,	namely	1.670	as	displayed	in	Output
10.3	Odds	Ratio	Estimate	for	Gr_Liv_Area	Based	upon	UNITS=100,
the	plot	of	the	odds	ratio	here	is	for	a	single	square	foot	change.
Output	10.4	Plot	of	Odds	Ratio	with	95%	Confidence	Interval	for	Gr_Liv_Area
(UNIT=1)		



Secondly,	if	the	analyst,	instead,	prefers	that	the	odds	ratio	plot
matches	that	provided	in	the	UNITS	statement,	then	the	CLODDS=
should	be	included	in	the	MODEL	statement	options,	as	illustrated
in	the	Program	10.4	Odds	Ratio	with	95%	Confidence	Interval	for
Gr_Liv_Area	(UNIT=100).	For	small	sample	sizes,	the	analyst	is
advised	to	use	CLODDS=PL	which	is	based	upon	the	profile
likelihood.	Here	we	use	the	CLODDS=WALD	which	provides	the
Wald	confidence	limits	based	upon	the	defined	ALPHA	(default	=
0.05),	as	illustrated	in	Output	10.5	Plot	of	Odds	Ratio	with	95%
Confidence	Interval	for	Gr_Liv_Area	(UNITS=100).
Program	10.4	Odds	Ratio	with	95%	Confidence	Interval	for	Gr_Liv_Area
(UNITS=100)

libname	sasba	‘c:\sasba\ames’;

run;

	

proc	logistic	data=sasba.ames70;

model	Bonus	(Event	=	‘1’)=Gr_Liv_Area

/selection=none	link=logit	clodds=wald	alpha=0.05;

units	Gr_Liv_Area=100;

run;

Output	10.5	Plot	of	Odds	Ratio	with	95%	Confidence	Interval	for	Gr_Liv_Area
(UNITS=100)



Finally,	the	analyst	could	simply	use	the	ODDSRATIO	statement
with	a	list	of	predictor	variables	(here,	GR_LIV_AREA)	in	order	to
get	the	plot	of	odds	ratios.	If	the	UNITS	statement	is	included	with
the	ODDSRATIO	statement,	then	the	odds	ratio	plots	are	displayed
for	both	UNITS=1	and	the	unit	defined	in	the	UNITS	statement,	as
illustrated	in	Program	10.5	UNITS	Statement	and	ODDSRATIO
Statement.
Program	10.5	UNITS	Statement	and	ODDSRATIO	Statement

libname	sasba	‘c:\sasba\ames’;

run;

	

proc	logistic	data=sasba.ames70;

model	Bonus	(Event	=	‘1’)=Gr_Liv_Area

/selection=none	link=logit	alpha=0.05;

oddsratio	Gr_Liv_Area;

units	Gr_Liv_Area=100;

run;

Logistic	Regression	with	a	Categorical	Predictor
Many	times	in	logistic	regression,	we	will	have	categorical
predictor	variables.	Sometimes	the	values	of	those	variables	are	in
the	form	of	text	and	cannot	be	used	in	the	modeling	process.	For
example,	the	variable	HOME_TYPE	may	have	values	‘1-story,’	‘2-
story,’	or	‘split-level.’	Sometimes	categorical	variables	are
represented	by	numbers	serving	as	identifiers.	For	example,
HOME_TYPE	may	have	values	1,	2,	and	3,	representing	1-story,	2-
story,	and	split-level	houses,	respectively.	In	this	case,	the	values
have	no	real	quantitative	meaning;	therefore,	it	would	be
inappropriate	to	include	that	variable	in	the	model.		For	these
variable	types,	the	analyst	must	create	dummy	variables	if	those
variables	are	to	be	used	in	the	modeling	purposes.

Generally,	in	the	case	of	a	dichotomous	categorical	variable,	a
dummy	variable	is	created	for	each	observation,	so	that	a	value	of
1	is	assigned	if	the	attribute	represented	by	the	variable	exists,	or	0
if	the	attribute	does	not	exist.

For	cases	where	the	categorical	variable	has	more	than	two	levels



(C	>	2),	the	number	of	dummy	variables	used	to	represent	that
single	categorical	variable	is	(C-1),	the	number	of	levels	of	that
variable	minus	one.	So,	for	example,	if	a	categorical	variable	has
three	levels—say,	high,	medium,	and	low,	the	analysis	requires	the
creation	of	two	dummy	variables	(three	levels	minus	one).

If	the	analyst	does	not	create	dummy	variables	for	categorical
predictor	variables,	many	logistic	regression	programs	will
automatically	create	the	dummy	variables.	There	are	several	ways
to	define	the	dummy	variables,	also	referred	to	as	design
variables,	and	the	analyst	must	know	what	method	is	used	by	SAS
in	order	to	correctly	interpret	the	results	of	the	logistic	regression.

Effect	Coding	Parameterization
Consider	the	Ames	Housing	Case,	where	the	analyst	is	interested	in
the	relationship	between	BONUS	and	the	overall	quality	of	the
house,	where	the	variable,	OVERALL_QUALITY,	has	values	1,	2,
and	3,	corresponding	to	Below	Average,	Average,	and	Above
Average,	respectively.	To	conduct	a	logistic	regression	analysis,
consider	Program	10.6	Logistic	Regression	for	One	Categorical
Predictor	Using	Effect	Coding.
Program	10.6	Logistic	Regression	for	One	Categorical	Predictor	Using	Effect	Coding

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

proc	logistic	data=ames;

class	Overall_Quality;	*	default	is	(param=effect);

model	Bonus	(Event	=	‘1’)=Overall_Quality

/selection=none	link=logit;

run;

As	illustrated	previously,	Program	10.6	Logistic	Regression	for	One
Categorical	Predictor	Using	Effect	Coding	provides	a	simple	logistic
regression	model	with	BONUS	as	the	dependent	variable,	where	the
event	to	be	modeled	is	BONUS=1,	and	OVERALL_QUALITY	as	the
independent	variable.		Note	also	that	the	CLASS	statement	is	used
to	indicate	that	the	variable,	OVERALL_QUALITY,	is	a	categorical
input	variable.	The	initial	output	generated	will	be	identical	to	that



provided	in	Output	10.2a	Model	Information	and	Response	Profile
for	Simple	Logistic	Regression,	in	addition	to	the	excerpts	provided
in	Output	10.6	Logistic	Regression	for	One	Categorical	Predictor
Using	Effect	Coding.

First,	notice	that	for	C=3	levels	of	the	categorical	variable,	two
design	variables	(C-1)	are	created	and	displayed	in	the	Class	Level
Information.		If	a	house	has	OVERALL_QUALITY=1,	then	design
variable	1	is	coded	as	1,	or	0	otherwise;	if	a	house	has
OVERALL_QUALITY=2,	then	design	variable	2	is	coded	as	1,	or	0
otherwise;	finally,	if	a	house	has	OVERALL_QUALITY=3,	then	the
two	design	variables	are	coded	as	-1	and	-1,	respectively.		

This	method	of	parameterization	is	referred	to	as	effect	coding	and
is	used	as	the	SAS	default	for	the	CLASS	statement.	Basically,	SAS
sorts	the	OVERALL_QUALITY	in	order	(1,	2,	and	3),	creates	two
design	variables	corresponding	to	the	first	two	values,
OVERALL_QUALITY	equal	to	1	and	2,	and	then	assigns	the	value	of
-1	to	each	of	the	two	design	variables	for	the	last	value	of
OVERALL_QUALITY	(equal	to	3).	Note	that	when	effect	coding	is
used,	the	design	variables	for	the	last	level	are	all	equal	to	-1.		

This	method	of	coding	is	also	referred	to	as	deviation	from	the
mean	coding,	where	each	parameter	estimate	measures	the
difference	between	the	effect	at	that	level	and	the	average	effect	of
all	levels	combined.	So,	from	the	Analysis	of	Maximum	Likelihood
Estimates,	found	in	Output	10.6	Logistic	Regression	for	One
Categorical	Predictor	Using	Effect	Coding,	we	see	that	the	estimate
of	the	intercept,	-1.8547,	is	the	average	value	of		the	logit	for	all
categories	(just	like	the	intercept	in	linear	regression	is	equal	to	the
average	Y).	The	estimate	of	β1,	-1.5465,	is	the	difference	between
the	logit	for	OVERALL_QUALITY=1	(below	average)	and	the
average	logit.	Finally,	the	estimate	of	β2,	-0.9203,	is	the	difference
between	the	logit	for	OVERALL_QUALITY=2	(average)	and	the
average	logit.		Note	also	that,	with	this	method	of	coding,	there	are
slopes	only	for	C-1	levels	of	the	categorical	variable,
OVERALL_QUALITY.
Output	10.6	Logistic	Regression	for	One	Categorical	Predictor	Using	Effect	Coding

Class	Level	Information



Class Value Design
Variables

Overall_Quality 1 1 0

	 2 0 1

	 3 -1 -1

	

Analysis	of	Maximum	Likelihood	Estimates

Parameter 	 DF Estimate
Standard

Error

Wald
Chi-

Square Pr	>	ChiSq

Intercept 	 1 -1.8547 0.1839 101.6639 <.0001

Overall_Quality 1 1 -1.5465 0.3463 19.9392 <.0001

Overall_Quality 2 1 -0.9203 0.2178 17.8475 <.0001

	

Odds	Ratio	Estimates

Effect
Point

Estimate
95%	Wald

Confidence	Limits

Overall_Quality	1
vs	3

0.018 0.007 0.049

Overall_Quality	2
vs	3

0.034 0.022 0.052

	
One	drawback	to	using	effect	coding	is	that	the	parameter
estimates	of	the	dummy	variables	are	not	easily	interpretable;	in
fact,	notice	that	the	odds	ratios	cannot	be	calculated	directly	from
the	parameter	estimates	as	we	saw	earlier.	So,	what	do	you	do?

Suppose	you	want	to	look	at	the	odds	of	a	bonus	when	comparing
houses	that	have	below	average	quality	(OVERALL_QUALITY=1)
and	above	average	quality	(OVERALL_QUALITY=3).	Consider	the
difference	in	the	logit	for	the	two	groups,	based	upon	the	design
variables:

For	OVERALL_QUALITY=1,	

For	OVERALL_QUALITY=3,	



so	the	difference	 	=
2(-1.5465)	+	(-0.9203)	=	-4.0133

Remember	the	odds	ratio	can	be	obtained	by:

	=	0.01807	~	0.018			(as	seen	in	Output	10.6)

You	can	see	that,	when	the	parameter	estimate	is	negative,	the
odds	ratio	is	less	than	1.0,	meaning	that	the	event	modeled
(BONUS=1)	is	less	likely	than	BONUS=0.	The	odds	ratio	indicates
that	the	odds	of	getting	a	bonus	decrease	by	98.20%	(1-0.018	times
100%)	when	comparing	houses	with	below	average	quality
(OVERALL_QUALITY=1)	to	those	with	above	average	quality
(OVERALL_QUALITY=3),	as	noted	by	the	1	vs	3	in	the	output.

The	analyst	could	use	the	same	derivation	to	arrive	at	the	odds
ratio	when	comparing	houses	with	average	and	above	average
overall	quality	(OVERALL_QUALITY	=	2	and	3),	which	is	0.034,	as
found	in	Output	10.6	Logistic	Regression	for	One	Categorical
Predictor	Using	Effect	Coding.

Keep	in	mind	that	odds	ratios	can	be	converted	to	values	greater
than	1.0	by	inverting	and	changing	the	order	of	the	group
comparison.	Consider	the	odds	ratio	for	comparing	groups	1	versus
3.	Inverting	that,	or	taking	the	reciprocal,	gives	55.3,	which	is	now
interpreted	as	follows:		An	agent	is	55.3	times	more	likely	to	earn	a
bonus	when	selling	a	house	with	above	average	quality
(OVERALL_QUALITY=3)	when	compared	to	a	house	with	below
average	quality	(OVERALL_QUALITY=1);	designated	as	3	versus	1.

Reference	Cell	Coding	Parameterization
The	aforementioned	method	of	parameterization	takes	much
thought.	For	ease	of	interpretation,	the	analyst	may,	instead,	want
to	use	reference	cell	coding,	where	a	reference	group,	or	a
baseline	level,	is	defined,	and	the	other	levels	of	the	categorical
variable	are	compared	to	the	baseline.	Consider	the	same	Ames
Housing	example,	with	the	same	code	used	previously,	but	with	the
addition	of	the	PARAM	option	within	the	CLASS	statement	as	in
Program	10.7	Logistic	Regression	for	One	Categorical	Predictor
Using	Reference	Coding.



Program	10.7	Logistic	Regression	for	One	Categorical	Predictor	Using	Reference
Coding

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames	plots(only)=effect;

class	Overall_Quality	(param=ref	ref=‘1’);

model	Bonus	(Event	=	‘1’)=Overall_Quality

/selection=none	link=logit;		

run;

The	PARAM=REF	option	requests	that	SAS	use	reference	cell
coding	and	the	REF=1	defines	the	first	value	of	1	for
OVERALL_QUALITY	(below	average)	to	be	the	reference	group	for
comparison	purposes.	Notice	the	class	level	information	as
illustrated	in	Output	10.7	Logistic	Regression	for	One	Categorical
Predictor	Using	Reference	Coding.	Again,	SAS	sorts	the
OVERALL_QUALITY	in	order	(1,	2,	and	3),	and	assigns	a	value	of
zero	for	the	two	design	variables	for	the	reference	group
(OVERALL_QUALITY=1).	For	the	first	‘non-reference’	group
(OVERALL_QUALITY=2),		the	design	variable	1	is	coded	as	1	if	the
house	is	average	quality,	or	0	otherwise;	followed	by	the	next
group	(OVERALL_QUALITY=3),	where	design	variable	2	is	coded
as	1	if	the	house	is	above	average	quality,	or	0	otherwise.		

Now	the	parameter	estimates	measure	the	differences	in	logits
between	OVERALL_QUALITY=1	(the	reference	group)	and	each	of
the	logits	for	Overall_Quality	equal	to	2	and	3,	respectively.	For
example,	consider	the	difference	in	the	log-odds	of	a	bonus	when
comparing	houses	that	have	above	average	quality
(OVERALL_QUALITY=3)	and	below	average	quality
OVERALL_QUALITY=1).	Using	the	design	variables,	consider	the
following	logits:

For	OVERALL_QUALITY=3,	

For	OVERALL_QUALITY=1,	

so	the	difference	 	=	4.0133



as	seen	in	the	Analysis	of	Maximum	Likelihood	Estimates	in	Output
10.7	Logistic	Regression	for	One	Categorical	Predictor	Using
Reference	Coding.	When	we	exponentiate	the	estimate,	4.0133,	we
get	the	odds	ratio	of	55.33,	which	means	that	those	agents	selling
houses	with	above	average	quality	(OVERALL_QUALITY=3)	are
55.33	times	more	likely	to	receive	a	bonus	than	those	with	below
average	quality	(OVERALL_QUALITY=1).	(Remember:	we	obtained
an	odds	ratio	to	55.3	when	we	inverted	the	odds	ratio	from	the
output	generated	from	the	effect	coding	parameterization).

A	similar	calculation	can	be	done	when	comparing	houses	that
have	average	quality	(OVERALL_QUALITY=2)	and	below	average
quality	(OVERALL_QUALITY=1).	Using	the	design	variables,
consider	the	following	logit:

For	Overall_Quality=2,	

So	the	difference			=	 	=	0.6262

As	seen	in	the	Analysis	of	Maximum	Likelihood	Estimates	in	Output
10.7	Logistic	Regression	for	One	Categorical	Predictor	Using
Reference	Coding,	when	we	exponentiate	the	estimate,	0.6262,	we
get	the	odds	ratio	of	1.870,	which	means	that	those	agents	selling
houses	with	average	quality	(OVERALL_QUALITY=2)	are	1.870
times	more	likely	to	receive	a	bonus	than	those	with	below	average
quality	(OVERALL_QUALITY=1),	also	seen	in	Output	10.7	Logistic
Regression	for	One	Categorical	Predictor	Using	Reference	Coding.
Note	also	that	the	odds	ratios	are	identical	regardless	of	the
parameterization	method	used.
Output	10.7	Logistic	Regression	for	One	Categorical	Predictor	Using	Reference
Coding

Class	Level	Information

Class Value
Design
Variables

Overall_Quality 1 0 0

	 2 1 0

	 3 0 1

	



Model	Convergence	Status

Convergence	criterion	(GCONV=1E-8)
satisfied.

	

Model	Fit	Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 1877.463 1305.232

SC 1882.700 1320.941

-2	Log	L 1875.463 1299.232

	

Testing	Global	Null	Hypothesis:	BETA=0

Test
Chi-
Square DF Pr	>	ChiSq

Likelihood
Ratio

576.2312 2 <.0001

Score 493.9597 2 <.0001

Wald 298.2137 2 <.0001

	

Type	3	Analysis	of	Effects

Effect DF

Wald
Chi-

Square Pr	>	ChiSq

Overall_Quality 2 298.2137 <.0001

	

Analysis	of	Maximum	Likelihood	Estimates

Parameter 	 DF Estimate
Standard

Error

Wald
Chi-

Square Pr	>	ChiSq

Intercept 	 1 -3.4012 0.5083 44.7805 <.0001

Overall_Quality 2 1 0.6262 0.5470 1.3105 0.2523



Overall_Quality 3 1 4.0133 0.5135 61.0870 <.0001

	

Odds	Ratio	Estimates

Effect
Point

Estimate
95%	Wald

Confidence	Limits

Overall_Quality	2
vs	1

1.870 0.640 5.464

Overall_Quality	3
vs	1

55.327 20.224 151.359

	

As	far	as	statistical	tests,	when	the	CLASS	statement	is	used,	the
output	always	includes	the	Type	3	Analysis	of	Effects	to	show
effects	of	all	predictors,	specifically	the	significance	of	the
categorical	predictor.	From	Output	10.7	Logistic	Regression	for	One
Categorical	Predictor	Using	Reference	Coding,	the	chi-square	test
statistic	is	298.2137	(p<.0001),	with	two	degrees	of	freedom	for
the	2	design	variables.		In	conclusion,	there	is	evidence	that	the
variable,	OVERALL_QUALITY,	is	related	to	BONUS.	Further
inspection	of	significance	tests	in	the	Analysis	of	Maximum



Likelihood	Estimates	table	shows	that	there	are	different	effects	(χ2
=	61.0870,	degrees	of	freedom=1,	p<.0001)	on	BONUS	when
comparing	above	average	quality	houses	to	below	average	quality
houses	(3	vs	1);	however	when	comparing	average	to	below
average	(2	vs	1),	there	are	no	differences	(χ2	=	1.3105,	degrees	of
freedom=1,	p=0.2523)	in	the	probability	of	getting	a	bonus.
These	effects	are	also	displayed	in	the	effects	plot	in	Output	10.7
Logistic	Regression	for	One	Categorical	Predictor	Using	Reference
Coding,	where	it	is	evident	that	the	probability	of	getting	a	bonus	is
significantly	higher	for	above	average	quality
(OVERALL_QUALITY=3).

Finally,	it	is	worth	mentioning	that	when	a	variable	is	already
dummy	coded,	the	CLASS	statement	is	not	necessary.	For	example,
in	the	Ames	Housing	data,	the	variable,	HIGH_KITCHEN_QUALITY,
is	coded	as	1	if	the	kitchen	quality	is	good	or	excellent,	or	0
otherwise.	So	Program	10.8	CLASS	Statement	with	Dummy	Coded
Variable	with	or	without	the	CLASS	statement	would	give	identical
results.
Program	10.8	CLASS	Statement	with	Dummy	Coded	Variable

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames;

class	High_Kitchen_Quality	(param=ref	ref=first);

model	Bonus	(Event	=	‘1’)=High_Kitchen_Quality

/selection=none	link=logit;

run;

	

proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=High_Kitchen_Quality

/selection=none	link=logit;

run;

The	Multiple	Logistic	Regression	Model



Ordinarily,	an	outcome	can	be	predicted	with	more	than	one
variable.	This	section	will	apply	topics	covered	previously	to	the
multivariate	case.	Consider	the	Ames	Housing	Case.		In	reality,	we
all	know	that	the	value	of	house	is	directly	related	to	the	amount	of
living	area.	Previously,	we	saw	that	BONUS	(defined	by	selling
price)	is	significantly	related	to	above	ground	living	area
(GR_LIV_AREA).	It	also	seems	reasonable	to	assume	that	the	selling
price	is	related	the	total	area	of	the	basement	(TOTAL_BSMT_SF)
which	plays	into	the	total	size	of	the	house.	Also	related	to	size	is
the	lot	size	on	which	the	house	is	built;	it	seems	that	the	same
house	would	sell	for	more	if	it	is	on	a	large	lot	versus	small	lot.
Consequently,	lot	area	(LOT_AREA)	should	be	considered	as	well.
Similarly,	it	seems	that	both	age	and	overall	quality	matter	when	a
buyer	is	considering	price,	when	the	aforementioned	factors	are
considered.

Multiple	Logistic	Regression	by	Example
Now	that	we	have	considered	the	obvious	factors,	let’s	consider
additional	factors.	Note	that	in	Chapter	8,	“Preparing	the	Input
Variables	for	Prediction,”	we	started	with	29	input	variables,	in
addition	to	the	three	neighborhood	cluster/dummy	variables
created	after	applying	the	Greenacre	method,	ending	with	23
potential	input	variables	after	the	variable	clustering.	For	ease	of
illustration	here,	we	will	limit	the	initial	set	of	inputs	to	thirteen
variables.

As	mentioned	in	Chapter	5,	“Analysis	of	Categorical	Variables,
architects	agree	that	the	kitchen	and	baths	are	the	most	expensive
areas	of	the	house	with	respect	to	construction	costs,	not	to
mention	those	are	the	rooms	where	people	spend	the	most	time.	So
here,	we	will	consider	also	kitchen	quality
(HIGH_KITCHEN_QUALITY)	and	whether	the	house	has	at	least	two
full	bathrooms	(FULLBATH_2PLUS).	Many	real	estate	agents	argue
that	houses	located	on	a	cul-de-sac	can	command	a	higher	sales
price	for	reasons	related	to	curb	appeal	and	privacy.	Finally,	we
will	consider	other	amenities	such	as	having	a	fireplace,	size	of	the
garage,	exterior	condition,	condition	of	the	lot	(level	or	not),	and	a
fenced-in	yard	to	see	how	those	are	related	to	bonus	when	all
characteristics	are	considered	together.



Consider	Program	10.9	Multiple	Logistic	Regression	for	Ames
Housing	Using	Reference	Coding.
Program	10.9	Multiple	Logistic	Regression	for	Ames	Housing	Using	Reference
Coding

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames;

class	Overall_Quality	(param=ref	ref=first);

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	Overall_Quality	High_Kitchen_Quality
Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage	High_Exterior_Cond	CuldeSac
Has_Fence

Land_Level		/selection=none	link=logit;

units	Gr_Liv_Area=100	Total_Bsmt_SF=100

Lot_Area=10000	Age_At_Sale=10;		

run;

First,	the	EVENT=’1’	in	the	MODEL	statement	defines	the	event	to
be	modeled,	namely,	BONUS=1,	as	a	function	of	the		thirteen
variables	listed.	The	CLASS	statement	specifics	that
OVERALL_QUALITY	is	categorical,	and	the	REF=FIRST	defines	the
first	ordered	category	(1=below	average)	as	the	reference	group,
as	displayed	in	Output	10.8a	Class	Level	Information	Using
Reference	Coding.	It	should	be	noted	that	there	are	eight	other
categorical	variables	(HIGH_KITCHEN_QUALITY	through
LAND_LEVEL);	these	are	all	pre-defined	dichotomous	dummy
variables,	as	defined	by	the	data	dictionary.	Specifically,	each	is
coded	as	‘1’	if	the	attribute	represented	by	the	variable	exists,	or	‘0’
otherwise.	Therefore,	parameterization	is	not	necessary	and	those
variables	do	not	appear	in	the	CLASS	statement.
Output	10.8a	Class	Level	Information	Using	Reference	Coding

Class	Level	Information

Class Value
Design
Variables



Overall_Quality 1 0 0

	 2 1 0

	 3 0 1

Note	that	the	MODEL	statement	defines	NONE	as	the	method	of
selection	(default)	and	the	LINK	function	as	the	logit	(default).	The
UNITS	statement	requests	different	units	for	reporting	the	odds
ratios	for	the	numeric	continuous	variables,	GR_LIV_AREA,
TOTAL_BSMT_SF,	LOT_AREA,	AGE_AT_SALE.	The	output	indicates
that	the	model	does	meet	the	convergence	criterion,	so	the
remaining	output	will	be	described	below.

The	Model	Information	and	Response	Profile	tables	are	identical	to
those	found	in	Output	10.2a	Model	Information	and	Response
Profile	for	Simple	Logistic	Regression.	Next,	the	Model	Fit	Statistics
and	Testing	Global	Null	Hypotheses,	as	displayed	in	Output	10.8b
Fit	Statistics	and	Global	Null	Test	for	Multiple	Logistic	Regression,
are	provided	to	test	the	following	hypothesis	that	none	of	the
predictors	are	significantly	related	to	BONUS:

Ho:	β1	=	β2	=	β3	=	…		=	β14																				(none	of	the
predictors	are	good)

H1:	at	least	one	βj		≠	0																										(at	least	one	predictor
is	good,	for	any	predictor	j)

We	can	see	that	the	p-value	for	the	likelihood	ratio	test	is	less	than
0.0001;	therefore,	the	null	hypothesis	is	rejected.		In	short,	there	is
evidence	from	the	data	that	at	least	one	predictor	is	good.	Notice
that	there	are	fourteen	degrees	of	freedom—	remember	there	are
thirteen	variables;	however,	one	of	those	(OVERALL_QUALITY)	is
represented	by	two	design	variables,	adding	a	degree	of	freedom
for	the	additional	variable.	From	the	fit	statistics,	we	can	see	a
significant	reduction	in	the	AIC,	SC,	and	-2LogL,	respectively,
indicating	that	the	model	fits	the	data	better	than	the	model	with
the	intercept	only.
Output	10.8b	Fit	Statistics	and	Global	Null	Test	for	Multiple	Logistic	Regression

Model	Fit	Statistics

Criterion
Intercept

Only

Intercept
and

Covariates



AIC 1877.463 549.338

SC 1882.700 627.883

-2	Log	L 1875.463 519.338

	

	

Testing	Global	Null	Hypothesis:	BETA=0

Test
Chi-

Square DF Pr	>	ChiSq

Likelihood
Ratio

1356.1251 14 <.0001

Score 948.8095 14 <.0001

Wald 267.4416 14 <.0001

Because	a	CLASS	statement	was	used	to	create	design	variables,	the
Type	3	Analysis	of	Effects	is	provided	as	illustrated	in	Output	10.8c
Test	3	Analysis	of	Effects	for	Multiple	Logistic	Regression.	This
table	lists	all	of	the	input	variables,	along	with	their	unique
contribution	to	the	model	fit	controlling	for	all	other	input
variables.	Using	0.01	level	of	significance,	we	can	see,	for	example,
that	above	ground	living	area	(GR_LIV_AREA)	is	significantly
related	to	BONUS,	in	the	presence	of	all	other	input	variables.	In
fact,	we	can	see	that	variables	TOTAL_BSMT_SF	through
FIREPLACE_1PLUS	all	have	multivariate	significance.		In	other
words,	those	variables	are	uniquely	related	to	BONUS	in	the
presence	of	the	others.

However,	because	the	p-values	for	the	remaining	variables
(TWOPLUSCAR_GARAGE,	HIGH_EXTERIOR_COND,	CULDESAC,
HAS_FENCE,	and	LAND_LEVEL)	are	all	greater	than	0.01,	there	is
no	evidence	that	those	variables,	separately,	are	related	to	BONUS
in	the	presence	of	all	predictors.	In	other	words,	once	you	take	into
account	variables	related	to	size	(GR_LIV_AREA,	TOTAL_BSMT_SF,
LOT_AREA),	the	age	of	the	house	(AGE_AT_SALE),	quality	and
condition	(OVERALL_QUALITY,	OVERALL_CONDITION),	variables
related	to	kitchen	and	number	of	bathrooms
(HIGH_KITCHEN_QUALITY	and	FULLBATH_2PLUS),	and	having	at
least	one	fireplace	(FIREPLACE_1PLUS),	the	other	variables	add	no
more	to	the	model	fit.



In	the	Type	3	Analysis	of	Effects,	keep	in	mind	that	the	degrees	of
freedom	for	each	quantitative	variable	is	one.	The	degrees	of
freedom	for	the	categorical	variables	are	C-1	(equivalent	to	the
number	of	design	variables,	where	C=number	of	levels	for	the
categorical	variable).	So	for	OVERALL_QUALITY,	having	3	levels
(below	average,	average,	and	above	average),	the	degrees	of
freedom	are	3-1	or	2.
Output	10.8c	Test	3	Analysis	of	Effects	for	Multiple	Logistic	Regression

Type	3	Analysis	of	Effects

Effect DF

Wald
Chi-

Square Pr	>	ChiSq

Gr_Liv_Area 1 75.3062 <.0001

Total_Bsmt_SF 1 34.6892 <.0001

Lot_Area 1 7.4191 0.0065

Age_at_Sale 1 30.3284 <.0001

Overall_Quality 2 36.3609 <.0001

High_Kitchen_Quality 1 45.4299 <.0001

Fullbath_2plus 1 12.8562 0.0003

Fireplace_1plus 1 13.4279 0.0002

TwoPlusCar_Garage 1 0.5337 0.4651

High_Exterior_Cond 1 2.9088 0.0881

CuldeSac 1 0.7639 0.3821

Has_Fence 1 0.0393 0.8429

Land_Level 1 6.4113 0.0113

The	parameter	estimates	and	odds	ratios	for	the	multiple	logistic
regression,	including	the	design	variables,	are	found	in	Output
10.8d	Maximum	Likelihood	Estimates	and	Odds	Ratios	for	Multiple
Logistic	Regression.	Note	that	when	the	parameter	estimates	are
negative,	then	the	odds	ratios	are	less	than	1.0;	when	the
parameters	estimates	are	positive,	the	odds	ratios	are	greater	than
1.0.

Note	that	for	the	significant	predictors,	those	with	odds	ratios
greater	than	1.0	are	more	likely	to	be	houses	where	the	agent
earned	a	bonus,	whereas	predictors	with	odds	ratios	less	than	1.0



are	more	less	likely	to	be	houses	where	the	agent	earned	a	bonus.
For	example,	the	parameter	estimate	for	AGE_AT_SALE	is	negative
with	an	odds	ratio	of		0.723	(for	UNITS=10).	This	means	that	the
odds	of	getting	a	bonus	decrease	by	27.7%	(1-0.723	times	100%)
when	comparing	one	house	to	another	that	is	ten	years	older,
holding	all	other	factors	constant.

Finally,	the	analyst	should	consider	omitting	the	insignificant
predictors	from	the	final	model.	In	the	next	section,	method	of
variable	selection	will	be	discussed	to	illustrate	strategies		for
selecting	the	final	model.
Output	10.8d	Maximum	Likelihood	Estimates	and	Odds	Ratios	for	Multiple	Logistic
Regression

Analysis	of	Maximum	Likelihood	Estimates

Parameter 	 DF Estimate
Standard

Error

Wald
Chi-

Square Pr	>	ChiSq

Intercept 	 1 -11.4203 1.3082 76.2149 <.0001

Gr_Liv_Area 	 1 0.00399 0.000460 75.3062 <.0001

Total_Bsmt_SF 	 1 0.00218 0.000371 34.6892 <.0001

Lot_Area 	 1 0.000067 0.000024 7.4191 0.0065

Age_at_Sale 	 1 -0.0325 0.00590 30.3284 <.0001

Overall_Quality 2 1 0.3410 0.8543 0.1593 0.6898

Overall_Quality 3 1 2.2262 0.8223 7.3298 0.0068

High_Kitchen_Quality 	 1 1.6887 0.2505 45.4299 <.0001

Fullbath_2plus 	 1 1.0395 0.2899 12.8562 0.0003

Fireplace_1plus 	 1 0.9377 0.2559 13.4279 0.0002

TwoPlusCar_Garage 	 1 0.2549 0.3489 0.5337 0.4651

High_Exterior_Cond 	 1 0.6540 0.3835 2.9088 0.0881

CuldeSac 	 1 0.3973 0.4546 0.7639 0.3821

Has_Fence 	 1 -0.0563 0.2838 0.0393 0.8429

Land_Level 	 1 -1.0182 0.4021 6.4113 0.0113

	

Odds	Ratio	Estimates



Effect Point
Estimate

95%	Wald
Confidence	Limits

Gr_Liv_Area 1.004 1.003 1.005

Total_Bsmt_SF 1.002 1.001 1.003

Lot_Area 1.000 1.000 1.000

Age_at_Sale 0.968 0.957 0.979

Overall_Quality							2	vs	1 1.406 0.264 7.504

Overall_Quality							3	vs	1 9.264 1.849 46.424

High_Kitchen_Quality 5.413 3.312 8.845

Fullbath_2plus 2.828 1.602 4.991

Fireplace_1plus 2.554 1.547 4.218

TwoPlusCar_Garage 1.290 0.651 2.557

High_Exterior_Cond 1.923 0.907 4.078

CuldeSac 1.488 0.610 3.627

Has_Fence 0.945 0.542 1.649

Land_Level 0.361 0.164 0.794

	

Association	of	Predicted	Probabilities	and
Observed	Responses

Percent
Concordant

97.9 Somers’
D

0.957

Percent
Discordant

2.1 Gamma 0.957

Percent	Tied 0.0 Tau-a 0.462

Pairs 465038 c 0.979

	

Odds	Ratios

Effect Unit Estimate

Gr_Liv_Area 100.0 1.490

Total_Bsmt_SF 100.0 1.244

Lot_Area 10000.0 1.945

Age_at_Sale 10.0000 0.723



	

Variable	Selection
As	mentioned	earlier,	the	analyst	is	sometimes	faced	with
hundreds,	even	thousands,	of	input	variables.	In	Chapter	8,
“Preparing	the	Input	Variables	for	Prediction,”	we	discussed
strategies	for	tackling	the	issue	of	redundancy.	Recall,	that	is	the
situation	where	input	variables	have	overlapping	information	and
the	inclusion	of	one	or	the	other	provides	no	additional	information
to	the	set	of	input	variables.	Once	the	analyst	reduces	the	initial	set
of	input	variables	by	eliminating	those	that	are	redundant,	the	next
step	is	to	consider	the	relevancy	of	the	input	variables	with	respect
to	the	dependent	variable.

In	this	section,	we	will	discuss	variable	selection	methods	aimed	at
selecting	a	subset	of	q	variables	(q	<	k)	related	to	the	outcome
variable,	so	that	the	reduced	subset	provides	the	‘best’	model	fit	to
the	data.	These	methods	can	be	carried	out	by	using	the
SELECTION=	option	within	the	MODEL	statement.

The	default	selection	option	for	the	logistic	regression	procedure	is
the	SELECTION=NONE	where	the	full	model	is	estimated	using	all
variables	defined	in	the	MODEL	statement.	So	using	the	SAS	code
below,	for	example,	the	logistic	regression	model	would	be
estimated	using	all	three	input	variables,	above	ground	living	area,
total	basement	square	footage,	and	lot	area.
proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

/selection=none;

run;

Sequential	searches	include	backward,	forward,	and	stepwise
selection	methods.	The	following	sections	will	describe	these
methods,	with	a	short	commentary	about	the	best	subset	selection
method,	as	well.

Backward	Elimination

Backward	selection	starts	with	the	model	containing	all	of	the
specified	variables,	and	then	each	variable	deemed	least	important
is	removed	one	at	a	time	when	that	variable	fails	to	satisfy	the



criterion	for	staying	in	the	model.	Once	a	model	is	fit	such	that	no
other	variables	fail	the	criterion	for	staying	(in	other	words,	when
all	remaining	variables	are	considered	important),	the	variable
selection	process	ends.	Note	that,	for	backward	selection,	once	a
variable	is	dropped,	it	cannot	be	added.

To	illustrate	the	backward	elimination	process,	consider	the	Ames
Housing	Case.	Suppose	we	used	preliminary	analyses	to	arrive	at	a
candidate	set	of	thirteen	possible	input	variables;	we	want	to	start
with	those	thirteen	variables	and	eliminate	those	that	are
considered	unimportant.	We	would	use	Program	10.10	Backward
Elimination	for	Ames	Housing.

In	Program	10.10	Backward	Elimination	for	Ames	Housing,	we	see
the	CLASS	statement	which	defines	the	categorical	input	variable,
along	with	the	PARAM=REF	option	requesting	that	SAS	use	the
reference	cell	coding.	The	MODEL	statement	defines	the	outcome
variable,	BONUS,	and	the	thirteen	variables	to	be	included	in	the
selection	process.	Note	also	that	the	MODEL	statement	has	three
options.	First,	SELECTION=BACKWARD	requests	that	the
backward	elimination	method	be	used,	where	the	Wald	Chi-Square
test	is	used	for	determining	the	removal	of	a	predictor	from	the
model	under	investigation.	Second,	SLSTAY	specifies	the
significance	level	for	the	test;	in	other	words,	it	defines	the
minimum	p-value	necessary	for		staying	in	the	model.	Finally,	the
DETAILS	option	requests	a	summary	of	each	step	in	the	elimination
process.
Program	10.10	Backward	Elimination	for	Ames	Housing

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames;

class	Overall_Quality	(param=ref	ref=first);

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	Overall_Quality	High_Kitchen_Quality
Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage	High_Exterior_Cond	CuldeSac

Has_Fence	Land_Level/selection=backward	slstay=0.01	details;



run;

The	first	few	tables	generated	from	Program	10.10	Backward
Elimination	for	Ames	Housing	are	identical	to	the	tables	generated
when	running	a	single	logistic	regression	model;	namely,	the	Model
Information,	the	Number	of	Observations	Read	and	Used,	the
Response	Profile,	and	Class	Level	Information	tables.	The	output
then	displays	Step	0	of	the	backward	elimination	method	indicating
that	all	thirteen	effects	were	entered	into	the	model.

Included	under	Step	0	are	the	typical	tables	for	the	full	model—
Convergence	Status,	the	Model	Fit	Statistics,	Testing	Global	Null
Hypothesis:	BETA=0,	Type	3	Analysis	of	Effects,	Analysis	of
Maximum	Likelihood	Estimates,	Odds	Ratios	Estimates,	and
Association	of	Predicted	Probabilities	and	Observed	Responses.

The	next	table	provided	is	unique	to	the	backward	selection
process,	namely	the	Analysis	of	Effects	Eligible	for	Removal	and	is
the	first	table,	as	displayed	in	Output	10.9a	Effects	Eligible	for
Removal	for	Step	1	of	Backward	Elimination.	This	table	displays
information	identical	to	the	Type	3	Analysis	of	Effects	table	and
provides	the	p-values	for	the	Wald	Chi-Square	test	statistic	for	each
predictor.	Remember	each	Wald	Chi-Square	test	measures	whether
or	not	the	slope	for		that	predictor	is	significantly	different	from
zero	in	the	presence	of	the	other	predictors.	Using	0.01	level	of
significance,	as	defined	by	SLSTAY=0.01,	we	can	see	that	the	last
five	variables	fail	the	test	for	staying	in	the	model.	Because	the	p-
value	for	the	variable,	HAS_FENCE,	is	largest	at	0.8429,	that
variable	is	removed	from	the	candidate	of	variables,	as	indicated	by
the	‘Step		1.	Effect	Has_Fence	is	removed’	message.
Output	10.9a			Effects	Eligible	for	Removal	for	Step	1	of	Backward	Elimination

Analysis	of	Effects	Eligible	for	Removal

Effect DF

Wald
Chi-

Square Pr	>	ChiSq

Gr_Liv_Area 1 75.3062 <.0001

Total_Bsmt_SF 1 34.6892 <.0001

Lot_Area 1 7.4191 0.0065

Age_at_Sale 1 30.3284 <.0001

Overall_Quality 2 36.3609 <.0001



High_Kitchen_Quality 1 45.4299 <.0001

Fullbath_2plus 1 12.8562 0.0003

Fireplace_1plus 1 13.4279 0.0002

TwoPlusCar_Garage 1 0.5337 0.4651

High_Exterior_Cond 1 2.9088 0.0881

CuldeSac 1 0.7639 0.3821

Has_Fence 1 0.0393 0.8429

Land_Level 1 6.4113 0.0113

	
Step		1.	Effect	Has_Fence	is	removed:

The	backward	elimination	process	continues	with	fitting	the	model
for	the	remaining	twelve	predictors,	providing	all	of	the	typical
output,	ending	with	the	Analysis	of	Effects	Eligible	for	Removal
used	for	Step	2,	as	illustrated	in	Output	10.9b	Effects	Eligible	for
Removal	for	Step	2	of	Backward	Elimination.	Using	0.01	level	of
significance,	we	can	see	that	the	last	four	variables	fail	the	test	for
staying	in	the	model.	Because	the	p-value	for	the	variable,
TWOPLUSCAR_GARAGE,	is	largest	at	0.4586,	that	variable	is
removed	from	the	candidate	of	variables,	as	indicated	by	the	‘Step
	2.	Effect	TwoPlusCar_Garage	is	removed’	message.
Output	10.9b		Effects	Eligible	for	Removal	for	Step	2	of	Backward	Elimination

Analysis	of	Effects	Eligible	for	Removal

Effect DF

Wald
Chi-

Square Pr	>	ChiSq

Gr_Liv_Area 1 75.8107 <.0001

Total_Bsmt_SF 1 34.6671 <.0001

Lot_Area 1 7.5509 0.0060

Age_at_Sale 1 31.5647 <.0001

Overall_Quality 2 36.8515 <.0001

High_Kitchen_Quality 1 45.6473 <.0001

Fullbath_2plus 1 12.8136 0.0003

Fireplace_1plus 1 13.3911 0.0003

TwoPlusCar_Garage 1 0.5493 0.4586



High_Exterior_Cond 1 2.9017 0.0885

CuldeSac 1 0.7716 0.3797

Land_Level 1 6.5480 0.0105

	
Step		2.	Effect	TwoPlusCar_Garage	is	removed:

The	backward	elimination	process	continues	with	fitting	the	model
for	the	remaining	eleven	predictors,	providing	the	Analysis	of
Effects	Eligible	for	Removal	used	for	Step	3,	as	illustrated	in	Output
10.9c		Effects	Eligible	for	Removal	for	Steps	3	through	5	of
Backward	Elimination.	Using	0.01	level	of	significance,	we	can	see
that	the	last	three	variables	fail	the	test	for	staying	in	the	model.
Here,	the	variable,	CULDESAC,	is	removed,	with	the	largest	p-value
of	0.3737.

Note	that	this	process	continues	through	Step	5	where	a	total	of
five	variables	have	been	eliminated.	When	the	model	for	the
remaining	eight	variables	is	fitted,	it	is	evident	from	the	p-values
displayed	in	the	Analysis	of	Effects	Eligible	for	Removal	table	(not
displayed	here),	that	none	of	the	remaining	variables	meet	the
criterion	for	removal	and	the	backward	elimination	process	is
stopped.	This	is	indicated	by	the	‘Note’	after	Step	5,	as	indicated	in
Output	10.9c		Effects	Eligible	for	Removal	for	Step	3	through	5	of
Backward	Elimination.
Output	10.9c		Effects	Eligible	for	Removal	for	Steps	3	through	5	of	Backward
Elimination

Analysis	of	Effects	Eligible	for	Removal

Effect DF

Wald
Chi-

Square Pr	>	ChiSq

Gr_Liv_Area 1 77.9877 <.0001

Total_Bsmt_SF 1 35.1362 <.0001

Lot_Area 1 8.5826 0.0034

Age_at_Sale 1 37.6108 <.0001

Overall_Quality 2 38.7543 <.0001

High_Kitchen_Quality 1 45.3149 <.0001

Fullbath_2plus 1 14.4793 0.0001



Fireplace_1plus 1 13.4759 0.0002

High_Exterior_Cond 1 2.8856 0.0894

CuldeSac 1 0.7914 0.3737

Land_Level 1 6.5462 0.0105

	
Step		3.	Effect	CuldeSac	is	removed:

Analysis	of	Effects	Eligible	for	Removal

Effect DF

Wald
Chi-

Square Pr	>	ChiSq

Gr_Liv_Area 1 78.6921 <.0001

Total_Bsmt_SF 1 35.2652 <.0001

Lot_Area 1 9.6417 0.0019

Age_at_Sale 1 39.1726 <.0001

Overall_Quality 2 39.2477 <.0001

High_Kitchen_Quality 1 44.8324 <.0001

Fullbath_2plus 1 14.4208 0.0001

Fireplace_1plus 1 13.3569 0.0003

High_Exterior_Cond 1 3.0582 0.0803

Land_Level 1 6.5291 0.0106

	
Step		4.	Effect	High_Exterior_Cond	is	removed:

	

Analysis	of	Effects	Eligible	for	Removal

Effect DF

Wald
Chi-

Square Pr	>	ChiSq

Gr_Liv_Area 1 78.2193 <.0001

Total_Bsmt_SF 1 34.3788 <.0001

Lot_Area 1 9.7845 0.0018

Age_at_Sale 1 36.7145 <.0001

Overall_Quality 2 38.4213 <.0001

High_Kitchen_Quality 1 47.5371 <.0001



Fullbath_2plus 1 16.4911 <.0001

Fireplace_1plus 1 12.4484 0.0004

Land_Level 1 6.1019 0.0135

	
Step		5.	Effect	Land_Level	is	removed:

	

Note:No	(additional)	effects	met	the	0.01	significance	level	for	removal
from	the	model.

	

Once	the	backward	elimination	process	is	stopped,	a	summary	of
the	removal	is	provided	as	specified	by	the	DETAILS	option	in	the
MODEL	statement.	That	summary	is	displayed	in	Output	10.9d
Summary	of	Effects	Removed	in	Backward	Elimination.
Output	10.9d	Summary	of	Effects	Removed	in	Backward	Elimination

Summary	of	Backward	Elimination

Step
Effect
Removed DF

Number
In

Wald
Chi-

Square Pr	>	ChiSq

1 Has_Fence 1 12 0.0393 0.8429

2 TwoPlusCar_Garage 1 11 0.5493 0.4586

3 CuldeSac 1 10 0.7914 0.3737

4 High_Exterior_Cond 1 9 3.0582 0.0803

5 Land_Level 1 8 6.1019 0.0135

	
In	conclusion,	we	can	see	that	the	model	selected	by	the	backward
elimination	method	contains	eight	predictors.	Recall,	in	the	last
section,	that	these	eight	predictors	are	the	same	found	to	be
significant	in	the	full	model.	This	is	not	always	the	case,	but	the
models	should	be	similar.

Forward	Selection

Forward	selection	starts	with	the	model	containing	only	the



intercept,	and	then	adds	variables	one	at	a	time	as	long	as	each
satisfies	the	criterion	for	entry	in	the	model.	Once	a	model	is	fit
such	that	no	other	remaining	variables	meet	the	criteria	for	entry,
the	variable	selection	process	ends.	Note	that,	for	forward	selection,
once	a	variable	is	added,	it	cannot	be	removed.

In	the	forward	selection	process,	the	Score	Chi-Square	Score	test
statistic	is	used	for	entry	(see	the	LOGISTIC		Procedure	in	the
SAS/STAT	User’s	Guide	for	the	formulation	of	the	Score	statistic).
This	tests	the	null	hypothesis	that	the	current	estimated	model	is
adequate,	with	no	need	for	additional	predictors.

To	illustrate	the	forward	selection	process,	consider	again	the	Ames
Housing	Case,	where	the	analyst	has	used	preliminary	analyses	to
arrive	at	a	candidate	set	of	thirteen	possible	input	variables.
Basically,	we	want	to	start	with	the	intercept	(no	predictors),	and
then	add	variables	one	at	a	time	that	are	considered	important
according	to	the	score	chi-square.	We	would	use	Program	10.11
Forward	Selection	for	Ames	Housing.
Program	10.11	Forward	Selection	for	Ames	Housing

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames;

class	Overall_Quality	(param=ref	ref=first);

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	Overall_Quality	High_Kitchen_Quality
Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage	High_Exterior_Cond	CuldeSac
Has_Fence

Land_Level/selection=forward	slentry=0.01	details;

run;

Program	10.11	Forward	Selection	for	Ames	Housing	provided	here
is	identical	to	that	used	for	the	backward	elimination	with	a	couple
of	exceptions.	First,	the	SELECTION=FORWARD	option	is	used
instead.	Because	the	forward	selection	starts	with	no	predictors
with	the	goal	of	adding	potential	predictors,	the	appropriation
selection	option	is	SLENTRY,	which	specifies	the	significance	level



needed	for	entry.

Beginning	with	Step	1,	after	the	intercept-only	model	is	estimated,
SAS	calculates	the	Score	Chi-Square	Score	test	statistic	for	every
variable	not	yet	in	the	model,	along	with	their	p-values;	the
variable	with	the	largest	test	statistic	(lowest	p-value)	is	selected
for	entry	only	if	the	p-value	is	below	that	value	specified	in	the
SLENTRY	option.	At	Step	2,	the	same	process	is	implemented;	after
the	model	with	the	intercept	and	the	first	selected	predictor	is
estimated,	the	p-value	for	the	Score	test	is	calculated	for	every
other	variable	not	yet	in	the	model.	The	variable	with	the	lowest	p-
value	is	selected	next	as	long	as	it	meets	the	SLENTRY	criteria.	This
process	continues	until	no	additional	variables	meet	the	criterion
for	entry.		Remember	that	once	a	variable	is	entered	into	the
model,	it	is	never	eliminated.

As	illustrated	in	the	backward	elimination,	the	output	provided
first	includes	the	information	typically	found	in	a	logistic	regression
analysis,	followed	by	the	first	Analysis	of	Effects	Eligible	for	Entry
table,	as	displayed	in	Output	10.10a	Effects	Eligible	for	Entry	for
Step	1	of	Forward	Selection.	Here,	we	can	see	the	Score	Chi-Square
statistic	and	p-value	for	all	thirteen	variables	not	yet	entered	into
the	model.	Note	that	while	SAS	rounds	the	p-value,	resulting	in
many	variables	having	p<.0001,	the	smallest	p-value	is	that
associated	with	the	largest	chi-square	statistic.	As	a	result,	the
variable,	FULLBATH_2PLUS,	is	selected	for	entry,	with	the	largest
chi-square	statistic	of	667.2729,	as	illustrated	in	Step	1.
Output	10.10a	Effects	Eligible	for	Entry	for	Step	1	of	Forward	Selection

Analysis	of	Effects	Eligible	for	Entry

Effect DF
Score
Chi-Square Pr	>	ChiSq

Gr_Liv_Area 1 584.5319 <.0001

Total_Bsmt_SF 1 314.2380 <.0001

Lot_Area 1 69.3485 <.0001

Age_at_Sale 1 460.2132 <.0001

Overall_Quality 2 493.9597 <.0001

High_Kitchen_Quality 1 459.8347 <.0001

Fullbath_2plus 1 667.2729 <.0001



Fireplace_1plus 1 242.1424 <.0001

TwoPlusCar_Garage 1 375.2390 <.0001

High_Exterior_Cond 1 8.1981 0.0042

CuldeSac 1 26.6874 <.0001

Has_Fence 1 67.1557 <.0001

Land_Level 1 3.5978 0.0579

	
Step		1.	Effect	Fullbath_2plus	entered:

The	forward	selection	process	continues	with	fitting	the	model	for
the	one	predictor	selected,	providing	all	of	the	typical	output,
followed	by	the	Analysis	of	Effects	Eligible	for	Entry	table	for	Step
2,	resulting	in	the	variable,	HIGH_KITCHEN_QUALITY,	selected	for
entry.

Once	it	is	determined	that	no	additional	variables	contribute	to	the
fit,	the	forward	selection	process	ends	and	a	summary	of	the
forward	selection	is	provided	as	specified	by	the	DETAILS	option	in
the	MODEL	statement.	That	summary	is	displayed	in	Output	10.10b
Summary	of	Effects	Entered	in	Forward	Selection.	Note	that	the
variable	subset	selected	using	forward	selection	is	identical	to	that
selected	using	backward	elimination.	Again,	that	is	not	always	the
case.
Output	10.10b		Summary	of	Effects	Entered	in	Forward	Selection

Summary	of	Forward	Selection

Step
Effect
Entered DF

Number
In

Score
Chi-Square Pr	>	ChiSq

1 Fullbath_2plus 1 1 667.2729 <.0001

2 High_Kitchen_Quality 1 2 205.2677 <.0001

3 Gr_Liv_Area 1 3 134.2660 <.0001

4 Age_at_Sale 1 4 115.8901 <.0001

5 Total_Bsmt_SF 1 5 46.7676 <.0001

6 Overall_Quality 2 6 43.8657 <.0001

7 Fireplace_1plus 1 7 16.9617 <.0001

8 Lot_Area 1 8 13.5743 0.0002



	

Stepwise	Selection

Stepwise	selection	combines	both	the	forward	selection	and
backward	elimination	methods.	Variables	considered	important	are
added	one	at	a	time;	however,	at	any	point,	a	variable	can	be
removed	from	the	model	when	it	is	no	longer	significant	in	the
context	of	the	set	of	variables	in	the	model	at	that	time.

For	illustration,	consider	the	Ames	Housing	Case	and	the	thirteen
possible	input	variables.	In	order	to	conduct	a	stepwise	method	of
selection,	we	would	use	the	previous	SAS	code	with	the	following
MODEL	statement	and	the	SELECTION=STEPWISE	option	as	in	the
partial	program,	Program	10.12	Stepwise	Selection	for	Ames
Housing.
Program	10.12	Stepwise	Selection	for	Ames	Housing

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames;

class	Overall_Quality	(param=ref	ref=first);

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	Overall_Quality	High_Kitchen_Quality
Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage	High_Exterior_Cond	CuldeSac

Has_Fence	Land_Level/selection=stepwise	slentry=0.01
slstay=0.01

details;

run;

Here,	note	that	because	the	stepwise	procedure	involves	adding
and	removing	variables,	the	analyst	must	define	both	the	SLENTRY
and	SLSTAY	options	as	well.	Again,	see	that	the	DETAILS	option	is
included	so	that	a	summary	of	the	selection	steps	is	provided.

The	output	provided	first	includes	the	information	typically	found
in	a	logistic	regression	analysis,	followed	by	the	first	Analysis	of
Effects	Eligible	for	Entry	table,	Output	10.11a		Effects	Eligible	for



Entry	for	Step	1	of	Stepwise	Selection.	This	step	is	identical	to	the
first	step	of	the	forward	selection	method.	The	criterion	for	entry	is
the	Score	Chi-Square	statistic	and,	based	upon	SLENTRY=0.01,	we
can	see	that	the	variable,	FULLBATH_2PLUS,	is	selected	for	entry,
with	the	largest	chi-square	statistic	of	667.2729.
Output	10.11a		Effects	Eligible	for	Entry	for	Step	1	of	Stepwise	Selection

Analysis	of	Effects	Eligible	for	Entry

Effect DF
Score
Chi-Square Pr	>	ChiSq

Gr_Liv_Area 1 584.5319 <.0001

Total_Bsmt_SF 1 314.2380 <.0001

Lot_Area 1 69.3485 <.0001

Age_at_Sale 1 460.2132 <.0001

Overall_Quality 2 493.9597 <.0001

High_Kitchen_Quality 1 459.8347 <.0001

Fullbath_2plus 1 667.2729 <.0001

Fireplace_1plus 1 242.1424 <.0001

TwoPlusCar_Garage 1 375.2390 <.0001

High_Exterior_Cond 1 8.1981 0.0042

CuldeSac 1 26.6874 <.0001

Has_Fence 1 67.1557 <.0001

Land_Level 1 3.5978 0.0579

	
Step		1.	Effect	Fullbath_2plus	entered:

After	the	variable,	FULLBATH_2PLUS,	is	entered,	all	logistic
regression	output	is	provided,	followed	by	the	test	for	removal.	As
illustrated	in	Output	10.11b		Effects	Eligible	for	Removal	After	Step
1	of	Stepwise	Selection,	the	Wald	Chi-Square	test	is	used	for
removal;	based	upon	the	p-value	and	the	SLSTAY=0.01	option,
FULLBATH_2PLUS	is	retained	in	the	current	model.
Output	10.11b		Effects	Eligible	for	Removal	After	Step	1	of	Stepwise	Selection

Analysis	of	Effects	Eligible	for	Removal



Effect DF Wald
Chi-Square

Pr	>	ChiSq

Fullbath_2plus 1 471.3694 <.0001

	

Note: No	effects	for	the	model	in	Step	1	are	removed.

The	process	continues	with	the	second	Analysis	of	Effects	Eligible
for	Entry	table,	followed	by	the	Analysis	of	Effects	Eligible	for
Removal	table	as	illustrated	in	Output	10.11c		Effects	Eligible	for
Entry	for	Step	2	of	Stepwise	Selection.	The	second	variable	selected
using	the	Score	Chi-Square	test	is	HIGH_KITCHEN_QUALITY	(note
that	while	OVERALL_QUALITY	has	the	highest	chi-square	value,
one	of	its	levels	is	nonsignificant;	so	when	levels	are	considered
alone,	HIGH_KITCHEN_QUALITY	has	the	highest	value).	Once
HIGH_KITCHEN_QUALITY	is	added,	we	can	see	from	the	Wald	Chi-
Square	test	that	it	meets	the	criterion	for	staying.
Output	10.11c		Effects	Eligible	for	Entry	for	Step	2	of	Stepwise	Selection

Analysis	of	Effects	Eligible	for	Entry

Effect DF
Score
Chi-Square Pr	>	ChiSq

Gr_Liv_Area 1 169.2967 <.0001

Total_Bsmt_SF 1 131.9973 <.0001

Lot_Area 1 30.5306 <.0001

Age_at_Sale 1 144.8863 <.0001

Overall_Quality 2 207.8815 <.0001

High_Kitchen_Quality 1 205.2677 <.0001

Fireplace_1plus 1 91.6061 <.0001

TwoPlusCar_Garage 1 110.7687 <.0001

High_Exterior_Cond 1 4.2946 0.0382

CuldeSac 1 11.9763 0.0005

Has_Fence 1 21.1929 <.0001

Land_Level 1 21.1507 <.0001

	



Step		2.	Effect	High_Kitchen_Quality	entered:

	

Analysis	of	Effects	Eligible	for	Removal

Effect DF
Wald
Chi-Square Pr	>	ChiSq

High_Kitchen_Quality 1 170.2730 <.0001

Fullbath_2plus 1 328.2947 <.0001

Note:				No	effects	for	the	model	in	Step	2	are	removed.

	
	
The	process	of	testing	for	inclusion	using	the	Score	Chi-Square	test
and	for	removal	using	the	Wald	Chi-Square	continues	until	no
further	predictors	are	added	nor	removed.	The	DETAILS	option
provides	for	the	summary	of	steps	as	illustrated	in	Output
10.11d		Summary	of	Effects	Entered	or	Removed	in	Stepwise
Selection.
Output	10.11d		Summary	of	Effects	Entered	or	Removed	in	Stepwise	Selection

Summary	of	Stepwise	Selection

Step

Effect

DF
Number
In

Score
Chi-Square

Wald
Chi-Square Pr	>	ChiSqEntered Removed

1 fullbath_2plus 	 1 1 667.2729 	 <.0001

2 High_Kitchen_Quality 	 1 2 205.2677 	 <.0001

3 Gr_Liv_Area 	 1 3 134.2660 	 <.0001

4 Age_at_Sale 	 1 4 115.8901 	 <.0001

5 Total_Bsmt_SF 	 1 5 46.7676 	 <.0001

6 Overall_Quality 	 2 6 43.8657 	 <.0001

7 fireplace_1plus 	 1 7 16.9617 	 <.0001

8 Lot_Area 	 1 8 13.5743 	 0.0002

This	illustrates	the	rare	event	when	the	same	model	is	selected



using	all	three	selection	methods.	Finally,	when	conducting	the
sequential	methods,	keep	in	mind	the	default	selection	criteria,	as
displayed	in	Table	10.1	Summary	of	Effects	Entered	or	Removed	in
Stepwise	Selection.
Table	10.1	Summary	of	Effects	Entered	or	Removed	in	Stepwise	Selection

	 SLENTRY SLSTAY

BACKWARD 	 0.05

FORWARD 0.05 	

STEPWISE 0.05 0.05

	

Customized	Options	within	the	Sequential	Methods

The	three	sequential	methods	described	so	far—backward,	forward,
and	stepwise—illustrate	the	basic	ideas	behind	those	various
strategies.	However,	these	can	be	very	rigid	at	times	when		the
analyst	wants	to	use	a	different	rationale,	such	as	always	including
a	specific	set	of	predictors	in	the	final	model	or	limiting	the	size	of
the	final	model,	for	example.	In	these	cases,	there	are	additional
options	that	can	be	included	in	the	SELECTION=	option.	These
options	are	START,	STOP,	and	INCLUDE.

START=n	can	be	used	in	all	methods	of	selection	(FORWARD,
BACKWARD,	and	STEPWISE)	and	requests	that	the	first	n	variables
listed	in	the	MODEL	statement	be	included	when	the	procedure
starts;	however,	any	of	those	variables	can	be	deleted	at	any	point
after	if	the	variable	fails	the	criterion	to	stay.		For	the	START
option,	note	the	following:

	n	ranges	from	0	to	(k)	the	number	of	variables	in	the	model
list.

	The	default	value	of	n	is	k	for	BACKWARD	and	0	for
FORWARD	and	STEPWISE.

	The	START	option	has	no	effect	for	SELECTION=NONE.

STOP=n	can	be	used	for	FORWARD	and	BACKWARD	selection.
For	FORWARD	selection,	n	defines	the	maximum	number	of

●					

●					

●					



predictors	to	be	included	in	the	model;	for	BACKWARD	selection,	n
defines	the	minimum.	The	selection	process	ends	when	n	predictors
are	selected.	For	the	STOP	option,	note	the	following:

	n	ranges	from	0	to	(k)	the	number	of	variables	in	the	model
list.

	The	default	value	of	n	is	0	for	BACKWARD	and	k	for
FORWARD.

	The	STOP=	option	has	no	effect	for	SELECTION=NONE	or
STEPWISE.

	

INCLUDE=n	requests	that	the	first	n	predictors	listed	in	the
MODEL	statement	be	included	in	every	model,	including	the	final
model.	This	option	can	be	used	for	any	method	of	selection.	For	the
INCLUDE	option,	note	the	following:

	The	default	value	of	n	is	0	for	all	methods	of	selection.

	The	INCLUDE=	option	has	no	effect	for	SELECTION=NONE.

	The	INCLUDE=	differs	from	START=	in	that	it	requires	that
the	first	n	predictors	stay	in	the	model.

Consider	the	following	examples	of	MODEL	statements	using	the
Ames	Housing	Case:

Example	1:
model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	Overall_Quality	High_Kitchen_Quality
Fullbath_2Plus

Fireplace_1Plus	TwoPlusCar_Garage	High_Exterior_Cond

CuldeSac	Has_Fence	Land_Level

/selection=backward	stop=10	slstay=0.01	details;

The	MODEL	statement	defines	thirteen	predictors	and	the
BACKWARD	selection	starts	with	all	of	them.		Remember
previously	in	this	example,	that	the	model	selection	process
continued	until	five	predictors	were	removed,	leaving	eight	in	the
model.	Because	STOP=10,	variables	are	removed	one	at	a	time
based	upon	contribution	to	the	fit	until	the	model	contains	ten
predictors,	thereby	ignoring	the	SLSTAY=0.01	option.
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The	resulting	summary	is	displayed	in	Output	10.12	Summary	of
Effects	Removed	in	Backward	Elimination	Using	the	STOP=
Option.
Output	10.12	Summary	of	Effects	Removed	in	Backward	Elimination	Using	the
STOP=	Option

Note: The	number	of	effects	in	the	model	has	reached	STOP=10.

Summary	of	Backward	Elimination

Step
Effect
Removed DF

Number
In

Wald
Chi-Square Pr	>	ChiSq

1 Has_Fence 1 12 0.0393 0.8429

2 TwoPlusCar_Garage 1 11 0.5493 0.4586

3 CuldeSac 1 10 0.7914 0.3737

Example	2:
model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	Overall_Quality	Overall_Condition
High_Kitchen_Quality

Fullbath_2Plus	Fireplace_1Plus	TwoPlusCar_Garage
High_Exterior_Cond

CuldeSac	Has_Fence	Land_Level

/selection=forward	start=5	slstay=0.01	details;

Again,	the	MODEL	statement	defines	thirteen	predictors	and	the
FORWARD	selection	starts	with	the	first	five	as	seen	in	Step	0	of
Output	10.13	Summary	of	Effects	Entered	in	Forward	Selection
Using	START=	Option,	ignoring	the	SLSTAY=0.01.	Once	the
variables	are	added	and	the	SLSTAY=0.01	is	ignored,	the	default
value	of	0.05	is	used.	As	a	result,	four	additional	predictors	are
added	to	the	five	initially	entered,	resulting	in	a	total	of	nine.	This
is	in	contrast	to	the	eight	predictors	selected	using	forward
selection	where	SLSTAY=0.01	without	the	START=5	option,	as
displayed	in	Output	10.10b	Summary	of	Effects	Entered	in	Forward
Selection.	Note	also	that	because	the	first	5	variables	are	strongly
related	to	BONUS,	the	results	of	using	START=5	are	identical	to
those	results	using	INCLUDE=5.
Output	10.13	Summary	of	Effects	Entered	in	Forward	Selection	Using	START=



Option

Step			0.	The	following	effects	were	entered:
Intercept		

Gr_Liv_Area		Total_Bsmt_SF		Lot_Area		Age_at_Sale		Overall_Quality
Note:				No	(additional)	effects	met	the	0.05	significance	level	for	entry

into	the	model.

Summary	of	Forward	Selection 	

Step
Effect
Entered DF

Number
In

Score
Chi-Square Pr	>	ChiSq 	

1 High_Kitchen_Quality 1 6 47.0710 <.0001 	

2 Fullbath_2plus 1 7 14.8199 0.0001 	

3 Fireplace_1plus 1 8 13.6898 0.0002 	

4 Land_Level 1 9 6.1591 0.0131 	

	

Best	Subset	Selection

Best	subset	selection	provides	a	way	for	the	analyst	to	look	at	all
possible	subsets	and	select	the	best	model	based	upon	some
selection	criterion.	This	approach	is	exhaustive	in	that,	for	k
predictors,	it	provides	results	for	2k-1	possible	subsets.	For	the	best
subset	method	to	perform	more	efficiently,	the	criterion	for
selection	is	the	highest	score	chi-square	which	does	not	require	the
same	rigor	involved	in	finding	the	maximum	likelihood	estimates
(Furnival	and	Wilson,	1974).	The	results	provide	the	best	models
for	each	subset	size.	The	code	for	conducting	a	best	subset	analysis
uses	the	SELECTION=SCORE	and	it	is	in	Program	10.13	Score	Chi-
Square	Statistics	for	the	Best	Subsets	of	Size	1	through	8.
Program	10.13	Score	Chi-Square	Statistics	for	the	Best	Subsets	of	Size	1	through	8

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

AboveAverage_Quality=(Overall_Quality=3);

BelowAverage_Quality=(Overall_Quality=1);

run;



	

proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	AboveAverage_Quality	BelowAverage_Quality

High_Kitchen_Quality	Fullbath_2Plus	Fireplace_1Plus
TwoPlusCar_Garage

High_Exterior_Cond	CuldeSac	Has_Fence	Land_Level

/selection=score	best=1	stop=8;

run;

First	notice	that	the	SCORE	option	does	not	allow	for	class
variables,	so	the	DATA	step	includes	statements	to	create	dummy
codes	for	OVERALL_QUALITY.	The	BEST=1	option	requests	the	one
subset	be	selected	for	each	subset	size	and	STOP=8	requests	that
the	selection	process	stop	once	eight	predictors	have	been	provided
as	displayed	in	Output	10.14	Score	Chi-Square	Statistics	for	the
Best	Subsets	of	Size	1	through	8.
Output	10.14	Score	Chi-Square	Statistics	for	the	Best	Subsets	of	Size	1	through	8

The	START=	option	can	be	used	when	the	analyst	wants	output
starting	at	a	specific	size.	So,	for	example,	START=2	STOP=5
BEST=3	provides	the	best	three	models	of	sizes,	2,	3,	4,	and	5.

From	the	output,	the	analyst	can	see	that	as	the	model	size
increases,	the	score	chi-square	statistic	increases	as	well;	therefore,
the	Bayesian	Information	Criterion	(BIC)	should	be	used	instead.

Modeling	Interaction



When	modeling,	the	analyst	should	always	take	into	account
interaction.	Interaction	occurs	when	the	relationship	between	the
outcome	(Y)	and	a	predictor	(X1)	varies	depending	upon	the	values
of	a	second	predictor	(X2).	Consider	the	following	example,
displayed	in	Figure	10.3,	where	we	are	interested	in	the
relationship	between	the	outcome	salary	and	the	two	grouping
variables,	level	of	degree	and	occupational	area.	The	analyst	would
have	several	questions:		First,	is	salary	related	to	level	of	degree;
second,	is	salary	related	to	occupational	area;	or	more,	importantly,
does	it	depend?		In	other	words,	do	differences	in	salary	depend
upon	the	combinations	of	degree	and	occupational	area?	This	third
question	answers	the	question	concerning	interaction.

From	the	first	plot,	it	is	hard	to	make	a	blanket	statement	with
respect	to	salary	and	occupational	area	alone.		It	is	not	necessarily
true	to	say	that	the	highest	salaries	go	to	IT,	followed	by	Financial,
then	Education.	At	the	high	school	level,	it	seems	that	the	salaries
are	pretty	much	the	same;	for	those	with	a	BS	degree,	IT	and
Financial	are	about	the	same,	but	both	seem	to	be	slightly	more
than	employees	in	the	Education	area.	For	those	with	an	MS
degree,	there	seems	to	be	a	difference	in	salaries	across	all	levels,
and	for	those	with	a	PhD,	that	difference	is	even	greater.

The	fact	that	mean	differences	must	be	explained	by	both	variables,
occupational	area	and	degree,	at	the	same	time	is	an	indication	that
interaction	exists.	In	fact,	interaction	can	be	detected	by	mean
plots,	called	interaction	plots,	as	displayed	in	first	plot	of	Figure
10.3	Mean	Plots	by	Degree	and	Occupational	Area,	and	is
evidenced	by	the	non-parallel	lines	for	occupational	area.	When
interaction	does	not	exist,	the	interaction	plots	will	display	parallel
lines	as	shown	in	the	second	plot	of	Figure	10.3	Mean	Plots	by
Degree	and	Occupational	Area	.
Figure	10.3	Mean	Plots	by	Degree	and	Occupational	Area



Interaction	can	also	occur	if	the	outcome	variable	is	categorical,	as
is	the	case	for	logistic	regression.	In	the	case	of	two	predictors,	X1
and	X2,	if	interaction	between	the	predictors	exists,	the	logistic
regression	model	has	the	form:

where	the	test	for	β3	is	testing	for	interaction,	in	the	presence	of
the	main	effects	of	X1	and	X2.	If	the		interaction	term	is	significant,
then	the	analyst	can	say	that	the	relationship	between	the
probability	of	success	(pi)	and	X1	depends	upon	X2.

So	how	would	the	analyst	incorporate	interaction	into	the	logistic
regression	model	using	SAS?	Consider	the	Ames	House	Case,	and
for	simplicity’s	purposes,	let’s	investigate	the	relationship	between
BONUS	and	the	variables	overall	quality	(OVERALL_QUALITY)	and
kitchen	quality	(HIGH_KITCHEN_QUALITY),	as	well	as	whether	or
not	the	house	has	at	least	two	full	bathrooms	or	not
(FULLBATH_2PLUS).	We’ll	include	their	interactions.	Note	here
that,	in	general,	with	three	predictors,	there	are	three	main	effects
(A,	B,	C),	three	double	interactions	(A*B,	A*C,	B*C),	and	one	triple
interaction	(A*B*C).	To	test	our	model,	we	would	use	Program
10.14	Testing	Main	Effects	and	Interactions	for	Ames	Housing.
Program	10.14	Testing	Main	Effects	and	Interactions	for	Ames	Housing

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;



run;

	

proc	logistic	data=ames;

class	Overall_Quality	(param=ref	ref=first);

model	Bonus	(Event	=	‘1’)=

Overall_Quality|High_Kitchen_Quality|Fullbath_2Plus	@2;

run;

The	LOGISTIC	procedure	and	CLASS	statement	are	identical	to	past
examples.	In	the	MODEL	statement,	when	interaction	effects	are
requested,	the	predictors	(or	main	effects)	must	be	separated	by	a
bar	‘|’	followed	by	@n,	where	n	represents	the	highest	order
interaction.	If	the	@n	is	omitted,	all	interaction	terms	are	provided.
Here,	the	example	code	uses	@2	requesting	that	main	effects	and
all	two-way	interactions	be	estimated,	omitting	or	ignoring	three-
way	interactions,	as	displayed	in	Output	10.15	Testing	Main	Effects
and	Interactions	for	Ames	Housing.
Output	10.15	Testing	Main	Effects	and	Interactions	for	Ames	Housing

Model	Fit	Statistics

Criterion
Intercept
Only

Intercept
and
Covariates

AIC 1877.463 841.896

SC 1882.700 894.260

-2	Log	L 1875.463 821.896

	

Testing	Global	Null	Hypothesis:	BETA=0

Test
Chi-
Square DF Pr	>	ChiSq

Likelihood
Ratio

1053.5671 9 <.0001

Score 876.4384 9 <.0001

Wald 424.4395 9 <.0001

	

Joint	Tests



Effect DF
Wald
Chi-Square Pr	>	ChiSq

Overall_Quality 2 27.9485 <.0001

High_Kitchen_Quality 1 4.2715 0.0388

High_Kitchen_Quality*Overall_Quality 2 1.3344 0.5132

Fullbath_2plus 1 0.2336 0.6288

Fullbath_*Overall_Quality 2 2.1327 0.3443

High_Kitchen_Quality*Fullbath_2plus 1 6.1696 0.0130

Note:Under	full-rank	parameterizations,	Type	3	effect	tests	are	replaced	by	joint
tests.	The	joint	test	for	an	effect	is	a	test	that	all	the	parameters
associated	with	that	effect	are	zero.	Such	joint	tests	might	not	be
equivalent	to	Type	3	effect	tests	under	GLM	parameterization.

Analysis	of	Maximum	Likelihood	Estimates

Parameter 	 DF Estimate
Standard
Error

Wald
Chi-
Square Pr	>	ChiSq

Intercept 	 1 -4.7587 1.0298 21.3554 <.0001

Overall_Quality 2 1 0.6522 1.1042 0.3488 0.5548

Overall_Quality 3 1 2.7975 1.0489 7.1128 0.0077

High_Kitchen_Quality 	 1 2.6435 1.2790 4.2715 0.0388

High_Kitchen_Quality*Overall_Quality 2 1 -1.5821 1.3697 1.3344 0.2480

High_Kitchen_Quality*Overall_Quality 3 1 -1.3897 1.3005 1.1419 0.2853

Fullbath_2plus 	 1 0.5961 1.2332 0.2336 0.6288

Fullbath_*Overall_Quality 2 1 1.8848 1.2944 2.1204 0.1453

Fullbath_*Overall_Quality 3 1 1.6845 1.2202 1.9058 0.1674

High_Kitchen_Quality*Fullbath_2plus 	 1 0.9577 0.3856 6.1696 0.0130

	

From	the	Model	Fit	Statistics	found	in	Output	10.15	Testing	Main
Effects	and	Interactions	for	Ames	Housing,	we	can	see	that	the
model	is	a	dramatic	improvement	over	the	intercept-only	model.
This	is	specifically	verified	by	the	p-value	included	for	testing	the
global	null	hypothesis.	When	interaction	terms	are	included	in	the
model,	the	Joint	Tests	table	is	provided	which	summarizes	the
individual	effects	under	consideration.



For	illustration	purposes,	let’s	set	our	alpha	to	0.05	for	testing
effects.	Also	note	that	interaction	effects	must	be	tested	first
because	the	very	existence	of	interaction	has	implications	for
interpreting	main	effects.	We	see	that	only	one	interaction	term,
HIGH_KITCHEN_QUALITY*FULLBATH_2PLUS,	is	significant	with	a
p-value	of	0.0130.		Because	interaction	exists,	we	cannot	attempt	to
interpret	each	of	the	main	effects	for	HIGH_KITCHEN_QUALITY	nor
FULLBATH_2PLUS.

The	tests	also	indicate	that	OVERALL_QUALITY	is	related	to	Bonus
(p<.0001).	So	in	conclusion,	BONUS	is	related	to	both
OVERALL_QUALITY	and	the	interaction	of
HIGH_KITCHEN_QUALITY	by	FULLBATH_2PLUS.

If	the	analyst	had	wanted	to	include	the	three-way	interactions	in
the	analysis,	the	MODEL	statement	would	have	excluded	the	@n
notation	as	seen	below	and	all	two-way	and	three-way	interactions
would	have	been	displayed.	The	output	would	have	been	identical
to	using	the	@3	option	as	well.
model	Bonus	(Event	=	‘1’)=

Overall_Quality|High_Kitchen_Quality|Fullbath_2Plus

Keep	in	mind	that	three-way	interaction	is	hard	to	interpret.	In	fact,
for	the	Ames	Housing	Case,	running	the	code	would	have	resulted
in	the	warning	messages	as	found	in	Output	10.16	Example	of
Failed	Model	Convergence.	Remember	quasi-complete	separation
occurs	when	there	is	sparse	data.	In	the	Ames	Housing	data	set,
there	are	no	houses	where	the	agent	earned	a	bonus	(BONUS=1)
and	the	house	had	below	average	quality	(OVERALL_QUALITY=1),
low	kitchen	quality	(HIGH_KITCHEN_QUALITY=0),	with	only	one
full	bathroom	(FULLBATH_2PLUS=0).	This	is	not	surprising.	In
fact,	there	are	5	combinations	of	these	predictors	out	of	24	(2	levels
of	BONUS	X	3	levels	of	OVERALL_QUALITY	X	2	levels	of
HIGH_KITCHEN_QUALITY	X	2	levels	of	FULLBATH_2PLUS)	where
there	exist	only	one	or	two	houses.	In	this	case,	the	validity	of	the
results	is	suspect.
Output	10.16	Example	of	Failed	Model	Convergence

Model	Convergence	Status

Quasi-complete	separation	of	data	points
detected.



	

Warning: The	maximum	likelihood	estimate	may	not	exist.

Warning: The	LOGISTIC	procedure	continues	in
spite	of	the	above	warning.	Results
shown	are	based	on	the	last	maximum
likelihood	iteration.	Validity	of	the	model
fit	is	questionable.

	

	

Now	let’s	consider	the	same	model	above	and	apply	a	backward
selection	approach	for	getting	a	reduced	model.	In	this	situation,	all
terms	are	entered	into	the	model	as	a	Step	0:	specifically,	the	three
main	effects	and	the	three	two-way	interactions,	as	illustrated	in
Output	10.17a	Step	0	of	Backward	Elimination	for	Main	and
Interactions	Effects.	As	before,	each	term	is	tested	for	removal
using	the	Wald	Chi-Square	test.		However,	the	terms	considered	for
removal	must	follow	the	model	hierarchy	rule.

Model	hierarchy	is	the	rule	that	requires	a	main	effect	to	remain	in
a	model	as	long	as	that	effect	exists	in	any	interaction	term.	For
example,	as	long	as	the	interaction	term,
OVERALL_QUALITY*HIGH_KITCHEN_QUALITY,	is	in	the	model,
the	main	effects,	OVERALL_QUALITY	and
HIGH_KITCHEN_QUALITY,	must	also	remain	in	the	model.	Let’s
look	at	the	previous	example	with	interaction	from	the	Ames
Housing	Case	where	now	we	perform	a	backward	model	selection
as	illustrated	in	Program	10.15		Backward	Model	Selection	for
Ames	Housing.
Program	10.15		Backward	Model	Selection	for	Ames	Housing

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames;

class	Overall_Quality	(param=ref	ref=first);

model	Bonus	(Event	=	‘1’)=

Overall_Quality|High_Kitchen_Quality|Fullbath_2Plus	@2

/selection=backward	slstay=0.05	hierarchy=single	details;



run;

From	the	MODEL	statement,	we	see	that	the	logistic	regression
model	is	to	be	fit	for	only	main	effects	and	the	two-way
interactions.	The	backward	selection	is	requested	using	the
SELECTION=BACKWARD	option,	the	alpha	level	for	a	term	to	stay
in	the	model	is	0.05	(SLSTAY=0.05),	and	DETAILS	are	requested
for	providing	a	summary	of	steps.	Note	that	for	illustrative
purposes,	we	have	set	the	alpha	to	0.05;	however,	the	analyst	may
prefer	to	be	a	bit	more	conservative	by	setting	the	level	to	0.01.
HIERARCHY=SINGLE	is	the	default	option,	indicating	that	only
one	effect	can	leave	the	model	at	one	time,	subject	to	the	model
hierarchy	rule;	see	SAS	documentation	for	defining	other	rules	for
entry	or	exit.		Excerpts	from	the	output	can	be	found	in	Output
10.17a	Step	0	of	Backward	Elimination	for	Main	and	Interactions
Effects	through	Output	10.17e	Final	Model	Selected	Using
Backward	Elimination.
Output	10.17a	Step	0	of	Backward	Elimination	for	Main	and	Interactions	Effects

Step		0.	The	following	effects	were	entered:

Intercept		Overall_Quality		High_Kitchen_Quality		
High_Kitchen_Quality*Overall_Quality		Fullbath_2plus		Fullbath_2plus*Overall_Quality		

High_Kitchen_Quality*Fullbath_2plus

	

Model	Convergence	Status

Convergence	criterion	(GCONV=1E-8)
satisfied.

From	Output	10.17a	Step	0	of	Backward	Elimination	for	Main	and
Interactions	Effects,	we	can	see	that	all	six	effects,	three	main	and
three	two-way	interactions,	are	entered	into	the	model.	The	model
converges	and	the	output	includes	Model	Fit	Statistics,	which
match	the	fit	statistics	found	in	Output	10.15.			

In	this	example,	because	of	model	hierarchy,	none	of	the	main
effects	will	be	considered	for	removal;	therefore,	the	Analysis	of
Effects	for	Removal	table	contains	only	the	three	two-way
interactions,	as	illustrated	in	Output	10.17b	Interaction	Effects
Eligible	for	Removal	for	Step	1	of	Backward	Elimination.



Output	10.17b	Interaction	Effects	Eligible	for	Removal	for	Step	1	of	Backward
Elimination

Analysis	of	Effects	Eligible	for	Removal

Effect DF
Wald
Chi-Square Pr	>	ChiSq

High_Kitchen_Quality*Overall_Quality 2 1.3344 0.5132

Fullbath_2plus*Overall_Quality 2 2.1327 0.3443

High_Kitchen_Quality*Fullbath_2plus 1 6.1696 0.0130

	
Step		1.	Effect	High_Kitchen_Quality*Overall_Quality	is	removed:

	

Model	Convergence	Status

Convergence	criterion	(GCONV=1E-8)
satisfied.

	

Model	Fit	Statistics

Criterion
Intercept
Only

Intercept
and
Covariates

AIC 1877.463 839.356

SC 1882.700 881.247

-2	Log	L 1875.463 823.356

From	Output	10.17b	Interaction	Effects	Eligible	for	Removal	for
Step	1	of	Backward	Elimination,	we	can	see	that	the	p-value	for	the
interaction,	HIGH_KITCHEN_QUALITY*OVERALL_QUALITY,	is
greater	than	the	0.05	level	required	for	staying	and	is	largest	at
0.5132.	Therefore,	that	interaction	term	is	removed	in	Step	1.	The
model	with	the	remaining	terms	has	AIC,	SC,	and	-2LogL	values	of
839.356,	881.247,	and	823.356,	respectively.	When	these	are
compared	to	the	full	model,	the	analyst	can	see	that	there	is
relatively	little	fit	lost	by	removing	the	interaction	term.

Because	the	remaining	two	interaction	terms	include	all	three	main



effects,	no	main	effects	can	be	removed,	so	the	next	removal	step
must	consider	only	the	two	interaction	terms,	as	found	in	Output
10.17c	Interaction	Effects	Eligible	for	Removal	for	Step	2	of
Backward	Elimination.	Based	upon	the	p-value	of	0.4962,	the
interaction	term,	FULLBATH_2PLUS*OVERALL_QUALITY,	is
removed	in	Step	2.	Note	also	in	the	figure	that	the	resulting	model
with	the	three	main	effects	and	the	one	remaining	interaction	term
have	a	relatively	small	reduction	in	AIC,	SC,	and	
-2LogL,	when	compared	to	the	fit	in	Step	1,	indicating	an
insignificant	reduction	in	fit.
Output	10.17c	Interaction	Effects	Eligible	for	Removal	for	Step	2	of	Backward
Elimination

Analysis	of	Effects	Eligible	for	Removal

Effect DF
Wald
Chi-Square Pr	>	ChiSq

Fullbath_2plus*Overall_Quality 2 1.4016 0.4962

High_Kitchen_Quality*Fullbath_2plus 1 5.8860 0.0153

	

Step		2.	Effect	Fullbath_2plus*Overall_Quality	is	removed:

	

Model	Convergence	Status

Convergence	criterion	(GCONV=1E-8)
satisfied.

	

Model	Fit	Statistics

Criterion
Intercept
Only

Intercept
and
Covariates

AIC 1877.463 836.718

SC 1882.700 868.136

-2	Log	L 1875.463 824.718



	

It	should	be	noted,	at	this	point,	that	the	only	interaction	term
remaining	is	HIGH_KITCHEN_QUALITY*FULLBATH_2PLUS;
therefore,	the	main	effect,	OVERALL_QUALITY,	does	not	exist	in
any	interaction	terms	and		is	now	eligible	for	removal	as	well,	as
displayed	in	Output	10.17d	Effects	Eligible	for	Removal	for	Step	3
of	Backward	Elimination.
Output	10.17d	Effects	Eligible	for	Removal	for	Step	3	of	Backward	Elimination

Analysis	of	Effects	Eligible	for	Removal

Effect DF
Wald
Chi-Square Pr	>	ChiSq

Overall_Quality 2 89.3491 <.0001

High_Kitc*Fullbath_2 1 5.9083 0.0151

	

Note:No	(additional)	effects	met	the	0.05	significance	level	for	removal
from	the	model.

	

Summary	of	Backward	Elimination

Step
Effect
Removed DF

Number
In

Wald
Chi-Square Pr	>	ChiSq

1 High_Kitchen_Quality*Overall_Quality 2 5 1.3344 0.5132

2 Fullbath_2plus*Overall_Quality 2 4 1.4016 0.4962

Finally,	because	no	terms	have	p-values	greater	than	0.05,	none	are
removed,	and	the	backward	selection	process	is	terminated.	From
the	summary,	we	can	see	that	two	of	the	three	interactions	were
removed,	thereby	leaving	the	three	main	effects	and	one	two-way
interaction	effect,	as	found	in	Output	10.17e	Final	Model	Selected
Using	Backward	Elimination.	Note	also	that	had	the	alpha	been	set
to	0.01,	the	last	interaction	term	would	have	been	removed	and	the
final	model	would	have	contained	the	three	main	effects	alone	with
no	interaction.
Output	10.17e	Final	Model	Selected	Using	Backward	Elimination



Analysis	of	Maximum	Likelihood	Estimates

Parameter 	 DF Estimate
Standard
Error

Wald
Chi-Square Pr	>	ChiSq

Intercept 	 1 -4.8369 0.5976 65.5182 <.0001

Overall_Quality 2 1 0.7672 0.6166 1.5480 0.2134

Overall_Quality 3 1 2.8689 0.5803 24.4387 <.0001

High_Kitchen_Quality 	 1 1.2667 0.3053 17.2177 <.0001

Fullbath_2plus 	 1 2.2971 0.2551 81.1129 <.0001

High_Kitchen_Quality*Fullbath_2plus 	 1 0.9237 0.3800 5.9083 0.0151

	

Odds	Ratio	Estimates

Effect
Point
Estimate

95%	Wald
Confidence	Limits

Overall_Quality	2
vs	1

2.154 0.643 7.212

Overall_Quality	3
vs	1

17.617 5.649 54.942

Once	the	final	model	is	determined,	the	analyst	should	note	that
the	odds	ratios	are	not	reported	for	any	terms	related	to	the
interaction.	In	fact,	the	effects	of	HIGH_KITCHEN_QUALITY	on	the
probability	of	BONUS	are	different	when	comparing	at	the	two
levels	of	FULLBATH_2PLUS;	similarly,	the	effects	of
FULLBATH_2PLUS	on	the	probability	of	BONUS	are	different	when
comparing	at	the	two	levels	of	HIGH_KITCHEN_QUALITY.

To	get	the	desired	conditional	odds	ratios,	the	analyst	could	use	the
AT	option	in	the	ODDSRATIO	statement	in	Program	10.16	Odds
Ratios	with	Plots	for	Main	Effects	and	Conditional	Effects.	Keep	in
mind	that	the	ODDSRATIO	statements	require	that
HIGH_KITCHEN_QUALITY	and	FULLBATH_2PLUS	be	added	to	the
CLASS	statement	because	their	variable	type	is	numeric	even
though	those	variables	have	been	dummy	coded	anyway.	The
PLOTS(ONLY)=EFFECTS	option	will	provide	the	probability	of
success	plot	which	will	aid	in	interpreting	the	interaction	effects.
Program	10.16	Odds	Ratios	with	Plots	for	Main	Effects	and	Conditional	Effects

libname	sasba	‘c:\sasba\ames’;



data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames;

class	High_Kitchen_Quality	(param=ref	ref=first)

Fullbath_2plus	(param=ref	ref=first)

Overall_Quality	(param=ref	ref=first);

model	Bonus	(Event	=	‘1’)=

Overall_Quality	High_Kitchen_Quality	Fullbath_2Plus

High_Kitchen_Quality*Fullbath_2plus;

oddsratio	High_Kitchen_Quality	/	at	(Fullbath_2plus=all);

oddsratio	Fullbath_2plus	/	at	(High_Kitchen_Quality=all);

oddsratio	Overall_Quality;

run;

The	results	of	the	odds	ratios	for	main	effect	and	conditional	effects
are	displayed	in	Output	10.18a	Odds	Ratios	with	Plots	for	Main
Effects	and	Conditional	Effects.	For	example,	an	agent	is	17.617
times	more	likely	to	earn	a	bonus	for	a	house	with	above	average
overall	quality	compared	to	a	house	with	below	average	overall
quality.

For	interactions,	first	consider	those	houses	with	high	quality
kitchens	(HIGH_KITCHEN_QUALITY=1).	An	agent	is	25.048	times
more	likely	to	get	a	bonus	for	a	house	having	two	or	more	full
bathrooms	(FULLBATH_2PLUS=1)	compared	to	a	house	with	just
one	full	bathroom	(FULLBATH_2PLUS=0).

For	houses	with	low	quality	kitchens
(HIGH_KITCHEN_QUALITY=0),	an	agent	is	9.945	times	more	likely
to	get	a	bonus	for	a	house	having	two	or	more	full	bathrooms
(FULLBATH_2PLUS=1)	compared	to	a	house	with	just	one	full
bathroom	(FULLBATH_2PLUS=0).	These	interaction	effects	are
also	illustrated	in	Output	10.18b	Probabilities	for
HIGH_KITCHEN_QUALITY	by	FULLBATH_2PLUS	for
OVERALL_QUALITY=1.	This	plot	is	obtained	by
adding		PLOTS(ONLY)=EFFECTS	as	an	option	in	the	LOGISTIC
procedure.
Output	10.18a	Odds	Ratios	with	Plots	for	Main	Effects	and	Conditional	Effects



Odds	Ratio	Estimates	and	Wald	Confidence	Intervals

Odds	Ratio Estimate 95%	Confidence	Limits

High_Kitchen_Quality	1	vs	0	at
Fullbath_2plus=0

3.549 1.951 6.456

High_Kitchen_Quality	1	vs	0	at
Fullbath_2plus=1

8.939 5.736 13.930

Fullbath_2plus	1	vs	0	at
High_Kitchen_Quality=0

9.945 6.033 16.395

Fullbath_2plus	1	vs	0	at
High_Kitchen_Quality=1

25.048 14.398 43.575

Overall_Quality	2	vs	1 2.154 0.643 7.212

Overall_Quality	3	vs	1 17.617 5.649 54.942

Overall_Quality	2	vs	3 0.122 0.075 0.200

	

Output	10.18b	Probabilities	for	High_Kitchen_Quality	by	Fullbath_2plus	for
Overall_Quality=1



Scoring	New	Data
The	discussions	in	this	chapter	have	so	far	covered	the	methods
used	for	relating	a	categorical	outcome	variable	with	numeric	and
categorical	predictors	for	purposes	of	explanation.	It	is	natural	to
take	the	‘best’	model	and	predict	outcomes	for	new	observations;
this	is	the	purpose	in	predictive	modeling.

Predicting,	or	scoring,	is	the	process	of	applying	the	parameter
estimates	of	the	fitted	model	to	new	observations	to	arrive	at	their
posterior	probability	of	occurrence	for	each	level	of	the	outcome
variable	for	purposes	of	classifying	an	observation	as	a	1	or	0
(success	or	failure).	In	this	section,	we	will	discuss	four	ways	for
saving	the	selected	model	and	how	to	score	new	observations.	The
first	approach	requires	that	the	model	development	and	the	scoring
of	new	observations	occur	in	the	same	procedure	at	the	same	time.
The	remaining	three	approaches	involve	creating	and	saving	a
permanent	score	model	(or	file)	for	future	use	in	scoring	new
observations.

The	SCORE	Statement	with	PROC	LOGISTIC
The	SCORE	statement	is	used	within	the	logistic	procedure	to	apply
the	model	results	to	a	new	data	set	and	to	save	the	results	of	the



scoring	to	an	external	data	set.	To	illustrate,	let’s	return	to	the
Ames	Housing	Case.		For	simplicity’s		purposes,	suppose	the	analyst
wishes	to	fit	a	model	with	four	predictors.	Program	10.17	Predicted
Class	for	New	Observations	Using	the	SCORE	Statement	in	PROC
LOGISTIC	would	be	used	to	score	a	new	data	set	called	AMESNEW:
Program	10.17	Predicted	Class	for	New	Observations	Using	the	SCORE	Statement	in
PROC	LOGISTIC

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

score	data=sasba.amesnew	out=amesnew_scored;

run;

	

proc	print	data=amesnew_scored;

var	F_Bonus	I_Bonus	P_0	P_1	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

run;

First,	the	AMES70	data	is	read	into	the	temporary	data	set	AMES.
The	LOGISTIC	procedure	is	called	to	create	a	model	using	the
AMES	data	set	based	upon	the	specifications	defined	in	both	the
MODEL	and	CLASS	statements.	The	SCORE	statement	defines	the
data	set	on	which	the	model	is	applied,	namely,	AMESNEW,	and
the	results	of	the	scoring	are	saved	in	the	temporary	data	set,
AMESNEW_SCORED.	An	excerpt	from	the	PRINT	procedure	is
found	in	Output	10.19	Predicted	Class	for	New	Observations	Using
the	SCORE	Statement	in	PROC	LOGISTIC.

Consider	the	house	labeled	as	observation	592,	where	the	above
ground	living	area	is	988	square	feet	(GR_LIV_AREA=988),	the
total	basement	area	is	938	square	feet	(TOTAL_BSMT_SF=938),	the
lot	area	is	21453	(LOT_AREA=21453),	and	the	house	has	only	one
full	bathroom	(FULLBATH_2PLUS=0).	Based	upon	the	derived
model,	the	estimated	posterior	probability	of	getting	a	bonus	(P_1)



is	0.03867;	the	estimated	posterior	probability	of	not	getting	a
bonus	(P_0)	is	0.96133.	Because	the	posterior	probability	of	not
getting	a	bonus	is	greater	than	0.50	(the	default	cutoff	value),	that
house	is	classified	into	the	0	group	(i.e.,	classified	as	not	getting	a
bonus).	Therefore	I_BONUS	(Into	Bonus)	is	assigned	a	value	of	0.
Note	that	the	output	includes	all	of	the	typical	tables	found	in
logistic	regression;	Model	Information,	Response	Profile,
Convergence	Status,	Model	Fit	Statistics,	Testing	Global	Null
Hypothesis,	etc.,	unless	the	NOPRINT	option	is	used.
Ordinarily	the	actual	outcome	is	unknown	for	‘new’	data;	however,
for	the	data	set	AMESNEW,	the	outcome	is	known,	so	the	analyst
can	see	the	extent	to	which	the	observations	are	correctly
classified,	by	comparing	the	F_BONUS	(From	Bonus)	variable	to	see
if	it	matches	I_BONUS.	For	example,	observations	592	and	593
were	incorrectly	classified	as	0	(I_BONUS=0)	when	they	actually
originated	from	1	(F_BONUS=1).
Output	10.19	Predicted	Class	for	New	Observations	Using	the	SCORE	Statement	in
PROC	LOGISTIC

	

Obs F_Bonus I_Bonus P_0 P_1 Gr_Liv_Area Total_Bsmt_SF Lot_Area Fullbath_2plus

1 0 0 0.97659 0.02341 1004 1004 11241 0

2 0 0 0.96063 0.03937 1078 1078 12537 0

3 0 0 0.97398 0.02602 1056 1056 8450 0

4 0 0 0.98996 0.01004 894 894 8450 0

… … … … … … … … …

590 1 1 0.42931 0.57069 1855 528 9600 1

591 1 1 0.31103 0.68897 1875 675 10530 1

592 1 0 0.96133 0.03867 988 938 21453 0

593 1 0 0.73055 0.26945 1922 0 7301 1

594 1 1 0.25020 0.74980 1478 1418 7380 1

595 1 1 0.00067 0.99933 2687 2062 13108 1

	



Using	the	PLM	Procedure	to	Call	Score	Code	Created
by	PROC	LOGISTIC
In	the	last	section,	we	saw	that	the	SCORE	statement	requires	the
logistic	regression	model	be	derived	and	the	data	scored	in	the
same	procedure	(i.e.,	at	the	same	time).	Suppose,	instead,	that	the
analyst	prefers	to	develop	a	model	and	save	it	for	future	use.	In	this
case,	the	analyst	can	use	the	STORE	statement	within	the	LOGISTIC
procedure	to	save	the	model	in	a	binary	file	format,	followed
presumably	later	by	the	RESTORE	option	and	SCORE	statement
within	the	PLM	procedure	when	new	data	needs	to	be	scored.

The	purpose	of	the	PLM	procedure	is	to	recall	stored	models	from
various	statistical	procedures	and	apply	those	models	to	new	data.
Using	the	same	logistic	model	defined	in	the	previous	example,
Program	10.18	Predicted	Class	for	New	Observations	Using	PROC
PLM	with	the	SCORE	Statement	illustrates	the	use	of	the	PLM
procedure.

	

Program	10.18	Predicted	Class	for	New	Observations	Using	PROC	PLM	with	the
SCORE	Statement

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

store	sasba.ames_score_code;

run;

	

proc	plm	restore=sasba.ames_score_code;

score	data=sasba.amesnew	out=amesnew_scored;

run;

	

data	predbonus1;

set	amesnew_scored;



P_1	=	exp(Predicted)/(1+exp(Predicted));

proc	print	data=predbonus1	(obs=4);

var	P_1	Predicted	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

run;

As	found	in	Program	10.18	Predicted	Class	for	New	Observations
Using	PROC	PLM	with	the	SCORE	Statement,	the	logistic	regression
procedure	is	applied	to	the	AMES	data	(AMES70)	and	the	model	is
saved	in	the	permanent	file	called	AMES_SCORE_CODE	in	the
SASBA	library.	The	PLM	procedure	calls	the	AMES_SCORE_CODE
using	the	RESTORE	statement	and	the	code	is	used	to	score
AMESNEW	as	defined	in	the	SCORE	statement.	As	a	result,	each
newly	scored	observation	now	has	a	new	variable,	PREDICTED,
representing	the	predicted	logit,	and	all	observations	are	saved	in
the	file	AMESNEW_SCORED	as	defined	by	the	OUT=	option.

In	order	to	compare	to	previous	output,	the	DATA	step	was	used	to
calculate	P_1,	the	posterior	probability	of	success	(BONUS=1),	and
is	displayed	in	Output	10.20	Predicted	Class	for	New	Observations
Using	PROC	PLM	with	the	SCORE	Statement,	along	with	the	Store
Information	table.
Output	10.20	Predicted	Class	for	New	Observations	Using	PROC	PLM	with	the
SCORE	Statement

Store	Information

Item	Store SASBA.AMES_SCORE_CODE

Data	Set	Created
From

WORK.AMES

Created	By PROC	LOGISTIC

Date	Created 02FEB18:14:05:14

Response	Variable Bonus

Link	Function Logit

Distribution Binary

Class	Variables Overall_Quality	Bonus

Model	Effects Intercept	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area
Fullbath_2plus

	



Obs P_1 Predicted Gr_Liv_Area Total_Bsmt_SF Lot_Area fullbath_2plus

1 0.023405 -3.73110 1004 1004 11241 0

2 0.039368 -3.19464 1078 1078 12537 0

3 0.026016 -3.62267 1056 1056 8450 0

4 0.010038 -4.59127 894 894 8450 0

The	Store	Information	table	is	printed	when	the	PLM	procedure	is
applied.	It	provides	detailed	information	pertinent	to	how	the
model	was	created.	From	the	first	four	observations,	it	is	evident
that	the	posterior	probabilities	of	success	match	those	found	in
Output	10.19	Predicted	Class	for	New	Observations	Using	the
SCORE	Statement	in	PROC	LOGISTIC.

The	CODE	Statement	within	PROC	LOGISTIC
An	alternative	for	saving	score	code	for	future	use	is	the	CODE
statement	used	within	the	LOGISTIC	procedure.	This	approach
specifically	allows	for	creating	a	SAS	program	for	scoring	new
observations.

As	found	in	Program	10.19	Predicted	Class	for	New	Observations
Using	PROC	PLM	with	the	SCORE	Statement,	the	logistic	regression
procedure	is	applied	to	the	AMES	data	(AMES70)	and	the	model	is
saved	in	the	permanent	SAS	file	called	AMES_SCORE_CODE	on	the
C:	drive.	The	new	cases	from	AMESNEW	are	read	into	the
temporary	data	file	called	SCORE.	In	the	same	DATA	step,	the
%INCLUDE	statement	calls	the	saved	SAS	code	and	applies	the
code	to	the	SCORE	data	set.
Program	10.19	Predicted	Class	for	New	Observations	Using	PROC	PLM	with	the
SCORE	Statement

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;



code	file=“C:\sasba\ames\ames_score_code.sas”;

run;

	

data	Score;

set	sasba.amesnew;

%include	“c:\sasba\ames\ames_score_code.sas”;

run;

	

proc	print	data=score	(obs=4);

var	I_Bonus	U_Bonus	P_Bonus1	P_Bonus0	Gr_Liv_Area
Total_Bsmt_SF

Lot_Area	Fullbath_2Plus;

run;

The	partial	output	from	the	PROC	PRINT	is	displayed	in	Output
10.21	Predicted	Class	for	New	Observations	Using	PROC	PLM	with
the	SCORE	Statement	and	provides	for	comparing	posterior
probabilities	in	Output	10.19	and	Output	10.20.	The	code	created
by	the	CODE	statement	is	found	in	Program	10.20	SAS	Scoring
Code	Created	by	the	PLM	Procedure.	It	should	be	noted	that	the
scoring	code	must	be	dropped	into	a	data	step	and	applied	to	any
new	data.
Output	10.21	Predicted	Class	for	New	Observations	Using	PROC	PLM	with	the
SCORE	Statement

Obs I_Bonus U_Bonus P_Bonus1 P_Bonus0 Gr_Liv_Area Total_Bsmt_SF Lot_Area Fullbath_2plus

1 0 0 0.023405 0.97659 1004 1004 11241

2 0 0 0.039368 0.96063 1078 1078 12537

3 0 0 0.026016 0.97398 1056 1056 8450

4 0 0 0.010038 0.98996 894 894 8450

	
Program	10.20	SAS	Scoring	Code	Created	by	the	PLM	Procedure

*****************************************;

**	SAS	Scoring	Code	for	PROC	Logistic;

*****************************************;

length	I_Bonus	$	12;



label	I_Bonus	=	‘Into:	Bonus’	;

label	U_Bonus	=	‘Unnormalized	Into:	Bonus’	;

label	P_Bonus1	=	‘Predicted:	Bonus=1’	;

label	P_Bonus0	=	‘Predicted:	Bonus=0’	;

drop	_LMR_BAD;

_LMR_BAD=0;

***	Check	interval	variables	for	missing	values;

if	nmiss(Gr_Liv_Area,Total_Bsmt_SF,Lot_Area,fullbath_2plus)

then	do;		_LMR_BAD=1;	goto	_SKIP_000;

end;

	

***	Compute	Linear	Predictors;

drop	_LP0;_LP0	=	0;

***	Effect:	Gr_Liv_Area,	Total_Bsmt_SF,	Lot_Area,
Fullbath_2plus;

_LP0	=	_LP0	+	(0.00343130327968)	*	Gr_Liv_Area;

_LP0	=	_LP0	+	(0.00254775621396)	*	Total_Bsmt_SF;

_LP0	=	_LP0	+	(0.00007254452013)	*	Lot_Area;

_LP0	=	_LP0	+	(2.42751762568077)	*	fullbath_2plus;

***	Predicted	values;

drop	_MAXP	_IY	_P0	_P1;

_TEMP	=	-10.5495532923216		+	_LP0;

if	(_TEMP	<	0)	then	do;	_TEMP	=	exp(_TEMP);	_P0=_TEMP/(1+_TEMP);

end;

else	_P0	=	1	/	(1	+	exp(-_TEMP));_P1	=	1.0	-	_P0;

P_Bonus1	=	_P0;	_MAXP	=	_P0;	_IY	=	1;	P_Bonus0	=	_P1;

if	(_P1	>		_MAXP	+	1E-8)	then	do;	_MAXP	=	_P1;_IY	=	2;

end;

select(	_IY	);	when	(1)	do;I_Bonus	=	‘1’;	U_Bonus	=	1;	end;

when	(2)	do;I_Bonus	=	‘0’;	U_Bonus	=	0;	end;

otherwise	do;	I_Bonus	=	”;	U_Bonus	=	.;	end;

end;

_SKIP_000:

if	_LMR_BAD	=	1	then	do;

I_Bonus	=	”;	U_Bonus	=	.;	P_Bonus1	=	.;	P_Bonus0	=	.;

end;

drop	_TEMP;



The	OUTMODEL	and	INMODEL	Options	with	PROC
LOGISTIC
A	third	alternative	for	saving	score	code	involves	using	the
OUTMODEL=	option	within	the	LOGISTIC	procedure.	Once	the
estimated	model	is	saved,	it	can	be	called	and	applied	to	new
observations	by	using	the	INMODEL	option	and	the	SCORE
statement	within	the	LOGISTIC	procedure.	Program	10.21	Model
Saved	as	SAS	Data	Set	Created	by	the	OUTMODEL	Option	in	PROC
LOGISTIC	will	reproduce	the	same	results	as	those	discussed
previously.
Program	10.21	Model	Saved	as	SAS	Data	Set	Created	by	the	OUTMODEL	Option	in
PROC	LOGISTIC

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	logistic	data=ames	outmodel=sasba.amescorecode;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

run;

	

proc	logistic	inmodel=sasba.amescorecode;

score	data=sasba.amesnew	out=newames_scored;

run;

	

proc	print	data=newames_scored	(obs=4);

var	F_Bonus	I_Bonus	P_0	P_1	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

run;

	

proc	print	data=sasba.amescorecode;

run;

The	initial	SAS	code	is	identical	to	all	past	examples.	Note	that	in
the	first	logistic	regression,	the	OUTMODEL=	option	requests	that
the	model	be	saved	to	a	permanent	SAS	data	set	named



AMESCORECODE.	This	code	is	solely	created	for	use	by	a
subsequent	INMODEL=	option.	The	typical	logistic	regression
output	is	provided	as	well.

The	INMODEL=	option	in	the	second	logistic	regression	calls	the
code	in	the	permanent	data	set,	AMESCORECODE.	The	SCORE
statement	then	requests	that	the	model	be	applied	to	the	permanent
data	set	AMESNEW	as	defined	in	the	DATA=	option	and	that	all
scored	observations	be	saved	in	the	data	set	named	AMES_SCORED.
It	should	be	noted	that	the	model	is	not	refitted	when	the	second
LOGISTIC	procedure	is	run.

The	results	of	the	PRINT	procedure	match	those	found	in	Output
10.19,	10.20,	and	10.21.	The	last	PRINT	procedure	is	used	to
display	the	SAS	data	set,	AMESCORECODE,	which	is	created	by	the
OUTMODEL	option	and	can	be	found	in	Output	10.22	Model	Saved
as	SAS	Data	Set	Created	by	the	OUTMODEL	Option	in	PROC
LOGISTIC.

Before	concluding	this	section	on	scoring,	we	must	make	one	final
comment.		In	the	case	where	the	event	of	interest	is	considered	a
rare	event	(i.e.,	occurs	a	relatively	small	proportion	of	the	time),
the	data	set,	by	definition,	has	a	small	number	of	1s.	In	this	case,
there	is	insufficient	information	to	model	the	event.	Where
possible,	the	analyst	may	want	to	oversample	the	event	of
interest;		that	is,	take	all	of	the	observations	having	the	event,	and
sample	an	equal	number	of	observations	that	do	not	have	the
event.	In	this	case,	the	logistic	regression	intercept	is	biased	and
must	be	adjusted	before	scoring	new	cases.

In	Chapter	11,	“Measure	of	Model	Performance,”	we	will	discuss
how	to	adjust	the	logistic	regression	model	for	purposes	of	scoring
new	cases,	and	specifically	for	validating	predictive	models.
Output	10.22	Model	Saved	as	SAS	Data	Set	Created	by	the	OUTMODEL	Option	in
PROC	LOGISTIC

Obs _TYPE_ _NAME_ _CATEGORY_ _NAMEIDX_ _CATIDX_ _MISC_

1 L 	 	 . . 0.00

2 M NYYNYNNN 	 . . 5.00

3 G Bonus 0 0 0 -11.00



4 G Bonus 1 0 1 11.00

5 G Bonus 	 -1 0 826.00

6 G Bonus 	 -1 1 563.00

7 G Bonus 	 -1 -2 -12.00

8 Z Gr_Liv_Area 	 0 . 1.00

9 Z Total_Bsmt_SF 	 1 . 1.00

10 Z Lot_Area 	 2 . 1.00

11 Z fullbath_2plus 	 3 . 1.00

12 E Intercept E 0 0 -10.55

13 E EFFECT Z 0 0 0.00

14 E EFFECT E 0 0 0.00

15 E EFFECT Z 1 0 1.00

16 E EFFECT E 1 0 0.00

17 E EFFECT Z 2 0 2.00

18 E EFFECT E 2 0 0.00

19 E EFFECT Z 3 0 3.00

20 E EFFECT E 3 0 2.43

21 E EFFECT V . 0 0.41

22 E EFFECT V . 1 -0.00

23 E EFFECT V . 2 0.00

24 E EFFECT V . 3 -0.00

25 E EFFECT V . 4 0.00

26 E EFFECT V . 5 0.00

27 E EFFECT V . 6 -0.00

28 E EFFECT V . 7 -0.00

29 E EFFECT V . 8 -0.00

30 E EFFECT V . 9 0.00

31 E EFFECT V . 10 -0.02

E EFFECT V . 11 -0.00



32

33 E EFFECT V . 12 0.00

34 E EFFECT V . 13 0.00

35 E EFFECT V . 14 0.04

36 X 36 	 21 109 1451.46
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Chapter	Quiz
1.						Suppose	the	odds	ratio	for	a	100-square-foot-increase	in	total
basement	area	(TOTAL_BSMT_SF)	is

1.284.	This	means	that	the

a.						probability	of	the	event	increases	by	28.4%

b.						the	odds	of	the	event	increases	by	28.4%

c.						the	logit	increases	by	128.4%

d.						the	log-odds	of	the	event	increases	by	71.6%

2.						An	assumption	of	logistic	regression	is:

a.						the	outcome	variable	is	linearly	related	to	the	predictors

b.						the	residuals	have	a	normal	distribution

c.						the	variance	of	the	outcome	is	equal	across	all	values	of
the	predictor

d.						the	logit	is	linear	related	to	the	predictors

3.						What	is	the	range	of	the	logit	function?

a.						(-∞,	+∞)

b.						[0,	+∞)

c.						[0,1]

d.						[1,	+∞)

4.						Suppose	the	predictor	variable,	FULLBATH_2PLUS,	is	a
character	variable	coded	as	‘1’	if	the	house	has	two	or	more
full	bathrooms,	or	‘0’	if	the	house	has	only	one	full	bathroom.
You	run	a	logistic	regression	to	predict	whether	or	not	the
agent	earns	a	bonus	(BONUS=0	for	No;	BONUS=1	for
Yes).		You	get	the	following	output.	Which	set	of	SAS
statements	would	result	in	the	following	output?

	

Class	Level	Information

Class Value
Design
Variables



fullbath_2plus 0 1

	 1 -1

	

Analysis	of	Maximum	Likelihood	Estimates

Parameter 	 DF Estimate
Standard
Error

Wald
Chi-Square Pr	>	ChiSq

Intercept 	 1 -0.7011 0.0703 99.4285 <.0001

fullbath_2plus 0 1 -1.8150 0.0703 666.2498 <.0001

	

a.						libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ameshousing;

proc	logistic	data=ames;

class	Fullbath_2plus	(param=ref);

model	Bonus	(Event	=	‘1’)=Fullbath_2plus;

run;

b.						libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ameshousing;

proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=Fullbath_2plus;

run;

c.						libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ameshousing;

proc	logistic	data=ames;

class	Fullbath_2plus	(param=effect	ref=last);

model	Bonus	(Event	=	‘1’)=Fullbath_2plus;



run;

d.						libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ameshousing;

proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=Fullbath_2plus;

run;

	

5.						Consider	the	output	provided	in	#4.	What	is	the	odds	ratio
when	comparing	houses	with	FULLBATH_2PLUS=1	versus
FULLBATH_2PLUS=0?

a.						0.027

b.						37.713

c.						0.163

d.						6.141

6.						Which	of	the	following	combinations	of	procedures,
statements,	and/or	options	for	scoring	new	cases	requires	that
the	new	cases	must	be	scored	at	the	same	time	the	model	is
estimated?

a.						The	SCORE	statement	within	the	PLM	procedure

b.						The	CODE	statement	within	the	LOGISTIC	procedure

c.						The	OUTMODEL	and	INMODEL	options	within	the
LOGISTIC	procedure

d.						The	SCORE	statement	within	the	PROC	LOGISTIC
procedure

7.						Which	of	the	following	combination	of	procedures,
statements,	and/or	options	creates	a	SAS	program	for	scoring
new	cases?

a.						The	SCORE	statement	within	the	PLM	procedure

b.						The	CODE	statement	within	the	LOGISTIC	procedure

c.						The	OUTMODEL	and	INMODEL	options	within	the



LOGISTIC	procedure

d.						The	SCORE	statement	within	LOGISTIC	procedure

8.						Suppose	you	want	to	find	the	best	logistic	regression	model
to	predict	an	outcome,	using	main	effects	(A,	B,	C)	and	two-
way	interactions	only.	Which	of	the	following	sets	of	effects	is
possible	when	running	a	forward	selection,	backward
elimination,	or	stepwise	method	of	selection?

a.						A,	B,	A*B,	A*C

b.						A,	B,	C,	A*B,	B*C

c.						B,	C,	A*B,	B*C

d.						A*B,	A*C,	B*C

9.						Suppose	you	conducted	a	logistic	regression	to	assess	the
relationship	between	BONUS	and	the	three	predictors	found
in		the	following	Analysis	of	Maximum	Likelihood	Estimates
table.	Which	of	the	following	effects	would	be	removed	from
the	model	using	a	backward	elimination	with	SLSTAY=0.01?

a.						High_Kitchen_Quality

b.						Overall_Condition

c.						Fullbath_2plus*Overall_Condition

d.						Overall_Condition*High_Kitchen_Quality

Analysis	of	Maximum	Likelihood	Estimates

Parameter DF Estimate
Standard
Error

Wald
Chi-Square Pr	>	ChiSq

Intercept 1 -3.6163 0.8082 20.0229 <.0001

Fullbath_2plus 1 2.8101 0.8858 10.0638 0.0015

Overall_Condition 1 0.2267 0.3001 0.5707 0.4500

Fullbath_2plus
*Overall_Condition

1 0.0219 0.3352 0.0042 0.9480

High_Kitchen_Quality 1 3.7459 0.9669 15.0086 0.0001

Fullbath_2plus
*High_Kitchen_Quality

1 0.5927 0.3888 2.3239 0.1274

Overall_Condition
*High_Kitchen_Quality

1 -0.8036 0.3416 5.5334 0.0187



	

10.			Suppose	you	conducted	a	logistic	regression	to	assess	the
relationship	between	BONUS	and	the	three	predictors.	Based
upon	the	Testing	Global	Null	Hypothesis	table,	which	of	the
following	is	true?

a.						There	is	a	significant	reduction	in	the	measures	of	fit	for
the	model	when	compared	to	the	intercept-only	model.

b.						There	is	evidence	that	all	three	predictors	are
significantly	related	to	Bonus.

c.						All	odds	ratio	estimates	are	significantly	different	from
1.0.

d.						No	effects	would	be	eliminated	in	backward	selection
using	SLSTAY=0.01.

Testing	Global	Null	Hypothesis:	BETA=0

Test
Chi-
Square DF Pr	>	ChiSq

Likelihood
Ratio

933.2455 3 <.0001

Score 781.7884 3 <.0001

Wald 438.7907 3 <.0001



Chapter	11:	Measure	of	Model	Performance
Introduction
Preparation	for	the	Modeling	Phase
Honest	Assessment	of	a	Classifier
PROC	SURVEYSELECT	for	Creating	Training	and	Validation	Data	Sets
Recommendations	for	the	Model	Preparation	Stage

Assessing	Classifier	Performance
Measures	of	Performance	Using	the	Classification	Table
Measure	of	Performance	Using	the	Receiver-Operator-Characteristic	(ROC)	Curve
Model	Comparison	Using	the	ROC	and	ROCCONTRAST	Statements
Measures	of	Performance	Using	the	Gains	and	Lift	Charts

Adjustment	to	Performance	Estimates	When	Oversampling	Rare	Events
The	PEVENT	Option	for	Defining	Prior	Probabilities
Manual	Adjustment	of	the	Classification	Matrix
Scoring	the	Validation	Data	Using	Adjusted	Posterior	Probabilities

The	Use	of	Decision	Theory	for		Model	Selection
Decision	Cutoffs	and	Expected	Profits	for	Model	Selection
Using	Estimated	Posterior	Probabilities	to	Determine	Cutoffs

Key	Terms
Chapter	Quiz

Introduction			
In	Chapter	10,	“Logistic	Regression	Analysis,”	the	worth	of	a
logistic	regression	model	was	based	upon	goodness	of	fit	measures
for	assessing	the	extent	to	which	the	model	fit	the	data	at	hand.
When	a	logistic	regression	model	is,	instead,	used	for	prediction,	as
is	the	case	for	predictive	modeling,	the	emphasis	shifts	to
measuring	how	well	the	model	predicts	outcomes,	or	classes,	for
future	observations.	In	this	sense,	logistic	regression	falls	under	the
general	topic	of	classifier.	A	classifier	is	a	derived	rule	that	maps	a
set	of	inputs	or	predictors	into	one	of	two	or	more	mutually
exclusive	classes.	In	the	case	of	logistic	regression,	a	prediction
equation	is	derived	using	the	set	of	inputs,	and	based	upon	the
predicted	posterior	probability	of	being	a	success,	the	observation
is	classified	into	either	the	success	class	or	the	failure	class.	Other
examples	of	classifiers	are	linear	discriminant	analysis,	decision
tree,	nearest	neighbor,	and	neural	networks,	to	name	a	few.	While
this	chapter	specifically	addresses	topics	related	to	logistic



regression	as	a	classifier,	many	of	these	topics	apply	to	the
assessment	of	other	classifiers	as	well.

In	this	chapter,	we	first	discuss	partitioning	the	data	in	order	to
ensure	an	honest	assessment	of	the	classifier	performance.	We	then
introduce	the	confusion	matrix	and	define	performance	measures
for	both	the	training	and	validation	data,	and	discuss	the	naïve	rule
and	the	idea	of	validation	as	a	way	to	determine	the	worth	of	a
classifier.	Next,	we	discuss	how	the	classification	matrix	changes	as
the	analyst	changes	the	cutoff	value	and	the	development	of	the
Receiver-Operating-Characteristic	(ROC)	Curve	as	a	measure	of
performance	for	model	selection.	When	the	purpose	of	predictive
modeling	is	targeting	customers,	we	describe	the	use	of	gains	and
lift	charts	for	determining	how	many	customers	to	target	to	ensure
a	certain	level	of	performance	over	the	chance	model.	In	practice,
there	are	many	situations	where	the	event	of	interest	is	considered
a	rare	event;	therefore,	a	section	is	included	which	describes	how
to	adjust	the	classification	matrix,	posterior	probabilities,	and
performance	measures	when	the	analyst	oversamples	the	rare
event.	Finally,	this	chapter	describes	a	decision	theory	approach	to
determining	the	cutoff	value	needed	to	maximize	the	average
expected	profit	when	applying	a	classifier.

In	this	chapter,	you	will	learn	how	to:

	explain	supervised	learning	methods

	use	techniques	for	honestly	assessing	classifier	performance

	create	a	training	and	validation	data	set	using	PROC
SURVEYSLECT

	explain	the	difference	between	validation	data	and	test	data

	explain	the	importance	of	performing	data	preparation	before
the	data	is	split

	generate	the	confusion	matrix	using	the	CTABLE	option	and
be	able	to	explain	the	terms	true	negative	(TN),	true	positive
(TP),	false	negative	(FN),	and	false	positive	(FP)

	define	and	calculate	assessment	measures	using	the	confusion
matrix,	including	accuracy,	error	rate,	sensitivity,	specificity,
positive	predicted	value	(PV+),	negative	predicted	value	(PV-
),	false	positive	rate	(PF+),	and	false	negative	rate	(PF-)

●					

●					

●					

●					

●					

●					

●					



	assess	classifier	performance	using	the	confusion	matrix

	explain	the	maximum-chance	criterion,	also	known	as	the
naïve	rule

	validate	a	classifier	by	applying	the	SCORE	statement	to
validation	data

	explain	the	effects	of	cutoff	value	on	both	sensitivity	and
specificity

	explain	the	Receiver-Operating-Characteristic	(ROC)	curve
and	understand	that	it	is	an	assessment	measure	independent
of	cutoff	values

	create	an	ROC	curve	using	the	OUTROC	option	in	the	SCORE
statement

	use	the	ROC	statements	to	create	a	ROC	curve	for	each	model
and	an	overlay	plot	of	ROC	curves	for	two	or	more	models,
including	ROC	statistics	for	each	model

	use	the	ROCCONTRAST	statement	to	provide	the	statistical
test	for	comparing	ROC	curves	to	a	reference	curve

	explain	the	concept	of	depth	and	how	it	relates	to	cutoff	and
predicted	values

	use	depth	to	produce	gains	and	lift	charts	and	be	able	to
interpret	them

	develop	a	decision	rule	that	maximizes	expected	profit

	define	the	profit	matrix	and	how	to	use	profit	information	to
estimate	the	average	profit	per	observation,	or	customer

	calculate	decision	cutoffs,	given	a	profit	matrix	and	using
Bayes’	rule

	create	an	average	profit	plot	using	PROC	SGPLOT	and	to
determine	optimum	cutoff	values

	determine	the	model	with	the	highest	average	profit,	given	a
profit	matrix	and	estimated	model

Preparation	for	the	Modeling	Phase
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Before	the	modeling	process	begins,	the	analyst	must	ensure	the
integrity	and	reliability	of	the	results.	The	main	objective	of	the
analyst	is	to	select	a	classifier	that	performs	well	when	applied	to
future	observations.		In	this	section,	we	discuss	the	standard
process	for	assessing	classifier	performance	and	provide	some
preliminary	recommendations.

Honest	Assessment	of	a	Classifier
When	a	classifier	is	constructed	and	its	performance	is	then
assessed	using	the	same	data	on	which	the	classifier	was
constructed,	there	is	an	inherent	overestimate	in	its	performance.
In	other	words,	the	classifier	is	built	taking	into	account	both
legitimate	patterns	in	the	data	and	its	random	idiosyncrasies,	and
performs	better	on	that	data	set	as	opposed	to	external
observations.	This	issue	is	referred	to	as	overfitting	the	model
(Hand,	1983;	McLachlan,	1977).	When	overfitting	exists,	it	is
unlikely	that	the	model	will	generalize	well	to	the	population	of
interest.

In	order	to	avoid	overfitting	and	ensure	an	honest	assessment	of
the	classifier,	an	‘external’	prediction	error	must	be	calculated	by
applying	the	classifier	to	new	data—or	scoring	new	data	that	was
not	used	during	the	training	process	(Wujek,	Hall,	and	Günes,
2016).	In	particular,	the	common	practice	is	to	split	the	available
data	into	two	parts	before	the	modeling	process	begins.	These	two
data	sets	are	referred	to	as	the	training	data	and	the	validation
data,	respectively.	

The	training	data	set	is	the	data	set	used	to	fit	the	classification
model	and	is	called	such	because	it	is	‘trained’	to	represent	the
relationship	between	the	outcome	and	the	set	of	predictors.	The
validation	data	set	has	the	same	structure	as	the	training	data	set
with	the	known	outcome	variable	and	the	set	of	predictors,	but	has
no	role	in	determining	the	model.	In	fact,	the	validation	data	set	is
handled	as	if	it	were	a	new	data	set.	In	practice,	the	classifier	based
upon	the	training	data	is	applied	to	the	validation	data	and
performance	measures	are	calculated	to	assess	the	extent	to	which
the	predicted	outcomes	‘match’	the	known	outcomes	for	this
‘external’	data	set.	The	proportion	of	mismatches	in	the	validation
data	set	provides	an	unbiased	estimate	of	the	error	rate	of	the



classifier	when	applied	to	future	observations	with	unknown
outcomes	(Michie,	et	al.,	1994).	Note	that	any	modeling	process
used	to	predict	outcomes	where	the	outcomes	are	known	in
advance	is	referred	to	as	supervised	learning	methods.	
In	practice,	assessment	measures	calculated	on	the	validation	data
are	used	to	select	the	final	model	from	among	many	candidate
models.	The	candidate	models	may	be	the	result	of	testing	various
distributional	assumptions,	variable	selection,	or	changing	model
parameters	(such	as	the	number	of	neighbors	in	k-nearest-neighbor
classification,	number	of	hidden	layers	or	nodes	for	neural
networks,	etc.).	Finally,	it	should	be	noted	that	the	process	of
comparing	candidate	models	using	validation	data	also	has
inherent	bias;	therefore,	the	fully	defined	final	model	should	be
assessed	using	a	third	hold-out	data	set,	referred	to	as	the	test	data
(Ripley,	1996).

PROC	SURVEYSELECT	for	Creating	Training	and
Validation	Data	Sets
In	order	to	conduct	predictive	modeling,	the	analyst	must	first
partition	the	data	using	stratified	random	sampling.	In	stratified
random	sampling,	a	data	set	is	divided	into	groups,	or	strata,	and
observations	are	randomly	selected	from	each	of	the	strata.	

In	predictive	modeling,	the	levels	of	the	target	variable	make	up
the	strata.	So,	consider	a	binary	target	variable.	If	the	analyst	is
interested	in	creating	a	70%-30%	split	of	the	data,	corresponding	to
the	training	and	the	validation	data	sets,	the	analyst	will	randomly
select	70%	from	the	strata	corresponding	to	target=0	and	70%	of
the	strata	corresponding	to	target=1	and	place	those	observations
into	the	training	data	set;	the	remaining	30%	of	the	data	from	each
strata	will	be	placed	into	the	validation	data	set.	

The	SURVEYSELECT	procedure	can	be	used	to	create	various	types
of	random	samples.	For	purposes	of	data	partitioning,	we	will
describe	how	to	perform	stratified	random	sampling	using	the
general	form:

PROC	SURVEYSELECT		<options>;

STRATA	variables;

RUN;



To	illustrate	the	SURVEYSELECT	procedure,	consider	the	Ames
Housing	Case	introduced	in	Chapter	1,	“Statistics	and	Making	Sense
of	Our	World,”	where	the	analyst	wants	to	predict	whether	or	not	a
real	estate	agent	earns	a	bonus	in	the	sale	of	a	house
(target=BONUS).	Here,	the	target	variable,	BONUS,	has	two	levels
(BONUS=0	and	BONUS=1),	with	proportions	0.595	and	0.405,
respectively.	So,	to	create	a	70%-30%	data	partition,	70%	of	the
observations	with	BONUS=0	and		70%	of	the	observations	with
BONUS=1	will	be	randomly	selected	and	placed	into	the	training
data	set;	the	remaining	30%	will	be	placed	in	the	validation	data
set.	Program	11.1	Partitioning	Ames	Housing	into	Training	and
Validation	Data	Sets	illustrates	the	data	partition.
Program	11.1	Partitioning	Ames	Housing	Data	into	Training	and	Validation	Data
Sets

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ameshousing;

run;

	

proc	freq	data=ames;

tables	bonus;

run;

	

proc	sort	data=ames	out=amesort;

by	bonus;

run;

	

proc	surveyselect	data=amesort

method=srs	samprate=0.70	out=sampleames	seed=12345	outall;

strata	bonus;

run;

	

data	sasba.ames70;

set	sampleames;

if	selected=1;

drop	selected	SamplingWeight	SelectionProb;

run;

	



proc	freq	data=sasba.ames70;	tables	bonus;

title	‘70	percent	Sample	of	Ames	Total	-	FileName	=	ames70’;

run;

	

data	sasba.ames30;

set	sampleames;

if	selected=0;

drop	selected	SamplingWeight	SelectionProb;

run;

	

proc	freq	data=sasba.ames30;	tables	bonus;

title	‘30	percent	Sample	of	Ames	Total	-	Filename=ames30’;

run;

The	sampling	frame	is	the	list	of	houses,	as	found	in	the
AMESHOUSING	SAS	data	set,	and	is	the	data	set	to	be	partitioned.
Before	proceeding	with	the	data	partition,	note	that	the	SAS	code
requests	a	frequency	distribution	for	the	variable,	BONUS,	as
illustrated	in	Output	11.1a	PROC	FREQ	on	Bonus	for	Ames	Housing
Data.	Output	11.1a	PROC	FREQ	on	Bonus	for	Ames	Housing	Data
shows	a	total	of	1984	houses,	where	59.48%	did	not	result	in	a
bonus	and	40.52%	resulted	in	a	bonus.

Before	the	SURVEYSELECT	procedure	can	be	called,	the	data	must
be	sorted	by	the	strata,	as	shown	in	the	SORT	procedure.	The	new
data,	sorted	by	BONUS,	is	saved	in	the	AMESORT	temporary	data
set	using	the	OUT=	option.

Following	the	sort,	the	SURVEYSELECT	procedure	is	applied	to	the
AMESORT	data	set,	where	70%	of	the	data	from	each	strata
(BONUS=0	and	BONUS=1)	are	sampled,	as	defined	by	the
SAMPRATE=0.70	option	and	the	STRATA	statement.	The
METHOD=SRS	option	is	the	default	method	and	requests	that
observations	have	an	equal	probability	of	being	selected,	without
replacement.	The	SEED=	option	defines	the	starting	point	for	the
random	number	generator,	and	ensures	that	you	generate	the	same
random	sample	for	a	given	set	of	procedural	parameters	each	time
that	seed	is	used.	Finally,	the	OUTALL	option	requests	that	all
observations	from	the	input	data	set	(DATA=AMESORT)	be	saved
in	the	temporary	data	set,	SAMPLEAMES,	as	defined	by	the	OUT=
option;	this	data	set	contains	all	variables	from	the	input	data	set,



in	addition	to	a	variable	called	SELECTED,	which	is	defined	as	1	if
the	observation	was	selected	for	the	sample,	or	0	otherwise.	If	the
OUTALL	option	had	been	omitted,	only	those	observations	selected
would	be	retained	for	the	training	data	set,	and	the	remaining
observations	would	not	have	been	retained	for	the	validation	data
set.

Once	the	SURVEYSELECT	procedure	is	completed,	the	analyst	is
now	interested	in	the	SAMPLEAMES	data	set	which	contains	all
1984	houses	from	the	original	data.	The	next	two	DATA	steps	now
involve	the	actual	partitioning	of	the	original	data	set	using	the
variable,	SELECTED.	In	the	first	DATA	step,	70%	of	the
observations	selected	(by	strata)	for	the	training	data	set	are	placed
into	the	permanent	data	set	(AMES70)	using	the	SET	SAMPLEAMES
statement	and	SELECT=1.		In	the	second	DATA	step,	30%	of	the
observations	not	selected	will	be	placed	into	the	permanent	data	set
(AMES30),	using	the	SET	SAMPLEAMES	statement	and	SELECT=0.
As	a	result,	the	training	data	set	(AMES70)	has	1389	observations
and	the	validation	data	set	(AMES30)	has	595	observations	as
displayed	in	Log	11.1	Partial	Log	for	PROC	SURVEYSELECT	Using
Ames	Housing	Data.	The	specific	parameters	of	the	SURVEYSELECT
procedure	are	displayed	in	Output	11.1b	PROC	SURVEYSELECT
Using	Ames	Housing	Data.

Finally,	note	that	the	FREQ	procedure	is	applied	to	each	of	the	data
sets	(AMES70	and	AMES30)	to	illustrate	the	percentages	for	each
level	of	BONUS	for	both	the	training	and	validation	data	sets.	In
Output	11.1c	PROC	FREQ	on	Bonus	for	Ames	Training	and
Validation	Data,	note	that	for	all	three	data	sets—the	original,
training,	and	validation	data	sets—approximately	59.5%	did	not
result	in	a	bonus	and	40.5%	resulted	in	a	bonus.	In	short,	we	expect
the	population	proportion	of	homes	where	the	agent	receives	a
bonus	to	be	approximately	0.4050	and	the	population	proportion	of
homes	where	the	agent	does	not	receive	a	bonus	to	be
approximately	0.5950.	These	proportions	are	obviously	reflected	in
the	training	and	validation	data	sets.	(Note:	later	in	this	chapter,
we	will	discuss	the	need	for	oversampling	of	rare	events,	where	the
sample	proportions	do	not	reflect	those	in	the	population,	followed
by	a	discussion	on	how	to	make	the	necessary	adjustments.)
Output	11.1a	PROC	FREQ	on	Bonus	for	Ames	Housing	Data



	
All	Ames	Housing	Data

The	FREQ	Procedure

Bonus Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 1180 59.48 1180 59.48

1 804 40.52 1984 100.00

	
	

Output	11.1b	PROC	SURVEYSELECT	Using	Ames	Housing	Data

	
The	SURVEYSELECT	Procedure

Selection
Method

Simple	Random
Sampling

Strata	Variable Bonus

	

Input	Data	Set AMESORT

Random	Number
Seed

12345

Stratum	Sampling
Rate

0.7

Number	of	Strata 2

Total	Sample	Size 1389

Output	Data	Set SAMPLEAMES

	
Output	11.1c		PROC	FREQ	on	Bonus	for	Ames	Training	and	Validation	Data

70	percent	Sample	of	Ames	Total	-	FileName	=	ames70

The	FREQ	Procedure

Bonus Frequency Percent
Cumulative
Frequency

Cumulative
Percent



0 826 59.47 826 59.47

1 563 40.53 1389 100.00

	
30	percent	Sample	of	Ames	Total	-	filename=ames30

The	FREQ	Procedure

Bonus Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 354 59.50 354 59.50

1 241 40.50 595 100.00

	
Log	11.1	Partial	Log	for	PROC	SURVEYSELECT	Using	Ames	Housing	Data

NOTE:	There	were	1984	observations	read	from	the	data	set
WORK.SAMPLEAMES.

NOTE:	The	data	set	SASBA.AMES70	has	1389	observations	and
103	variables.

…
NOTE:	There	were	1984	observations	read	from	the	data	set
WORK.SAMPLEAMES.

NOTE:	The	data	set	SASBA.AMES30	has	595	observations
and	103	variables.

	

Recommendations	for	the	Model	Preparation	Stage
There	are	some	things	to	consider	when	preparing	for	the	modeling
stage.	The	first	is	the	impact	on	overfitting	due	to	both	sample	size
and	flexibility	of	the	classifier.	If	the	analyst	fits	a	model	using	a
relatively	small	data	set,	there	is	instability	in	the	model	selection
process.	In	other	words,	over	repeated	random	samples,	the	model
selected	very	rarely	replicates.	As	a	result,	we	expect	the
performance	of	any	model	selected	using	a	small	sample	to	exhibit
a	breakdown	in	performance	when	applied	to	larger	external
data.		In	short,	overfitting	is	the	problem.

Consider	now	model	flexibility.	The	more	flexible	the	model,	the



higher	the	tendency	to	fit	the	specific	peculiarities	of	the	data	and,
as	a	result,	a	more	flexible	model	is	less	likely	to	validate	on
external	data.		Overfitting	becomes	a	real	consideration	when	the
analyst	fits	a	more	flexible	model	using	less	data.		Therefore,	the
data	analyst	may	require	much	larger	data	sets	when	using	decision
trees	and	other	machine	learning	algorithms,	as	opposed	to	the	less
flexible	logistic	regression	classifier,	for	example.	

The	number	of	inputs	is	also	a	source	of	overfitting.	Specifically,	an
analyst	can	attempt	to	use	many	predictors	and	to	pick	the	‘best’
subset	as	a	way	to	improve	the	performance	of	a	model.	In	other
words,	extra	information	can	be	used	to	‘fit’	specific	details	of	the
training	data,	so	that	the	model	performs	poorly	on	the	validation
data.	In	fact,	variable	selection	methods	are	very	susceptible	to
overfitting	and	validation	is	imperative.

Note	also	that	sample	size	becomes	more	of	an	issue	when	the	data
is	partitioned	and	the	smaller	training	data	set	is	used	for	the
modeling	process.	In	this	case,	the	analyst	may	opt	for	a	70-30
training-validation	split,	as	opposed	to	a	50-50	split.

Another	consideration	is	referred	to	as	information	leakage.	This
occurs	when	any	information	from	a	holdout	data	set	‘leaks’	into
the	training	data	set	(Wujek,	Hall,	and	Günes,	2016).	As	mentioned
earlier	in	this	section,	the	validation	data	set	should	be	treated	as	if
it	were	truly	a	new	data	set.	Therefore,	any	methods	used	for	data
preparation	should	be	done	only	on	the	training	data	set,	after	the
split,	so	that	the	validation	data	set	has	no	‘knowledge’	of	or
influence	on	the	patterns	that	exist	in	the	training	data	set.		After
the	data	preparation	process	has	been	completed	on	the	training
data,	those	same	rules	should	then	be	applied	to	the	validation	data
set;	otherwise,	any	model	assessment	using	the	validation	data	will
have	some	inherent	bias	in	the	performance	results.	

For	example,	when	applying	the	Greenacre	method	for	collapsing
levels	of	a	categorical	input	variable,	as	discussed	in	Chapter	8,
“Preparing	the	Input	Variables	for	Prediction,”	the	resulting	cluster
levels	are	determined	based	upon	the	relationship	between	the
categorical	input	and	the	target	variable	of	interest.	So	the	cluster
levels	should	be	determined	using	the	training	data	set	only;
otherwise	if	all	of	the	data	were	included	in	the	Greenacre	analysis,
the	resulting	cluster	levels	are	based	also	upon	the	validation	data



and,	consequently,	more	favorable	performance	measures	would	be
obtained	in	the	validation	process.

While	all	data	preparation	methods	involving	the	target	variable
should	be	applied	only	to	the	training	data,	there	are	some
suggestions	that	data	preparation	which	does	not	involve	the	target
can	be	used	on	the	entire	data	set.	However,	we		argue	here	for	a
more	conservative	approach	and	make	all	data	preparation
decisions	using	training	data	only.	In	fact,	the	validation	process
itself	can	be	a	way	of	testing	the	value	of	decisions	made	in	the
data	preparation	stage	as	it	applies	to	the	training	data.

Assessing	Classifier	Performance
When	conducting	statistical	analyses	and,	specifically,	fitting
predictive	models,	it	is	natural	to	use	statistical	indices	to	measure
model	performance.		These	measures	are	used	to	both	describe	the
worth	of	a	model	and	provide	a	basis	for	model	comparisons.		In
this	section,	we	discuss	the	classification	table,	the	receiver-
operator-characteristic	(ROC)	curve,	along	with	the	gains	and	lift
charts,	as	measures	of	classifier	performance.

Measures	of	Performance	Using	the	Classification
Table
At	a	very	basic	level,	the	proportion	of	correct	classification	is	a
good	measure	of	classifier	accuracy.	We	refer	to	this	proportion	as
the	hit	rate.	There	are	two	hit	rates	of	interest.	First,	the	actual	hit
rate	is	the	proportion	of	observations	correctly	classified	when
applying	a	classifier	rule	based	upon	a	specific	sample	to	the
population.	This	hit	rate	is	usually	unknown	because	population
data	is	usually	not	available.		As	an	alternative,	the	analyst	relies
on	an	estimate	of	hit	rate,	known	as	the	apparent	hit	rate.	The
apparent	hit	rate	is	the	proportion	of	sample	observations	correctly
classified	using	the	sample-specific	classifier.

The	apparent	hit	rate,	referred	hereafter	as	hit	rate,	is	calculated
using	the	classification	table,	sometimes	referred	to	as	the
confusion	matrix.	The	classification	table,	for	a	binary	outcome
variable,	is	a	two-by-two	frequency	table	of	the	actual	class	by	the
predicted	class	and	has	the	general	form,	as	displayed	in	Table	11.1



General	Form	of	the	Classification	Table.
	

Table	11.1	General	Form	of	the	Classification	Table

	
	

Predicted	CLASS 	

	
Actual
CLASS

0=NO
(predicted
negative)

1=YES
(predicted
positive)

	

	
0=NO
(actual
negative)

	
Number	of
negatives
correctly
classified	as
negative	(TN)

	

	
Number	of
negatives
incorrectly
classified	as
positive	(FP)

	
Number	of	actual
negatives	in	the
data	set	(TN+FP)

	
1=YES
(actual
positive)

	
Number	of
positives
incorrectly
classified	as
negatives	(FN)

	

	
Number	of
positives
correctly
classified	as
positives	(TP)

	
Number	of	actual
positives	in	the
data	set	(FN+TP)

	 Number	of
observations
classified	as
negative	=
(TN+FN)

Number	of
observations
classified	as
positive	=
(FP+TP)

Total	number	of
cases	in	the	data	set
(TN+FN+FP+TP)

	

In	order	to	understand	the	various	measures	of	performance,
consider	the	entries	in	the	classification	table.		The	number	of
negatives	correctly	classified	as	negative	is	referred	to	as	the
number	of	true	negatives	(TN);	the	number	of	positives	correctly
classified	as	positive	is	referred	to	as	the	number	of	true	positives
(TP).		The	number	of	positives	incorrectly	classified	as	negative	is



referred	to	as	the	number	of	false	negatives	(FN);	the	number	of
negatives	incorrectly	classified	as	positive	is	referred	to	as	the
number	of	false	positives	(FP).

The	two	numbers,	TP	and	TN	(on	the	diagonal	from	upper-left	to
lower-right),	represent	the	total	number	of	correct	classifications.
These	two	numbers	added	together	and	divided	by	the	total
number	of	cases	is	a	measure	of	accuracy	and	is	referred	to	as	the
hit	rate.	It	is	represented	by	the	formula:

Hit	rate	

The	error	rate	is	defined	as:

Error	Rate	=	1	–	Hit	rate	

Other	measures	of	classifier	performance	involve	the	proportion	of
correct	classifications	for	specific	conditional	events,	which
requires	looking	at	either	a	single	column	or	a	single	row.	Consider,
first,	the	success	class,	where	the	class	outcome	equals	1.	Suppose,
for	example,	you	are	interested	in	the	performance	of	a	classifier	in
terms	of	how	well	it	correctly	identifies	the	actual	positive	events.
In	this	case,	you	would	be	interested	only	in	the	row	representing
the	total	number	of	positives	(FN+TP).		Therefore,	the	sensitivity,
also	referred	to	as	recall	or	true	positive	rate,	is	the	proportion	of
true	positives	out	of	the	total	number	of	actual	positives.	This
proportion	of	positive	cases	correctly	predicted	to	be	positive	is
defined	as:

Suppose,	now,	that	the	analyst	is	interested	in	looking	at	the
observations	predicted	as	positive	(the	column)	to	determine	the
proportion	of	true	positives.	That	measure	is	called	the	positive
predicted	value	(PV+),	also	referred	to	as	precision,	and	is
defined	as:

While	the	analyst	would	like	both	of	these	measures	(sensitivity
and	PV+)	to	be	large,	the	existence	of	one	does	not	guarantee	the
other.	As	the	chapter	unfolds,	you	will	see	that	the	purpose	of	the
analysis	drives	the	measure	on	which	to	place	emphasis.	



For	example,	if	the	analyst	is	interested	in	the	actual	positive	event
(the	row),	he	or	she	would	be	more	interested	in	sensitivity,	which
is	the	ability	to	correctly	classify	the	‘actual’	positive	event.	An
example	of	this	is	in	disease	diagnosis,	where	the	analyst	is	more
interested	in	the	accuracy	associated	with	diagnosing	the	disease
(the	actual	positive	case)	as	opposed	to	the	accuracy	in	diagnosing
that	no	disease	exists.	The	sensitivity	would	measure,	of	those
positive	patients	who	actually	have	the	disease,	the	probability	that
the	disease	is	detected.	

Suppose,	instead,	that	the	analyst	is	more	interested	in	the
predicted	positives	(the	column);	consequently,	he	or	she	would	be
more	interested	in	the	positive	predicted	value	(PV+).	A	good
example	is	target	marketing.		Suppose	an	analyst	is	reviewing
potential	customers	that	were	predicted	to	respond	to	an	email
solicitation	to	buy	the	company’s	product	(a	column,	classified	as	a
yes).	He	or	she	is	interested	to	see,	when	those	predicted	positive
customers	are	solicited,	what	proportion	will	respond	(PV+).

Consider,	now,	the	failure	class,	where	the	class	outcome	equals
0.		Suppose	you	are	interested	in	how	well	a	classifier	correctly
identifies	the	actual	negative	events.	You	would	be	interested	only
in	the	row	representing	total	number	of	negatives	(TN+FP).	So	the
specificity,	also	known	as	true	negative	rate,	is	the	proportion	of
true	negatives	out	of	the	total	number	of	actual	negatives.	This
proportion	of	negative	cases	correctly	predicted	as	negative	is
defined	as:

Suppose,	instead,	that	the	analyst	is	interested	in	looking	at	the
observations	predicted	as	negative	(column)	to	determine	the
proportion	of	true	negatives.	That	measure	is	called	the	negative
predicted	value	(PV-)	and	is	defined	as:

The	CTABLE	Option	for	Producing	Classification	Results

Consider	the	Ames	Housing	Case	and	the	logistic	regression	model
using	just	four	predictors,	for	example.		Program	11.2	Classification
Tables	for	Ames	Training	and	Validation	Data	Sets	can	be	used	to
generate	the	classification	table	for	both	the	training	data	set	and



the	validation	data	set:
Program	11.2	Classification	Tables	for	Ames	Training	and	Validation	Data	Sets

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	format;

value	$yesno	‘0’=‘NO’	‘1’=‘YES’;

run;

	

proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus	/	ctable	pprob=.50;

score	data=sasba.ames30	out=pred_amesvalidation;

run;

	

proc	freq	data=pred_amesvalidation;

tables	f_bonus*i_bonus;

format	f_bonus	i_bonus	$yesno.;

title	‘Classification	Table	for	Ames	Validation	Data’;

run;

In	the	DATA	step,	the	training	data	set,	AMES70,	is	saved	to	the
temporary	data	set	AMES,	and	the	LOGISTIC	procedure	is	applied
to	that	data	using	the	MODEL	statement;	BONUS	is	defined	as	the
response	variable	and	the	four	predictors	are	GR_LIV_AREA,
TOTAL_BSMT_SF,	LOT_AREA,	and	FULLBATH_2PLUS.	Note	that	the
logistic	regression	model	is	not	displayed	here,	although	it	will	be
produced	by	the	LOGISTIC	procedure.

The	CTABLE	option	requests	that	observations	are	classified	into
the	event	of	interest	(BONUS=1)	if	the	estimated	posterior
probability	of	the	event	exceeds	a	particular	cutoff	value;	the	cutoff
is	specified	using	the	PPROB=	option.	Here	we	explicitly	define	a
cutoff	value	of	0.50,	which	is	the	default,	and	the	resulting
classification	table	for	the	training	data	is	shown	in	Output	11.2a
Classification	Table	for	Ames	Training	Data,	and	restructured	in
Table	11.2	Classification	Table	for	Ames	Training	Data.



Note	that	the	PPROB	option	can	include	either	a	single	cutoff	value
or	a	list	of	cutoff	values	as	long	as	the	values	are	between	0	and	1.
If	the	CTABLE	option	is	not	used	the	PPROB	option	will	be	ignored
and	no	classification	table	will	be	displayed.	If	the	CTABLE	option
is	used	with	no	PPROB	option,	classification	tables	will	be
displayed	for	a	range	of	cutoff	values,	from	the	0.00	to	1.00	in
increments	of	0.02,	as	we	will	see	in	the	next	section.		

Finally,	the	classifier	is	applied	to	the	validation	data	set,	AMES30,
using	the	SCORE	statement	and	the	predicted	values	are	saved	in	a
temporary	file,	PRED_AMESVALIDATION,	as	defined	in	the	OUT=
option.		In	the	file	of	predicted	values,	F_BONUS	represents	the
actual	class	(or	the	From	BONUS	group)	and	I_BONUS	represents
the	predicted	class	(or	the	Into	BONUS	group).	Note	that	an
observation	is	classified	into	the	class	having	the	largest	posterior
probability	as	determined	by	the	classifier.		The	FREQ	procedure
requests	a	classification	table	for	the	validation	data,	as	displayed
in	Output	11.2b	Classification	Table	for	Ames	Validation	Data.
Output	11.2a	Classification	Table	for	Ames	Training	Data

Classification	Table

Prob
Level

Correct Incorrect Percentages

Event
Non-
Event Event

Non-
Event Correct

Sensi-
tivity

Speci-
ficity

False
POS

False
NEG

0.500 484 734 92 79 87.7 86.0 88.9 16.0 9.7

In	both	Output	11.2a	Classification	Table	for	Ames	Training	Data
and	Table	11.2	Classification	Table	for	Ames	Training	Data,	we	can
see	that	the	number	of	true	positives	(TP)	is	484,	the	number	of
true	negatives	(TN)	is	734,	the	number	of	false	positives	(FP)	is	92,
and	the	number	of	false	negatives	(FP)	is	79.	Also	the	number	of
actual	positives	is	563	(484+79),	the	number	of	actual	negatives	is
826	(734+92),	the	number	of	predicted	positives	is	576	(484+92),
and	the	number	of	predicted	negatives	is	813	(734+79).	The	row
totals	and	column	totals	each	add	up	to	the	total	number	of	houses,
1389,	as	displayed	in	Table	11.2	Classification	Table	for	Ames
Training	Data.
Table	11.2		Classification	Table	for	Ames	Training	Data



	 Predicted	CLASS

Actual	CLASS 0=NO 1=YES 	

0=NO 734	(TN) 92	(FP) 826

1=YES 79	(FN) 484	(TP) 563

	 813 576 1389

Upon	inspection	of	the	classification	table	for	the	Ames	Housing
training	data,	we	can	see	that	the	overall	accuracy	as	measured	by
the	hit	rate	is

	=	0.8769				with	Error	Rate	=	1	–	0.8769	=

0.1231

Other	training	measures	found	in	Output	11.2a	Classification	Table
for	Ames	Training	are:

	=	0.8597				and										Specificity	 	=

0.8886.

Among	the	predicted	classes	(columns),	the	positive	predicted
value	and	negative	predicted	value	are:

	=	0.8403													and											PV-	 	=	0.9028

Note	also	that	among	the	predicted	classes	(column),	the	analyst
can	also	calculate	the	proportion	of	incorrect
decisions.		Specifically,	the	false	positive	rate	(PF+)	and	the	false
negative	rate	(PF-),	as	displayed	in	Output	11.2a	Classification
Table	for	Ames	Training,	are	calculated	as	follows:

		=	1	–	PV+	=	0.1597																and											

	.=	1	–	PV-	=	0.0972.

As	always,	classification	performance	should	be	assessed	using	the
classification	results	of	the	validation	data	set,	as	displayed	in
Output	11.2b	Classification	Table	for	Ames	Validation	Data.	Upon



inspection,	we	can	see	that	the	overall	accuracy	as	measured	by	the
hit	rate	is

	=	0.8824				with	Error	Rate	=	1	–	0.8824	=
0.1176

Other	validation	measures	are:		Sensitivity	 =
0.8548,			Specificity	 	=	0.9011,	and	are	listed	as	row
percents	in	Output	11.2b	Classification	Table	for	Ames	Validation
Data.	The	performance	measures	listed	as	column	percents	are:

	=	0.8548,					PV-	 	=	0.9011

	

	=	1	–	PV+	=	1	-	0.8548	=	0.1452								and											
	=	1	–	PV-	=	1	–	0.9011	=	0.0989.

	
Output	11.2b		Classification	Table	for	Ames	Validation	Data

Table	of	F_Bonus	by	I_Bonus

F_Bonus I_Bonus

Frequency
Percent
Row	Pct
Col	Pct NO YES Total

NO 319
53.61

90.11(Specificity)
90.11	(PV-)	

35
5.88
9.89

14.52	(PF+)

354
59.50

YES 35
5.88
14.52

9.89	(PF-)

206
34.62

85.48	(Sensitivity)
85.48	(PV+)

241
40.50

Total 354
59.50

241
40.50	(depth)

595
100.00

It	should	be	noted	that	it	is	a	coincidence	that	both	sensitivity	and
PV+	are	identical	and	specificity	and	PV-	are	identical.	This	occurs
because	the	number	of	actual	positive	cases	(241)	and	the	number
of	predicted	positive	cases	(241)	are	the	same;	this,	by	default,



means	the	number	of	actual	negative	cases	(354)	is	identical	to	the
number	of	predicted	negative	cases	(354).	This	in	practice	will,
more	than	likely,	not	happen.

Assessing	the	Performance	and	Generalizability	of	a	Classifier

In	order	to	assess	the	worth	of	a	classifier,	we	must	first	establish	a
criterion	for	performance.		To	do	this,	we	must	ask	the
question:		‘How	well	can	we	do	in	classifying	observations	if	we
know	nothing	about	those	observations?’		In	other	words,	how	well
can	we	classify	observations	if	we	have	no	predictors	(i.e.,	no
model)?			With	no	information,	we	could	simply	classify	all
observations	into	the	largest	class	and	be	correct	a	majority	of	the
time.	This	criterion	for	performance	is	referred	to	as	the	naïve
rule,	or	the	maximum	chance	criterion.

Consider	the	Ames	Housing	Case,	where	the	largest	class	of	the
target	variable,	BONUS,	is	the	failure	class.		The	proportion	of	the
failure	class	(BONUS=0)	is	0.5950;	therefore,	if	we	classify	all
houses	as	having	no	bonus	earned,	our	proportion	correct	is
0.5950.	Consequently,	any	predictive	model	worth	using	has	to
‘beat’	the	0.5950	accuracy	rate.

While	the	goal	of	the	analyst	is	to	ensure	that	the	model	beats	the
naïve	rule,	special	attention	should	be	paid	to	the	issue	of
overfitting.	As	mentioned	earlier,	the	analyst	expects	the	training
hit	rate	to	be	slightly	larger	than	the	validation	hit	rate.	When	the
training	and	validation	hit	rates	are	relatively	close,	the	model	is
said	to	validate,	and	is,	therefore,	expected	to	perform	well	when
deployed	for	predicting	future	observations.

However,	as	the	analyst	continues	to	‘tweak’	the	model	by	fitting	to
the	unique	characteristics	of	the	training	data,	thereby	increasing
the	training	hit	rate,	there	will	be	a	breakdown	in	the	performance
of	the	classifier	when	applied	to	the	validation	data,	resulting	in	a
decrease	in	the	validation	hit	rate.		Consequently,	as	the	difference
between	the	training	and	validation	hit	rates	becomes	larger,	there
is	an	increased	chance	that	the	model	is	overfit,	and	will,	therefore,
not	generalize	to	future	data.		In	this	case,	the	model	should	be
eliminated	for	consideration.

In	conclusion,	an	acceptable	model	is	one	that	validates	and	beats
the	naïve	rule.		When	deciding	among	competing	models,	the



models	under	consideration	must	first	be	acceptable—that	is,
validates	and	beats	the	naïve	rule.	Then	the	model	that	has	the
highest	validation	hit	rate	can	be	selected	because	it	is	expected	to
outperform	the	other	models	when	deployed	on	future	data.

It	should	be	noted	that	all	of	the	above	calculations	assume	that	the
samples	are	randomly	selected	from	the	population	and,	as	a	result,
the	sample	prior	probabilities	(p0	and	p1)	are	unbiased	estimates	of
the	population	prior	probabilities	(π0	and	π1).		Later,	in	this
chapter,	we	will	discuss	the	need	for	oversampling	when	the	event
of	interest	is	considered	rare.	This	requires	stratified	random
sampling	where	the	sample	priors	are	not	good	estimates	of
population	priors,	and	consequently,	adjustments	to	some
performance	measures	must	be	made.

The	Effect	of	Cutoff	Values	on	Sensitivity	and	Specificity
Estimates

The	previous	discussion	on	accuracy	measures	assumes	that	the
cutoff	value	for	classifying	an	observation	is	0.50.	In	other	words,
if	the	posterior	probability	of	belonging	to	the	success	class	is
greater	than	0.50,	then	the	observation	is	classified	into	the	success
class;	otherwise	the	observation	is	classified	into	the	failure	class.
This	rule	assumes	that	overall	accuracy	is	most	important	and
ignores	the	fact	that	the	analyst	may	be	more	interested	in	the
accuracy	in	predicting	one	class	over	the	other.

Once	the	model	is	specified,	the	analyst	may	be	more	interested	in
the	accuracy	of	a	specific	class	over	the	other.	In	this	case,	the
analyst	can	define	an	alternative	cutoff	value.	Consider	the
following	example	in	banking,	where	the	loan	officer	is	interested
in	predicting	whether	or	not	a	customer	will	default	on	a	loan
(class	=	1	or	0,	respectively)	based	upon	customer	characteristics
(or	predictors).	

Suppose	the	loan	officer	wants	to	minimize	risk.	He	or	she	would
award	a	loan	to	a	select	few	where	there	is	relatively	high
confidence	that	the	loan	will	be	repaid.	In	other	words,	the	loan
officer	would	assume	that	most	customers	will	default,	and	decides,
therefore,	to	reduce	the	cutoff	value.	The	loan	officer	could,	for
example,	set	the	cutoff	to	0.30,	and	as	a	result,	the	classification
rule	is:



If	P(1|X1,	X2,…Xk)	>	0.30,	classified	the	observation	into	group
1	(default);	otherwise	group	0

Consequently,	the	threshold	for	determining	risk	is	low,	and	as	a
result,	the	classifier	will	classify	more	observations	into	group	1
(i.e.,	the	number	of	positive	predicted	will	increase	and	the	number
of	negative	predicted	will	decrease);	also	all	performance	measures
discussed	previously	will	change.		

Suppose,	instead,	the	loan	officer	wants	to	give	a	loan	to	high	risk
customers.	In	other	words,	he	or	she	wants	to	target	a	market	on
which	no	one	else	wants	to	take	a	chance.	The	loan	officer	could,
for	example,	set	the	cutoff	to	0.70,	and	use	the	classification	rule:

If	P(1|X1,	X2,…Xk	)>	0.70,	classified	the	observation	into	group
1	(default);	otherwise	group	0

In	this	case,	the	threshold	for	determining	risk	is	high,	and	as	a
result,	the	classifier	will	classify	more	observations	into	group	0
(i.e.,	the	number	of	negative	predicted	will	increase	and	the
number	of	positive	predicted	will	decrease);	again,	all	performance
measures	discussed	previously	will	change.		

Consider	the	Ames	Housing	Case	and	the	same	logistic	regression
model	previously	run	using	just	four	predictors.	To	obtain
classification	results	for	various	cutoff	values,	the	analyst	can	use
the	PPROB=	option	as	displayed:
/	ctable	pprob=	0.0	to	1.0	by	0.10;

As	illustrated	in	Output	11.3	Classification	Table	for	Multiple
Cutoff	Values	for	Ames	Training	Data,	the	numbers	that	make	up
the	classification	table	are	provided	for	cutoff	values,	0.0	to	1.0	in
increments	of	0.10,	respectively,	along	with	the	percentages	of
correct	observations	overall,	sensitivity,	specificity,	false	positives,
and	false	negatives.	

From	the	classification	table,	it	is	evident	that	as	the	cutoff
increases,	a	smaller	number	of	observations	are	classified	into	the
success	class	(i.e.,		the	positive	predicted	values	decrease);
consequently,	both	sensitivity	and	false	positives	decrease,	while
specificity	and	false	negatives	increase.

On	the	other	hand,	as	the	cutoff	decreases,	a	larger	number	of
observations	are	classified	into	the	success	class	(i.e.,		the	positive



predicted	values	increase);	consequently,	sensitivity	and	false
positives	increase,	while	specificity	and	false	negatives	decrease.

Finally,	note	that	when	the	goal	is	to	increase	either	sensitivity	or
specificity,	there	is	an	associated	loss	of	overall	accuracy	as
measured	by	the	hit	rate.	For	example,	as	the	cutoff	decreases	from
0.50	to	0.0,	sensitivity	increases	to	100%,	while	accuracy	drops	to
40.5%;	as	the	cutoff	increases	from	0.50	to	1.0,	specificity	increases
to	100%,	while	accuracy	drops	to	59.5%.	
Output	11.3		Classification	Table	for	Multiple	Cutoff	Values	for	Ames	Training	Data

Classification	Table

Prob
Level

Correct Incorrect Percentages

Event
Non-
Event Event

Non-
Event Correct

Sensi-
tivity

Speci-
ficity

False
POS

False
NEG

0.000 563 0 826 0 40.5 100.0 0.0 59.5 .

0.100 549 580 246 14 81.3 97.5 70.2 30.9 2.4

0.200 539 649 177 24 85.5 95.7 78.6 24.7 3.6

0.300 525 679 147 38 86.7 93.3 82.2 21.9 5.3

0.400 511 713 113 52 88.1 90.8 86.3 18.1 6.8

0.500 484 734 92 79 87.7 86.0 88.9 16.0 9.7

0.600 458 754 72 105 87.3 81.3 91.3 13.6 12.2

0.700 412 779 47 151 85.7 73.2 94.3 10.2 16.2

0.800 353 796 30 210 82.7 62.7 96.4 7.8 20.9

0.900 262 815 11 301 77.5 46.5 98.7 4.0 27.0

1.000 0 826 0 563 59.5 0.0 100.0 . 40.5

	

Using	this	table,	the	analyst	can	then	select	the	cutoff	value	that
best	fits	the	goal,	while	at	the	same	time	taking	into	account
overall	accuracy.	To	facilitate	selection	of	the	cutoff	value,	the
analyst	could	plot	the	performance	measures	(overall	accuracy,
sensitivity,	and	specificity)	by	cutoff	values	as	a	way	to	select	the
cutoff	value	that	meets	the	specific	goal	while	at	the	same	time
taking	into	account	overall	accuracy,	as	displayed	in	Figure	11.1



Performance	Measures	by	Cutoff	Values	for	Ames	Training	Data.
Figure	11.1		Performance	Measures	by	Cutoff	Values	for	Ames	Training	Data

Suppose	the	goal	of	the	analyst	is	to	maximize	sensitivity,	and	after
reviewing	the	plot	of	performance	measures,	the	analyst	decides	on
a	cutoff	value	of	0.20.	Suppose	then	that	the	analyst	is	interested	in
validating	the		classification	results	for	that	cutoff.	The	analyst	can
request	estimated	posterior	probabilities	for	each	observation	of	the
validation	data	using	the	SCORE	statement,	the	observation	can	be
assigned	to	a	particular	class	based	upon	the	cutoff	value,	and	the
resulting	validation	classification	matrix	can	be
produced.		Consider,	for	example,	a	cutoff	value	of	0.20.
Observations	in	the	validation	set	can	be	classified	using	Program
11.3	Classification	Table	Using	Cutoff=0.20	for	Ames	Validation
Data.

	

Program	11.3	Classification	Table	Using	Cutoff=0.20	for	Ames	Validation	Data

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;

	

proc	format;

value	$yesno	‘0’=‘NO’	‘1’=‘YES’;



run;

	

proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus	/	ctable	pprob=.50;

score	data=sasba.ames30	out=pred_amesvalidation;

run;

	

data	cutoff;

set	pred_amesvalidation;

I_Bonus=‘0’;

if	p_1	>	0.20	then	I_Bonus=‘1’;

run;

	

proc	freq	data=cutoff;

tables	f_bonus*i_bonus;

format	f_bonus	i_bonus	$yesno.;

run;

First,	recall	from	Program	11.2	Classification	Tables	for	Ames
Training	and	Validation	Data	Sets,	that	the	SCORE	statement	was
used	to	score	the	validation	data	and	the	predicted	values	were
saved	in	the	temporary	SAS	data	set	called
PRED_AMESVALIDATION.		That	same	SAS	code	is	included
here.		Those	predicted	values	for	each	observation	are	read	into	the
temporary	SAS	data	set	called	CUTOFF,	where	the	variable	P_1
represents	the	posterior	probability	of	being	in	CLASS=1,
F_BONUS	represents	the	actual	class,	and	the	predicted	class	(with
variable	name	I_BONUS)	is	initialized	at	‘0.’

To	apply	a	cutoff	of	0.20,	the	IF	statement	assigns	the	predicted
class	of	1	(I_BONUS=’1’)	if	the	posterior	probability	is	greater	than
0.20,	and	the	resulting	classification	table	is	produced	using	the
FREQ	procedure,	as	displayed	in	Output	11.4	Classification	Table
for	Cutoff	=	0.20	for	Ames	Validation	Data.
Output	11.4	Classification	Table	for	Cutoff	=	0.20	for	Ames	Validation	Data

Table	of	F_Bonus	by	I_Bonus

F_Bonus I_Bonus

Frequency



Percent
Row	Pct
Col	Pct NO YES Total

NO 278
46.72
78.53
96.19

76
12.77
21.47
24.84

354
59.50

YES 11
1.85
4.56
3.81

230
38.66
95.44
75.16

241
40.50

Total 289
48.57

306
51.43

595
100.00

Using	the	classification	matrix	in	Output	11.4	Classification	Table
for	Cutoff	=	0.20	for	Ames	Validation	Data,	the	values	for	the
performance	measures	can	be	calculated.	For	example,	note	that
the	validation	sensitivity	value	is	230/241,	or	95.4%,	as	compared
to	the	training	sensitivity	value	of	95.7%.

Note	that	the	predicted	class	for	the	scored	validation	data	is	not
influenced	by	the	PPROB=	option.	Recall	that	the	scored	data	is
classified	using	the	default	cutoff	of	0.50;	therefore,	Program	11.3
Classification	Table	Using	Cutoff=0.20	for	Ames	Validation	Data
can	be	modified	to	use	other	cutoff	values.

Measure	of	Performance	Using	the	Receiver-Operator-
Characteristic	(ROC)	Curve
As	discussed	in	the	previous	section,	the	ability	to	detect	the
success	or	the	failure	(as	measured	by	sensitivity	and	specificity,
respectively)	depends	upon	the	cutoff	value.	The	choice	of	a	single
cutoff—resulting	is	a	single	pair	of	values	for	sensitivity	and
specificity—may	be	insufficient	to	assess	the	overall	performance	of
a	classifier.	In	fact,	in	many	situations,	the	value	of	the	cutoff	value
may	not	be	obvious	and	even	difficult	or	impractical	to	choose.
Consequently,	the	analyst	may	want	to	compare	classifier
performance	using	an	index	that	takes	into	account	many	cutoff
values	simultaneously	and	is,	therefore,	independent	of	the	cutoff
value.

In	order	to	interpret	both	sensitivity	and	specificity	values	for	many
cutoff	values,	it	is	common	to	represent	the	pairs	of	numbers
graphically	using	a	Receiver-Operating-Characteristic	(ROC)



curve.	Here	the	y-axis	is	represented	by	the	sensitivity	and	the	x-
axis	is	represented	by	1	–	specificity.	The	ROC	curve	is	a	tool	that
enables	the	analyst	to	select	the	model	that	simultaneously
maximizes	both	sensitivity	and	specificity	(which	is	equivalent	to
maximizing	sensitivity	and	minimizing	1-specificity).

Consider	for	example,	the	previous	model	run	for	the	Ames
Housing	Case	using	training	data,	where	the	cutoff	is	defined	as	0.0
to	1.0	in	.10	increments,	with	performance	measures	as	displayed
in	Output	11.3	Classification	Table	for	Multiple	Cutoff	Values	for
Ames	Training	Data.	The	values	for	sensitivity	and	(1-specificity)
across	the	various	cutoffs	are	displayed	in	the	following	ROC	curve
(Figure	11.2	ROC	Curve	for	Ames	Training	Data).
Figure	11.2		ROC	Curve	for	Ames	Training	Data

A	model	that	simultaneously	maximizes	sensitivity	and	minimizes	1
–	specificity	produces	points	on	a	curve	that	are	closer	to	(0,1).	In
other	words,	the	model	that	performs	well	over	all	possible	cutoff
values	has	a	curve	that	hovers	closest	to	the	upper	left	area,
resulting	in	the	largest	area	under	the	curve.	So,	if	a	model
achieves	higher	sensitivity	(as	the	cutoff	increases),	while	the	false
positive	percent	(1-specificity)	does	not	diminish	rapidly,	the	curve
will	have	a	sharp	increase,	and	an	area	approaching	1.0.		In	fact,
the	performance	measure	is	referred	to	as	AUC,	or	area	under	the
ROC	curve.



Note	that	a	classifier	which	perfectly	predicts	the	success	and
failure	classes	will	have	both	sensitivity	and	specificity	equal	to	1.
That	is,	all	of	the	1’s	are	correctly	classified	as	1’s	and	all	of	the	0’s
are	correctly	classified	as	0’s;	as	a	result,	the	points	(0,0),	(0,1),	and
(1,1)	make	up	the	ROC	curve	having	AUC	equal	to	1.0.	On	the
other	hand,	a	classifier	that	does	not	discriminate	between	the	two
classes,	having	no	predictive	power,	has	a	diagonal	line	from	the
point	(0,0)	to	the	point	(1,1),	with	AUC	=	0.50,	as	displayed	in
Figure	11.2	ROC	Curve	for	Ames	Training	Data.	It	should	be	noted
that	if,	in	reality,	the	AUC=1,	then	information	leakage	is
probable.

Producing	an	ROC	Curve	Using	the	SCORE	Statement	with	the
OUTROC	Option

It	should	be	noted	that	there	is	bias	in	the	estimates	when	using	the
training	data	set.	Therefore,	an	ROC	curve	for	the	validation	data
should	be	produced,	as	well,	for	assessing	the	performance	of	the
model.		Furthermore,	the	area	under	the	curve	for	both	the	training
and	validation	data	should	be	compared	to	assess	the	degree	to
which	the	model	is	overfitted.	The	necessary	information	can	be
produced	using	Program	11.4	ROC	Curves	for	Ames	Housing
Training	and	Validation	Data.
Program	11.4	ROC	Curves	for	Ames	Housing	Training	and	Validation	Data

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

proc	logistic	data=ames;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

score	data=sasba.ames70	outroc=roctrain;

score	data=sasba.ames30	outroc=rocvalidation;

proc	print	data=rocvalidation	(obs=10);

var	_prob_	_pos_	_neg_	_falpos_	_falneg_	_sensit_	_1mspec_;

run;

In	Program	11.4	ROC	Curves	for	Ames	Housing	Training	and
Validation	Data,	as	before,	the	logistic	regression	model	is	fit	to	the
training	data	and	the	first	SCORE	statement	is	used	to	score	the
training	data	set	(AMES70).	The	OUTROC=	option	requests	that	all



data	pertinent	to	the	ROC	curve	is	produced	and	saved	in	a
temporary	SAS	data	set	(ROCTRAIN);	a	training	ROC	curve	is	also
produced,	as	displayed	in	Output	11.5a	Training	and	Validation
ROC	Curves	for	Ames	Housing	Data.	The	second	SCORE	statement
with	the	OUTROC=	option	requests	the	same	for	the	validation
data	(AMES30),	including	a	validation	ROC	curve,	also	displayed	in
Output	11.5a	Training	and	Validation	ROC	Curves	for	Ames
Housing	Data.
Output	11.5a:		Training	and	Validation	ROC	Curves	for	Ames	Housing	Data

An	inspection	of	the	validation	ROC	curve	and	the	AUC	(0.9550)
indicates	that	the	model	performs	very	well.	Also,	because	the
validation	AUC	(0.9550)	is	relatively	close	to	the	training	AUC
(0.9506),	there	seems	to	be	no	overfitting.	In	short,	the	model	for
predicting	BONUS	using	the	four	predictors	is	a	good	model.

Finally,	the	PRINT	procedure	requests	that	ROC	information	be
printed	for	the	first	ten	observations	from	the	temporary	data	set,
ROCVALIDATION,	by	cutoff	(_PROB_),	as	displayed	in	Output	11.5b
ROC	Information	for	Ames	Validation	Data:
Output	11.5b:		ROC	Information	for	Ames	Validation	Data

Obs _PROB_ _POS_ _NEG_ _FALPOS_ _FALNEG_ _SENSIT_ _1MSPEC_

1 1.00000 1 354 0 240 0.004149 0

2 0.99999 2 354 0 239 0.008299 0

3 0.99999 3 354 0 238 0.012448 0



4 0.99987 4 354 0 237 0.016598 0

5 0.99984 5 354 0 236 0.020747 0

6 0.99977 6 354 0 235 0.024896 0

7 0.99969 7 354 0 234 0.029046 0

8 0.99959 8 354 0 233 0.033195 0

9 0.99944 9 354 0 232 0.037344 0

10 0.99933 10 354 0 231 0.041494 0

	

Model	Comparison	Using	the	ROC	and	ROCCONTRAST
Statements
So	far	we	have	seen	performance	measures	for	determining	if	both
a	model	validates	and	performs	better	than	having	no	model	as
measured	by	the	naïve	rule.	In	the	next	section,	we	discuss	the
comparison	of	competing	models.	Specifically,	the	goal	is	to	select
the	model	that	performs	best	as	measured	by	the	performance
measures	on	the	validation	data,	while	at	the	same	time	balancing
model	simplicity	(parsimony).

To	illustrate	the	use	of	the	ROC	curve	for	model	comparison,
consider	the	Ames	Housing	Case.	Recall	in	Chapter	10,	“Logistic
Regression	Analysis,”	the	results	of	both	the	forward	and	backward
selection	resulted	in	the	model	consisting	of	eight	predictors.	Let’s
now	compare	a	model	with	nine	predictors	(the	eight	predictors
selected	in	Chapter	10,	in	addition	to	the	variable,
Overall_Condition)	to	the	reduced	model	consisting	of	four
predictors,	as	referenced	previously	in	this	chapter.	Consider
Program	11.5	Comparing	Two	Models	Using	Validation	ROC
Curves	for	Ames	Housing.
Program	11.5	Comparing	Two	Models	Using	Validation	ROC	Curves	for	Ames
Housing

libname	sasba	‘c:\sasba\ames’;

data	ames;

set	sasba.ames70;

run;



	

proc	logistic	data=ames	noprint;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

score	data=sasba.ames30	out=score_validation	(rename=
(p_1=p_4preds));

run;

	

proc	logistic	data=ames	noprint;

class	Overall_Quality	Overall_Condition	/param=ref	ref=first;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Age_At_Sale	High_Kitchen_Quality	Overall_Quality

Overall_Condition	Fullbath_2Plus	Fireplace_1Plus;

score	data=score_validation	out=score_validation			

(rename=(p_1=p_9preds));

run;

	

proc	logistic	data=score_validation;

model	Bonus	(Event	=	‘1’)	=	p_9preds	p_4preds	/	nofit;

roc	“Nine	Preds”	p_9preds;

roc	“Four	Preds”	p_4preds;

roccontrast	“Comparing	TWO	Models”;

run;

First,	notice	that	the	logistic	regression	model	is	run	for	the	first
model	with	four	predictors,	and	then	that	model	is	applied	to	the
validation	data	set	using	the	SCORE	statement.	The	scoring	results
are	saved	in	the	SCORE_VALIDATION	temporary	SAS	data	set,
where	the	predicted	posterior	probability	variable	(P_1)	is	renamed
P_4PREDS.	This	data	set	has	all	information	from	the	original
validation	data	set	(AMES30),	in	addition	to	the	scoring
information.

The	second	logistic	regression	model	with	nine	predictors	is	run,
and	then	that	model	is	applied	to	the	validation	data	set	(now
named	SCORE_VALIDATION).	Finally,	the	predicted	posterior
probability	variable	(P_1)	is	renamed	P_9PREDS).	In	short,	the
validation	data	set	now	has	the	original	information,	along	with
scoring	information	for	two	models—the	four-predictor	model	and
nine-predictor	model.



Finally,	the	last	logistic	regression	is	run	on	the	validation	data;	the
NOFIT	option	requests	that	no	model	is	fitted.	The	ROC	statements
request	ROC	curves	and	define	which	models	are	to	be	compared
using	the	ROCCONTRAST	statement.	The	ROCCONTRAST
statement	requests	the	statistical	tests	for	comparing	the	two
models.		The	partial	output	generated	is	displayed	in	Output	11.6a
ROC	Curves	for	Two	Models	Applied	to	Ames	Validation	Data	and
Output	11.6b	ROC	Contrast	Results	for	Two	Models	Applied	to
Ames	Validation	Data.
Output	11.6a:		ROC	Curves	for	Two	Models	Applied	to	Ames	Validation	Data

From	the	area	under	the	validation	ROC	curve	for	both	models,	it	is
evident	that	both	models	perform	very	well	in	terms	of	predicting
the	bonus	status	of	a	house.	It	also	appears	that	the	model	with
nine	predictors,	(AUC=0.9800),	performs	better	than	the	model
with	four	predictors	(AUC=0.9550).	However,	the	contrasts
results,	as	displayed	in	Output	11.6b	ROC	Contrast	Results	for	Two
Models	Applied	to	Ames	Validation	Data,	can	be	used	to	test	for
statistically	significant	differences.	The	areas	under	the	curve,



referred	to	as	the	c-statistic,	for	both	models	are	provided,	along
with	their	standard	errors	and	confidence	intervals.	The	chi-
squared	test,	with	p-value	less	than	0.0001,	suggests	evidence	that
the	curves	are	significantly	different	if	applied	to	the	population.
Note	also	that	the	confidence	intervals	do	not	overlap,	also
indicating	evidence	of	significant	differences.	In	short,	the	data
supports	the	conclusion	that	the	model	with	nine	predictors	is
better	than	that	with	four	predictors.
Output	11.6b:		ROC	Contrast	Results	for	Two	Models	Applied	to	Ames	Validation
Data

ROC	Association	Statistics

ROC	Model

Mann-Whitney

Somers’	D Gamma Tau-aArea
Standard
Error

95%	Wald
Confidence	Limits

Nine	Preds 0.9800 0.00441 0.9714 0.9887 0.9601 0.9601 0.4635

Four	Preds 0.9550 0.00747 0.9404 0.9697 0.9101 0.9101 0.4394

	

ROC	Contrast	Test	Results

Contrast DF
Chi-
Square Pr	>	ChiSq

Comparing	TWO
Models

1 18.1348 <.0001

	

Measures	of	Performance	Using	the	Gains	and	Lift
Charts
The	measures	of	model	performance	illustrated	so	far	include
overall	accuracy,	sensitivity,	specificity,	and	the	area	under	the
ROC	curve	(AUC).	These	measures	are	used	for	either	overall
accuracy	or	the	accuracy	in	predicting	either	actual	positives
(sensitivity)	or	actual	negatives	(specificity),	where	the	actual
classes	are	displayed	as	rows	in	the	classification	matrix.

Suppose,	instead,	that	the	analyst	is	more	interested	in	targeting
those	observations	that	are	most	likely	to	have	the	outcome	of



interest	(Y=1),	that	is,	those	observations	with	the	highest
posterior	probability	of	being	in	the	class	of	interest.	Specifically,
the	analyst	is	more	interested	in	the	predicted	positive
observations,	as	displayed	as	a	column	in	the	classification	matrix.
When	the	goal	is	targeting	observations,	the	appropriate	measures
of	performance,	related	to	the	predicted	positive	cases,	include	the
lift	chart	and	gains	charts.
In	this	discussion	of	lift	and	gains,	we	refer	to	the	observations
belonging	to	the	event	of	interest	as	responders.	The	analyst	will
use	a	model	to	rank	observations	by	their	propensity,	or	posterior
probability,	of	being	a	responder	and	select	the	top	proportion	of
that	list	for	targeting	(thereby	defining	a	cutoff).	If	the	classifier
performs	well,	then	the	analyst	would	expect	a	larger	number	of
true	responders	than	obtained	had	a	random	sample	been	selected
instead.

The	Gains	Chart

A	gains	chart	is	a	data	visualization	tool	that	compares	the	ability
of	the	classifier	to	capture	the	true	responders	(Y=1)	when
selecting	the	top	proportion	of	the	data	sorted	by	propensity	to	the
ability	to	capture	true	responders	obtained	by	random	chance
(referred	to	as	the	baseline).

The	gains	chart	is	simply	a	plot	of	the	proportion	of	positive
predicted	values	(PV+)	by	depth	across	all	cutoff	values.	Consider
the	following	facts	that	go	into	constructing	the	gains	chart.	

1.						The	depth	of	a	classifier	is	the	proportion	of	observations
classified	as	responders;	in	short,	it	is	the	proportion	of
predicted	positive	observations	out	of	the	entire	data	set.		The
depth	is	equal	to	the	number	of	false	positives	plus	the
number	of	true	positives	divided	by	the	total	sample	size.
(depth	=	(TP+FP)/n;	see	Table	11.1	for	TP	and	FP	in	the
classification	matrix.)		Note	that	the	depth	is	determined	by
the	cutoff	value.

2.						Recall	from	the	previous	section,	that	as	cutoff	decreases,	the
number	of	observations	classified	as	responders	increases;	in
other	words,	as	cutoff	decreases,	depth	increases	until	it
reaches	the	actual	response	rate	(π1).	Specifically,	if	the	cutoff
is	0.0,	then	all	observations	are	classified	as	responders



(TP+FP	=	n),	depth	=	1.0,	and	the	proportion	of	positive
predicted	values	is	equal	to	actual	response	rate	(π1).

3.						The	analyst	obviously	wants	the	biggest	bang	for	the	buck
when	targeting.		In	other	words,	as	the	depth	decreases	(i.e.,
as	fewer	observations	are	selected),	the	analyst	hopes	for	an
increase	in	the	response	rate	as	measured	by	the	proportion	of
positive	predicted	values.

Consider	now,	for	example,	the	Ames	Housing	Case	where	the
logistic	regression	model	is	used	to	predict	BONUS	as	a	function	of
four	predictors.	Program	11.6	Gains	Information	for	Ames
Validation	Data	can	be	used	to	generate	the	gains	chart	for	the
validation	data	set:
Program	11.6	Gains	Information	for	Ames	Validation	Data

libname	sasba	‘c:\sasba\ames’;

proc	format;

value	$yesno	‘0’=‘NO’	‘1’=‘YES’;

run;

	

data	ames70;

set	sasba.ames70;

data	ames30;

set	sasba.ames30;

run;

	

proc	logistic	data=ames70	noprint;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

	

score	data=ames30	out=pred_amesvalidation	outroc=roc;

run;

	

data	gains;

set	roc;

cutoff=_prob_;	pi1=0.4053;

tp_prop	=	pi1*_sensit_;		fp_prop	=	(1-pi1)*_1mspec_;

depth	=	tp_prop	+	fp_prop;



pv_plus	=	tp_prop	/	depth;

lift	=	pv_plus	/	pi1;

run;

	

proc	print	data=gains;

var	cutoff	pi1	_sensit_	_1mspec_	tp_prop	fp_prop	depth	pv_plus
lift;

run;

	

proc	sgplot	data=gains;

where	0.000	<	depth	<	1.00;

series	y	=	pv_plus	x	=	depth;

refline	pi1	/axis=y;

refline	0.10	/axis=x;

xaxis	values=(0	to	1.0	by	0.10);

run;

As	seen	in	Program	11.6	Gains	Information	for	Ames	Validation
Data,	the	logistic	regression	model	is	fit	using	the	training	data	set,
AMES70,	and	that	model	is	used	to	score	the	validation	data	set
(AMES30)	as	requested	in	the	SCORE	statement;	the	ROC
information	for	each	cutoff	(_PROB_)	value	is	saved	in	a	temporary
SAS	data	set	(called	ROC)	as	requested	using	the	OUTROC=
option.

The	ROC	data	set	is	then	placed	into	the	temporary	SAS	data	set
(called	GAINS)	using	the	SET	statement	and	the	appropriate
statistics	are	calculated	for	generating	the	lift	curve.	A	partial
printout	of	the	information	is	displayed	in	Output	11.7a	Gains
Information	for	Ames	Validation	Data.	The	SGPLOT	procedure	is
applied	to	the	GAINS	data	to	produce	the	gains	chart,	which	shows
the	relationship	between	depth	and	the	positive	predicted	values
(PV+),	as	displayed	in	Output	11.7b	Gains	Chart	for	Ames
Validation	Data.
Output	11.7a	Gains	Information	for	Ames	Validation	Data

Obs cutoff pi1 _SENSIT_ _1MSPEC_ tp_prop fp_prop depth pv_plus

	

Lift

1 1.00000 0.4053 0.00415 0.00000 0.00168 0.00000 0.00168 1.00000 2.46731

	 	 	 	 	 	 	 	 	



…

59 0.96893 0.4053 0.24066 0.00282 0.09754 0.00168 0.09922 0.98307 	2.42553

… 	 	 	 	 	 	 	 	 	

119 0.87671 0.4053 0.46888 0.01695 0.19004 0.01008 0.20012 0.94963 2.34303

… 	 	 	 	 	 	 	 	 	

179 0.73656 0.4053 0.69295 0.03390 0.28085 0.02016 0.30101 0.93303 	2.30207

… 	 	 	 	 	 	 	 	 	

238 0.51441 0.4053 0.84647 0.09605 0.34308 0.05712 0.40019 0.85727 	2.11516

	 	 	 	 	 	 	 	 	 	

297 0.26080 0.4053 0.94606 0.19492 0.38344 0.11592 0.49935 0.76787 	1.89904

… 	 	 	 	 	 	 	 	 	

592 0.00012 0.4053 1.00000 1.00000 0.40530 0.59470 1.00000 0.40530 	1.00000

From	Program	11.6	Gains	Information	for	Ames	Housing	Data	and
Output	11.7a	Gains	Information	for	Ames	Validation	Data,	we	can
see	that	the	proportion	of	true	positives	(TP_PROP)	and	the
proportion	of	false	positives	(FP_PROP)	is	calculated	using	the
proportion	of	actual	positives	(p1	=	0.4053)	along	with	sensitivity
and	(1-specificity),	respectively.	The	depth,	which	is	the	proportion
of	predicted	positives	out	of	the	total	data	set	is	just	the	sum	of	the
proportions	of	true	positives	and	false	positives.	Finally,	the
proportion	of	responders	out	of	the	total	number	of	predicted
positive	observations	(PV+)	is	defined	to	be	PV_PLUS.

From	the	gains	chart	in	Output	11.7b	Gains	Chart	for	Ames
Validation	Data,	we	can	see	that	PV+	(the	proportion	of
responders	out	of	the	total	predicted)	is	in	the	0.90	range	through	a
depth	of	0.30.	Specifically,	in	line	59,	if	a	cutoff	value	(0.96893)	is
set	so	that	the	analyst	targets	the	top	10%	based	upon	propensity
(depth	~	0.10),	it	is	expected	that	approximately	98%	of	those
targeted	will	result	in	a	bonus	(PV_PLUS	=	0.98307).	Note	that	at
a	depth	of	about	0.10,	the	proportion	of	responders	(.98307)	is
found	where	the	vertical	reference	line	crosses	the	gains	line.

Also,	note,	that	if	every	house	is	targeted	(cutoff	~	0,	depth=1.0),
we	expect	40.53%	to	result	in	a	bonus	(which	corresponds	to	the



proportion	of	bonuses	earned	in	the	entire	data	set),	as	indicated	by
the	horizontal	reference	line	in	Output	11.7b	Gains	Chart	for	Ames
Validation	Data	and	the	last	line	of	the	listing	in	Output	11.7a
Gains	Information	for	Ames	Validation	Data.
Output	11.7b		Gains	Chart	for	Ames	Validation	Data

The	Lift	Chart

Another	tool	for	measuring	performance	of	a	classifier	for	purposes
of	targeting	observations	is	the	lift	chart.		Lift	is	the	ratio	of	the
performance	of	the	classifier	to	the	performance	obtained	by
chance	and	is	calculated	over	all	values	of	depth	(or	cutoff).		Lift	is
defined	as	follows:

Lift	=	PV+	/	π1

and	can	be	found	in	Output	11.7a	as	a	function	of	cutoff	(and
depth).		So,	for	a	particular	depth,	if	lift	has	a	value	of	2.0,	by
algebra,	we	get:	proportion	of	PV+	=	2	π1.		In	other	words,	at	that
depth,	the	classifier	will	obtain	2	times	as	many	responders	as	that
obtained	by	random	sampling	(chance).

Note	that	the	lift	chart	is	the	result	of	adjusting	the	gains	chart	by	a
constant	(1/π1),	and	as	result,	the	lift	and	gains	charts	have	the



same	general	shape.	The	following	lines	of	SAS	code	can	be
appended	to	the	Program	11.6	Gains	Information	for	Ames
Validation	Data,	where	the	SGPLOT	procedure	is	called	to	produce
the	lift	chart,	as	displayed	in	Output	11.8	Lift	Chart	for	Ames
Validation	Data.
proc	sgplot	data=gains;

where	0.000	<	depth	<	1.00;

series	y	=	lift	x	=	depth;

refline	1.0	/axis=y;

refline	0.10	/axis=x;

xaxis	values=(0	to	1.0	by	0.10);

run;

Output	11.8		Lift	Chart	for	Ames	Validation	Data

As	before,	if	the	analyst	sets	a	cutoff	value	(0.96893)	so	that	the
top	10%	of	houses	is	targeted	(depth	~	0.10	as	shown	by	the
vertical	reference	line),	the	lift	is	approximately	2.4	(see	2.42553	in
Output	11.7a	Gains	Information	for	Ames	Validation	Data).	In
short,	at	that	depth,	the	classifier	will	obtain	2.43	times	as	many
bonuses	(98.307%)	as	that	obtained	by	random	sampling	(40.53%).



Adjustment	to	Performance	Estimates	When
Oversampling	Rare	Events
In	general,	the	hit	rate	is	an	acceptable	measure	of	accuracy	when
the	classes	have	similar	sample	sizes	(Chawla,	N.V.,	2010).	In	many
classification	problems,	however,	this	is	not	the	case.	When	data	is
imbalanced—that	is,	when	the	sample	size	for	one	class	is
significantly	larger	than	that	of	the	other	class—classification
methods	tend	to	have	a	higher	degree	of	accuracy	for	the	larger
class	and	a	smaller	degree	of	accuracy	for	the	smaller	class	(He	and
Garcia,	2009).	

Consider	the	situation	where	the	negative	cases	(Y=0)	represent
the	larger	class.	The	overall	accuracy	is	driven	by	the	larger	class
(the	non-event)	and	reflects	little	information	about	the	smaller
class	(Y=1)		which	is	usually	the	class	of	interest.	For	example,	if
95%	of	a	data	set	consists	of	the	larger	class,	a	classifier	would
have	95%	accuracy	if	all	observations	were	assigned	to	the	larger
class,	but	would	ignore	the	fact	that	all	observations	in	the	smaller
class	are	incorrectly	classified	(specificity=1.0	and	sensitivity=0).	

It	turns	out	that	the	problem	of	‘rare	events’	is	related	to	the	bias	in
the	maximum	likelihood	estimates,	specifically,	because	the	sample
size	of	the	rarer	event	is	small	(Allison,	2012;	King	and	Zeng,
2001).		Many	sampling	approaches	have	been	proposed	to	combat
the	problem	of	imbalanced	data	(Chawla,	N.V.,	2010).	Here	we	will
discuss	and	illustrate	the	use	of	the	oversampling	of	rare	events.

Oversampling	basically	requires	that	the	analyst	take	a	stratified
sample	where	more	cases	are	selected	from	the	strata	representing
the	rare	event	(Y=1)	and	fewer	cases	are	selected	from	the	strata
representing	the	common	event	(Y=0)	so	that	the	two	respective
samples	sizes	are	somewhat	balanced.

When	conducting	classification	analyses,	it	is	assumed	that	the
sample	is	selected	randomly,	and	consequently,	for	sufficiently
large	sample	sizes,	the	sample	prior	probabilities	for	events	0	and
1,	p0	and	p1,	are	unbiased	estimates	of	the	population	priors,	π0
and	π1,	respectively.	

In	the	case	of	oversampling,	or	stratified	sampling,	however,	the



sample	prior	probabilities	are	not	random	and	are	not	adequate
estimates	of	the	population	prior	probabilities.	Because	estimated
prior	probabilities	are	used	to	calculate	the	intercept	of	the	logit,
the	intercept	is	also	biased.		As	a	result	the	estimated	intercept
must	be	adjusted,	or	shifted	by	a	constant,	referred	to	as	the
offset.		The	offset	is	defined	as	follows:

and	the	unadjusted	logit	(Scott	and	Wild,	1991)	is:

where	the	unbiased	intercept,	β0	is	equal	to	( ,	 	is
the	posterior	probability	of	the	biased	sample,	p0	and	p1	are	the
sample	priors	for	classes	0	and	1,	respectively,	for	the
biased		sample,	and	π0	and	π1	are	the	population	priors	for	classes
0	and	1,	respectively.	In	fact,	in	the	case	of	oversampling	where	p1
>	π1	and	p0	<	π0,	the	natural	log	(offset)	is	positive.	As	a	result,
the	intercept	is	overestimated	and	the	logit	is	too	large.

If	the	analyst	chooses	to	ignore	the	offset	in	the	modeling	stage,	the
adjusted	estimated	posterior	probabilities,	 ,	can	be	calculated
directly	from	the	unadjusted—biased—estimate	of	the	posterior
probabilities,	 ,		using	the	following:

The	PEVENT	Option	for	Defining	Prior	Probabilities
Because	the	sample	prior	probabilities	do	not	reflect	the	population
prior	probabilities,	the	analyst	can	define	the	population	prior
probabilities	using	the	PEVENT	option.	Consider	the	Ames	Housing
Case	as	illustrated	earlier	where	the	analyst	is	interested	in
developing	a	logistic	regression	model	using	just	four	predictors.
Suppose	also,	for	example,	that	the	sample	is	selected	from	a
population	where	only	2%	of	agents	receive	a	bonus	and	98%	do
not	receive	a	bonus	when	selling	a	house.	Finally,	suppose,	for
illustration	purposes	only,	that	the	AMES70	training	data	was
created	as	a	result	of	oversampling,	where	59.47%	of	the	homes



sampled	result	in	no	bonus	upon	the	sale	(p0	=	0.5947)	and
40.53%	of	the	homes	sampled	do	result	in	a	bonus	(p1	=	0.4053).
As	a	result,	the	sample	priors	do	not	reflect	the	population
priors.		Therefore,	Program	11.7	Use	of	PEVENT	Option	to	Define
Prior	Probabilities	can	be	used	to	set	the	population	priors	and
automatically	adjust	the	performance	measures:
Program	11.7	Use	of	PEVENT	Option	to	Define	Prior	Probabilities

libname	sasba	‘c:\sasba\ames’;

data	ames70;

set	sasba.ames70;

run;

	

data	ames30;

set	sasba.ames30;

run;

	

proc	logistic	data=ames70;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus	/	ctable	pprob=0.50	pevent=	0.02	0.4053;

score	data=ames30	out=pred_adj_validation	priorevent=0.02;

run;

Notice	in	Program	11.7	Use	of	PEVENT	Option	to	Define	Prior
Probabilities	that	the	CTABLE	option	is	included	and	requests	that
a	classification	table	be	provided.		The	PPROB=0.50	option
requests	classification	results	for	a	cutoff	value	of	0.50;	note	that
this	is	the	default	setting.	The	PEVENT	option	defines	two
population	posterior	probabilities,	namely,	0.02	and	0.4053,	for
creating	two	different	classification	tables.	The	value	0.02	assumes
that	the	true	population	prior	probability	of	the	event	of	interest
(Y=1)	is	0.02,	and	differs	from	the	sample	prior	because	of
oversampling;	here,	the	sample	prior	(p1)	is	not	a	good	estimate	of
π1,	and	the	analyst	must	define	π1	=	0.02.		The	use	of	0.4053	is
equivalent	to	the	default	which	assumes	that	the	population	prior
probability	of	the	event	of	interest	(Y=1)	is	identical	to	the	sample
proportion—which	is	the	case	for	random	sampling	(note	that	we
are	using	pevent=0.4053	illustrating	the	default	setting	where
PEVENT	is	not	used).		



The	SCORE	statement	is	used	to	score	and	save	adjusted	posterior
probabilities	(in	the	temporary	SAS	data	set,
PRED_ADJ_VALIDATION)	and	will	be	described	later	in	this
section.	The	results	are	found	in	Output	11.9a	The	Logistic
Regression	Model	for	Ames	Training	Data	and	Output	11.9b
Classification	Table	for	PEVENT	=	0.02	and	PEVENT	=	0.4053.
Output	11.9a		The	Logistic	Regression	Model	for	Ames	Training	Data

Analysis	of	Maximum	Likelihood	Estimates

Parameter DF Estimate
Standard
Error

Wald
Chi-Square Pr	>	ChiSq

Intercept 1 -10.5496 0.6389 272.6451 <.0001

Gr_Liv_Area 1 0.00343 0.000325 111.4009 <.0001

Total_Bsmt_SF 1 0.00255 0.000290 77.1269 <.0001

Lot_Area 1 0.000073 0.000020 12.8995 0.0003

Fullbath_2plus 1 2.4275 0.2085 135.4892 <.0001

In	Output	11.9a	The	Logistic	Regression	Model	for	Ames	Training
Data,	we	illustrate	the	fact	that	the	model	is	not	affected	by	the
PEVENT	option.	While	the	intercept	is	biased,	the	parameters
estimates	for	the	predictors	remain	unchanged,	as	do	the	odds-
ratios,	and	are	representative	of	the	relationship	between	the
predictors	and	the	target	variable	(BONUS).	(Note	that	this	model
is	identical	to	the	four-predictor	model	used	for	scoring	previously.)
Output	11.9b		Classification	Table	for	PEVENT	=	0.02	and	PEVENT	=	0.4053

Classification	Table

Prob
Event

Prob
Level

Correct Incorrect Percentages

Event
Non-
Event Event

Non-
Event Correct

Sensi-
tivity

Speci-
ficity

False
POS

False
NEG

0.020 0.500 484 734 92 79 88.8 86.0 88.9 86.4 0.3

0.405 0.500 484 734 92 79 87.7 86.0 88.9 16.0 9.7

In	Output	11.9b	Classification	Table	for	PEVENT=0.02	and
PEVENT=0.4053,	notice	that	there	are	classification	numbers	for
both	PEVENT	equal	to	0.02	and	0.4053,	respectively,	as	indicated
by	the	Prob	Event	Column.	Each	of	those	are	provided	for	the	Prob



Level	of	0.50	as	requested	by	the	PPROB.	Note	also	that	the	second
row	(PEVENT	=	0.4053)	corresponds	to	the	default	and	has
numbers	identical	to	those	found	in	Output	11.2a	Classification
Table	for	Ames	Training.

The	first	line,	with	PEVENT	=	0.02,	corresponds	to	the	scenario
where	we	know	that	the	actual	probability	of	the	event	of	interest,
π1,	is	0.02	and	not	represented	by	p1,	having	a	value	of	0.4053,
because	of	oversampling.		Notice	that	sensitivity	and	specificity	are
the	same	for	both	values	of	PEVENT,	0.02	and	0.4053,	because
these	numbers	are	calculated	for	each	group	separately	and	do	not
take	into	account	the	prior	probabilities.	Furthermore,	because	the
sensitivity	and	specificity	values	remain	unchanged,	the	ROC	curve
needs	no	adjustment.		Finally,	the	frequencies	that	make	up	the
classification	table	remain	unchanged	and	correspond	to	the	default
results	where	PEVENT	is	not	used.

However,	when	oversampling	is	used,	the	probabilities	for	both
false	positives	and	false	negatives	must	be	computed	using	Bayes’
theorem	which	takes	into	account	the	true	prior	probabilities
(Fleiss,	1981).		First	consider	a	version	of	Table	11.2	Classification
Table	for	Ames	Housing	Data	as	represented	in	Table	11.3
Classification	Table	for	Ames	Housing	Training	Data	Labeled	for
Bayes’	Theorem.
Table	11.3		Classification	Table	for	Ames	Housing	Training	Data	Labeled	for	Bayes’
Theorem

	 Predicted	CLASS

Actual	CLASS
0=NO

(AC)

1=YES
(A)

	

0=NO				(BC) 734 92 826

1=YES			(B) 79 484 563

	 813 576 1389

	

	



In	the	table,	the	events	A	and	AC	correspond	to	the	predicted	class
equal	to	YES	and	NO,	respectively;	the	events	B	and	BC	correspond
to	the	actual	class	equal	to	YES	and	NO,	respectively.	It	turns	out
that	the	false	positive	(PF+)	and	false	negative	(PF-)	rates	must	be
calculated	using	the	true	prior	probabilities	and	Bayes’	theorem
(Fleiss,	1981)	as	follows:

where	the	true	prior	probabilities	are	π1	=	P(B)	=	0.02	and	π0	=

P(BC)	=	0.98,	respectively.	Also,	PV+	=	1	-	PF+	and	PV-	=	1	-	PF
−.	When	oversampling	is	used,	the	proportion	of	correct
classifications,	or	hit	rate,	must	also	be	calculated	taking	into
account	the	true	prior	probabilities	as	follows:

hit	rate	=	π1(sensitivity)	+	π0(specificity)	=	(0.02)(0.8597)	+
(0.98)(0.8886)	=	0.8880	~	88.8%

These	adjusted	values	are	all	found	in	Output	11.9b	Classification
Table	for	PEVENT=0.02	and	PEVENT=0.4053.

Manual	Adjustment	of	the	Classification	Matrix
Finally,	in	order	to	report	a	classification	table	that	reflects	the	true
population	prior	probabilities,	the	classification	table	obtained	with
oversampling	must	be	adjusted.	Using	the	sensitivity,	specificity,
and	population	prior	probabilities,	the	entries	of	the	adjusted
classification	table	are	calculated	using	the	formulae	displayed	in
Table	11.4	General	Classification	Table	Adjusted	for	Oversampling
as	follows:



Table	11.4		General	Classification	Table	Adjusted	for	Oversampling

	 Predicted	CLASS

Actual	CLASS 0=NO 1=YES 	

0=NO				 n	·	π0
(specificity)

n	·	π0	(1-
specificity)

n	·	π0

1=YES n	·	π1	(1-
sensitivity)

n	·	π1
(sensitivity)

n	·	π1

	 N

	

where											n	·	π0	(specificity)					=	1389(0.98)(0.8886)					=
1209.6

n	·	π0	(1-specificity)		=	1389(0.98)(1-0.8886)		=	151.6

n	·	π1	(1-sensitivity)		=	1389(0.02)(1-0.8597)		=	3.9

n	·	π1	(sensitivity)					=	1389(0.02)(0.8597)						=	23.9

The	following	classification	table	is	obtained	for	Ames	Training
data	when	the	adjustments	are	applied,	as	displayed	in	Table	11.5
Classification	Table	for	Ames	Housing	Training	Data	Adjusted	for
Oversampling.
Table	11.5		Classification	Table	for	Ames	Housing	Training	Data
Adjusted	for	Oversampling

	 Predicted	CLASS

Actual	CLASS 0=NO 1=YES 	

0=NO				 1210 151 1361
	(0.98)

1=YES			 4 24 28		(0.02)

	 1214 175 1389



Note	that	table	entries	have	been	rounded	so	that	all	numbers
add	to	1389.

When	the	classification	matrix	has	been	adjusted,	the	values	of	the
adjusted	performance	measures	can	be	obtained	directly	from	the
matrix,	without	having	to	apply	the	complicated	Bayes’	formula.
For	example,

Hit	rate	=	(1209.6	+	23.9)/1389	=	0.8880

															and															

Note	that	decimal	values	for	frequencies	were	used	to	eliminate
rounding	differences.	Finally,	it	is	important	to	point	out	that	in	the
case	where	PEVENT=0.4053	(i.e.,	where	the	analyst	defines	the
population	priors	so	that	they	are	identical	to	the	sample	priors),
the	formula	using	Bayes’	theorem	with	P(B)	=	0.4053	=	π1
reduces	to	using	counts	as	illustrated	in	Output	11.2a	Classification
Table	for	Ames	Housing	Training	Data.		This	is	also	equivalent	to
the	default	where	PEVENT	is	not	used.

Scoring	the	Validation	Data	Using	Adjusted	Posterior
Probabilities
When	the	analyst	oversamples	for	rare	events,	there	are	several
ways	to	obtain	the	adjusted	posterior	probabilities	in	order	to	score
new	data.	Here	we	will	illustrate,	with	the	Ames	Housing	Case,
three	equivalent	ways	to	score	our	validation	data	set	using:	(1)	the
formula	to	manually	adjust	the	posterior	probabilities,	(2)	the	offset
to	obtain	the	unbiased	intercept,	and	(3)	the	PEVENT	option	to
automatically	adjust	for	oversampling.	The	model	to	be	used	is	the
same	logistic	regression	model	using	four	predictors	applied	to	the
training	data	set	(AMES70),	and	the	goal	is	to	score	the	validation
data	(AMES30).

Manually	Adjusting	Posterior	Probabilities	to	Account	for
Oversampling

Recall,	previously,	that	if	the	analyst	chooses	to	ignore	the	offset	in
the	modeling	stage	and	instead	fits	a	logistic	regression	model
without	taking	into	account	oversampling,	then	adjusted	posterior



probabilities	can	be	calculated	directly	for	purposes	of
classification.	This	approach	requires	that	the	analyst	know	in
advance	the	population	priors,	π0	and	π1;	the	values	of	the	sample
priors,	p0	and	p1,	are	calculated	from	the	data.		Consider	Program
11.8	Posterior	Probabilities	Manually	Adjusted	for	Oversampling:
Program	11.8	Posterior	Probabilities	Manually	Adjusted	for	Oversampling

libname	sasba	‘c:\sasba\ames’;

data	ames70;

set	sasba.ames70;

run;

	

data	ames30;

set	sasba.ames30;

run;

	

proc	format;

value	$yesno	‘0’=‘NO’	‘1’=‘YES’;

run;

	

proc	logistic	data=ames70;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;		

score	data=ames30	out=pred_amesvalidation;

run;

	

data	adjust;

set	pred_amesvalidation;

pi1=.02;	pi0=0.98;	p1=0.4053;	p0=0.5947;

man_adj_p_1	=	(p_1*(p0*pi1))/((1-p_1)*p1*pi0+p_1*p0*pi1);

if	man_adj_p_1	>	.50	then	i_bonus=‘1’;

if	man_adj_p_1	<=	.50	then	i_bonus=‘0’;

run;

	

proc	freq	data=adjust;

tables	f_bonus*i_bonus;

format	f_bonus	i_bonus	$yesno.;

run;



Again,	the	logistic	regression	model	is	fit	using	the	training	data	set
and	the	SCORE	statement	with	the	OUT=PRED_AMESVALIDATION
option	is	used	to	save	the	validation	data.	This	temporary	SAS	data
set	is	saved	to	a	data	set	called	ADJUST	using	the	SET	statement.
This	data	set	contains	the	saved,	unadjusted,	posterior
probabilities		(P_1)	for	each	observation,	the	actual	class
(F_BONUS),	and	the	predicted	class	using	unadjusted	posterior
probabilities	(I_INTO).

In	the	DATA	step,	the	analyst	must	define	the	values	of	the
population	prior	probabilities,	defined	as	pi0	and	pi1,	respectively;
from	the	data,	we	know	that	p0=0.5947	and	p1=0.4053.	The	next
statement	in	the	DATA	step	defines	the	adjusted	posterior
probability	(MAN_ADJ_P_1)	using	the	unadjusted	posterior
probability	(P_1).	Finally	the	DATA	step	reassigns	the	predicted
class	(I_BONUS)	using	the	adjusted	posterior	probabilities
(MAN_ADJ_P_1)	and	applying	the	0.50	cutoff	value.	The	results	are
summarized	using	the	FREQ	procedure,	as	displayed	in	Output
11.10	Classification	Table	for	Ames	Housing	Validation	Data
Adjusted	for	Oversampling.
Output	11.10		Classification	Table	for	Ames	Housing	Validation	Data	Adjusted	for
Oversampling

Table	of	F_Bonus	by	I_Bonus

F_Bonus I_Bonus

Frequency
Percent
Row	Pct
Col	Pct NO YES Total

NO 353
59.33
99.72
65.74

1
0.17
0.28
1.72

354
59.50

YES 184
30.92
76.35
34.26

57
9.58
23.65
98.28

241
40.50

Total 537
90.25

58
9.75

595
100.00

	

Manually	Adjusted	Intercept	Using	the	Offset



As	stated	earlier,	the	sample	prior	probabilities	are	ordinarily	used
to	estimate	the	population	prior	probabilities;	so	when	the	analyst
oversamples	the	rare	event,	the	estimates	of	the	population	priors
are	biased	and,	as	a	result,	the	intercept	of	the	logistic	regression
model	is	biased	as	well.	To	remedy	this	situation,	the	analyst	can
adjust	the	biased	intercept	by	an	offset	value	in	order	to	obtain	the
unbiased	intercept.	Program	11.9	Posterior	Probabilities	Using
Manually	Adjusted	Intercept	illustrates	how	to	calculate	the
posterior	probabilities	directly	for	the	validation	data	set	once	the
intercept	has	been	adjusted:
Program	11.9	Posterior	Probabilities	Using	Manually	Adjusted	Intercept

libname	sasba	‘c:\sasba\ames’;

data	ames30;

set	sasba.ames30;

	

proc	format;

value	$yesno	0=‘NO’	1=‘YES’;

run;

	

data	offsetadj;

set	ames30;

pi1=.02;	pi0=0.98;	p1=0.4053;	p0=0.5947;

offset	=	log((p1*pi0)/(p0*pi1));

logit_offset	=	(-10.5496-offset)+0.00343*Gr_Liv_Area

+0.00255*Total_Bsmt_SF+0.000073*Lot_Area+2.4275*fullbath_2plus;

offset_adj_p_1	=	exp(logit_offset)/(1+exp(logit_offset));

if	offset_adj_p_1	>	.50	then	i_bonus=‘1’;

if	offset_adj_p_1	<=	.50	then	i_bonus=‘0’;

f_bonus	=	put(bonus,	$1.);

run;

	

proc	freq	data=offsetadj;

tables	f_bonus*i_bonus;

format	f_bonus		i_bonus	$yesno.;

run;

First,	the	Ames	Validation	data	set	is	saved	in	the	temporary	SAS
data	set,	called	OFFSETADJ.	The	offset	for	the	intercept	is	then



calculated	using	the	values	of	the	population	prior	probabilities,
defined	as	pi0=0.98	and	pi1=0.02,	respectively,	and	the	prior
probabilities	calculated	from	the	data,	p0=0.5947	and
p1=0.4053.		

The	unadjusted	intercept	(-10.5496)	obtained	from	logistic
regression	applied	to	the	training	data	set	is	adjusted	by	subtracting
the	offset,	and	the	adjusted	logit	(LOGIT_OFFSET)	is	calculated
using	the	adjusted	intercept	and	the	parameter	estimates	for	the
predictors	obtained	from	Output	11.9a	The	Logistic	Regression
Model	for	Ames	Training	Data.		Finally,	the	adjusted	posterior
probability	(OFFSET_ADJ_P_1)	is	calculated	using	the	general	form
(as	seen	in	the	logistic	regression	chapter):

Finally	the	DATA	step	reassigns	the	predicted	class	(I_BONUS)
using	the	adjusted	posterior	probabilities	(OFFSET_ADJ_P1)	and
applying	the	0.50	cutoff	value.		The	actual	class	(BONUS)	is	used	to
create	a	character	version	(F_BONUS),	and	the	results	are
summarized	using	the	FREQ	procedure.		The	results,	of	course,	are
identical	to	those	found	in	Output	11.10	Classification	Table	for
Ames	Housing	Validation	Data	Adjusted	for	Oversampling.

It	should	be	noted	that	the	analyst	can	generate	the	model	with	the
adjusted,	unbiased,	intercept	using	the	OFFSET=	option,	as	in
Program	11.10	Adjusting	the	Model	Intercept	Using	the	OFFSET
Option.
Program	11.10	Adjusting	the	Model	Intercept	Using	the	OFFSET	Option

libname	sasba	‘c:\sasba\ames’;

data	ames70;

set	sasba.ames70;

pi1=.02;	pi0=0.98;	p1=0.4053;	p0=0.5947;

offset	=	log((p1*pi0)/(p0*pi1));proc	logistic	data=ames70;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus	/	offset=offset;

run;

The	offset	is	calculated	using:



and	the	unbiased	intercept,	 ,		is		 	=	-	10.5496	–
3.5084	=	-14.058,	which	matches	the	adjusted	intercept	in	Output
11.11	Logistic	Regression	Model	for	Ames	Training	with	Intercept
Adjusted	for	Oversampling.	Notice	that	the	estimated	coefficients
for	the	predictors	remain	unchanged.
Output	11.11	Logistic	Regression	Model	for	Ames	Training	with	Intercept	Adjusted
for	Oversampling

Analysis	of	Maximum	Likelihood	Estimates

Parameter DF Estimate
Standard
Error

Wald
Chi-Square Pr	>	ChiSq

Intercept 1 -14.0591 0.6390 484.1061 <.0001

Gr_Liv_Area 1 0.00343 0.000325 111.4093 <.0001

Total_Bsmt_SF 1 0.00255 0.000290 77.1319 <.0001

Lot_Area 1 0.000073 0.000020 12.9010 0.0003

Fullbath_2plus 1 2.4277 0.2086 135.4945 <.0001

Offset 0 1.0000 0 . .

	

Automatically	Adjusted	Posterior	Probabilities	to	Account	for
Oversampling

Previously,	we	illustrated	the	use	of	the	PEVENT	option	for
displaying	performance	measures	adjusted	for	oversampling	rare
events.		In	this	section,	we	will	illustration	how	the	two	approaches
for	manually	adjusting	posterior	probabilities	(saved	in	ADJUST
and	OFFSETADJ,	respectively)	match	those	automatically
generated	using	the	PEVENT	option.	Consider	Program	11.11
Comparison	of	the	Three	Approaches	to	Adjusting	for	Oversampling
where	all	approaches	are	used	and	results	are	merged	into	a	single
data	set	for	comparisons:
Program	11.11	Comparison	of	the	Three	Approaches	to	Adjusting	for	Oversampling

libname	sasba	‘c:\sasba\ames’;

data	ames70;

set	sasba.ames70;

data	ames30;

set	sasba.ames30;



run;

	

	

***************************************************************;

proc	logistic	data=ames70	noprint;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus	/	ctable	pprob=0.50	pevent=	0.02	0.4053;

score	data=ames30	out=pred_adj_validation	priorevent=0.02;

run;

	

***************************************************************;

proc	logistic	data=ames70	noprint;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

score	data=ames30	out=pred_amesvalidation;

run;

	

***************************************************************;

data	offsetadj;

set	ames30;

pi1=.02;	pi0=0.98;		p1=0.4053;	p0=0.5947;

offset	=	log((p1*pi0)/(p0*pi1));

logit_offset	=	(-10.5496-offset)+0.00343*Gr_Liv_Area

+0.00255*Total_Bsmt_SF+0.000073*Lot_Area+2.4275*fullbath_2plus;

offset_adj_p_1	=	exp(logit_offset)/(1+exp(logit_offset));

if	offset_adj_p_1	>	.50	then	i_bonus=‘1’;

if	offset_adj_p_1	<=	.50	then	i_bonus=‘0’;

run;

	

***************************************************************;

data	adjust;

set	pred_amesvalidation;

pi1=.02;	pi0=0.98;	p1=0.4053;	p0=0.5947;

man_adj_p_1	=	(p_1*(p0*pi1))/((1-p_1)*p1*pi0+p_1*p0*pi1);

run;

	

**************************************************************;

data	pred_adj_validation;



set	pred_adj_validation;

auto_adj_p_1	=	p_1;

drop	p_1;

run;

	

***************************************************************;

proc	sort	data=pred_adj_validation;	by	pid;

proc	sort	data=adjust;	by	pid;

proc	sort	data=offsetadj;	by	pid;

data	final;

merge	pred_adj_validation	adjust	offsetadj;

by	pid;

run;

	

proc	print	data=final	(obs=10);	var	pid	auto_adj_p_1	man_adj_p_1
offset_adj_p_1;

run;

From	Program	11.11	Comparison	of	the	Three	Approaches	to
Adjusting	for	Oversampling,	you	should	recognize	that	the	first
logistic	regression	model	is	fit	using	the	training	data	set	(AMES70)
and	scored	using	the	validation	data	set	(AMES30).	The	results	of
the	SCORE	statement	are	saved	in	the	temporary	data	set
(PRED_ADJ_VALIDATION)	using	the	OUT=option;	note	that
including	the	PRIOREVENT=0.02	requests	that	the	posterior
probabilities	(P_1)	are	automatically	adjusted	using	pi1=.02,	along
with	the	values	of	p0	and	p1,	which	are	calculated	directly	from	the
data.		

The	second	logistic	regression	is	conducted	in	the	same	way.
However,	no	adjustments	are	made	because	the	PEVENT	option	is
not	used.	The	SCORE	statement	is	applied	to	the	validation	data	set
and	the	unadjusted	posterior	probabilities	are	saved	in	the
temporary	data	set	PRED_AMESVALIDATION.

The	next	two	DATA	steps,	described	in	the	previous	sections,
contain	the	adjusted	posterior	probabilities.		The	data	set,
OFFSETADJ,	contains	the	posterior	probabilities	for	each	house	in
the	validation	data	set,	adjusted	using	the	offset	to	the	logistic
regression	intercept.	The	data	set,	ADJUST,	contains	the	posterior
probabilities	for	each	house	in	the	validation	data	set,	adjusted



using	the	formula	for	posterior	probabilities.
The	next	DATA	step	is	used	simply	to	rename	the	adjusted	posterior
probabilities,	from	P_1	to	AUTO_ADJ_P_1,	in	the	data	set
PRED_ADJ_VALIDATION	so		that	the	variable	name	is	more
descriptive.

To	create	a	final	data	set,	all	three	versions	of	the	validation	data
set	are	sorted	by	PID	which	is	the	unique	identifier	for	each	house.
Finally,	the	three	data	sets	are	merged	by	PID,	saved	in	the
temporary	SAS	data	set	called	FINAL,	and	the	first	ten	observations
are	printed	for	comparison	purposes,	as	displayed	in	Output	11.12
Posterior	Probabilities	for	Ames	Validation	Data	Using	Three
Approaches.
Output	11.12		Posterior	Probabilities	for	Ames	Validation	Data	Using	Three
Approaches

Obs PID auto_adj_p_1 man_adj_p_1 offset_adj_p_1

1 0526302040 0.00074 0.00074 0.00074

2 0526352090 0.00350 0.00350 0.00352

3 0526353030 0.85752 0.85754 0.85839

4 0526353050 0.41125 0.41128 0.41268

5 0527105050 0.04164 0.04164 0.04180

6 0527105060 0.02346 0.02346 0.02354

7 0527105070 0.04894 0.04895 0.04916

8 0527106150 0.04966 0.04967 0.04986

9 0527107020 0.04922 0.04923 0.04948

10 0527110020 0.00686 0.00686 0.00688

	

It	is	important	for	the	analyst	to	understand	the	effects	of
oversampling,	so	we	summarize	those	points	here.		If	any
calculations	depend	upon	the	intercept,	then	the	appropriate
adjustments	should	be	made.	If	any	analyses	depend	upon	false
positive	(PF+)	and/or	false	negative	(PF-)	values,	adjustments	are	a



necessity.

There	are	situations	where	no	adjustments	are	needed.	For
example,	if	the	analyst	wishes	to	make	any	conclusions	about	the
relationship	between	the	target	and	the	predictors,	then	no
adjustments	are	needed;	in	short,	there	is	no	bias	in	the	odds-ratios.
In	fact,	because	the	sensitivity	and	specificity	values	remain
unchanged,	no	adjustments	are	needed	for	the	ROC	curve.	Finally,
if	observations	are	to	be	ranked	by	their	posterior	probabilities,
then	oversampling	has	no	effect	on	the	ranks	because	the	adjusted
posterior	probabilities	are	simply	the	result	of	a	linear
transformation	of	the	biased	posterior	probability.

The	Use	of	Decision	Theory	for		Model	Selection
Consider,	again,	the	situation	where	the	goal	of	the	analyst	is	to
target	those	most	likely	to	be	in	the	class	of	interest	(Y=1),	or	a
responder.	Obviously,	different	cutoff	values	result	in	different
decisions,	thereby	influencing	the	number	of	observations	classified
as	a	responders—the	total	number	of	predicted	positives,	TP	+	FP.
Previously,	we	illustrated	how	the	gains	and	lift	charts	could	be
used	to	establish	the	desired	cutoff	value.	

In	this	section,	we	will	illustrate	an	alternative	approach	which
assumes	that	there	are	profits	associated	with	targeting	a	true
positive	(TP)	and	costs	associated	with	targeting	a	false	positive
(FP).	As	a	result,	the	goal	of	the	analyst	is	to	determine	the	optimal
cutoff	value	that	maximizes	the	total	expected	profit.		Essentially,
the	analyst	is	asking	the	question—how	many	observations,	or
customers,	should	I	target	so	that	the	expected	profit	is	greater	than
zero?

Decision	Cutoffs	and	Expected	Profits	for	Model
Selection
To	arrive	at	a	rule,	we	will	use	both	expected	values	and	decision
theory	(McLachlan,	1992).	For	any	discrete	random	variable,	with
k	possible	outcomes,	X1,	X2,	…,	Xk,	each	having	probabilities,
P(X1),	P(X2),	…	P(Xk),	respectively,	the	mean,	or	expected	value,
is	defined	as	follows:



To	calculate	the	expected	profit,	we	must	define	both	our	outcomes
and	the	profits	for	each	of	those	outcomes.	In	classification
analysis,	when	we	make	decisions,	the	possible	outcomes	are	true
negatives,	false	negatives,	false	positives,	and	true	positives,	each
having	their	associated	profits	(represented	by	δ).		That
information	can	be	summarized	in	a	profit	matrix	as	seen	in	Table
11.6	Profit	Matrix	for	Classification	Decisions.	
Table	11.6		Profit	Matrix	for	Classification	Decisions

	 Decision	to	Target

Actual
CLASS

0=NO 1=YES

0=NO 	δTN				 δFP				

	1=YES δFN			 δTP			

	

If	the	analyst	targets	an	observation,	or	customer	i,
(Decision=YES),	then	the	expected	profit	for	that	customer	is
defined	as:

E(profiti|Decision=YES)	=	pi(δTP)	+	(1-pi)(δFP)

where	pi	is	the	posterior	probability	for	customer	i.		Similarly,	if	the
analyst	does	not	target	customer	i,	(Decision=NO),	the	expected
profit	for	that	customer	is	defined	as:

E(profiti|Decision=NO)	=	pi(δFN)	+	(1-pi)(δTN)

Consequently,	the	analyst	will	target	an	observation	(classify	an
observation	into	Class=1)	if	the	expected	profit	of	targeting
exceeds	the	expected	profit	of	not	targeting.		In	other	words,	target
an	observation	if

pi(δTP)	+	(1-pi)(δFP)				>				pi(δFN)	+	(1-pi)(δTN)

Solving	for	pi,	the	decision	rule	becomes:		Target	an	observation



(Decision	=	YES)	if	their	posterior	probability	(pi)	is:

This	rule	is	an	extension	of	Bayes’	rule	(Wielenga,	2007).	Consider
now	the	Ames	Housing	Case	where	we	assume	the	cost	incurred	by
an	agent	soliciting	a	homeowner	to	list	the	house	with	his	or	her
real	estate	agency	is	$100	and	the	bonus	earned	(profit)	is	$1000
(ignoring	commission)	if	the	home	is	in	fact	sold	for	more	than
$175,000,	as	illustrated	in	the	profit	matrix	in	Table	11.7	Profit
Matrix	for	Ames	Housing.
Table	11.7		Profit	Matrix	for	Ames	Housing

	 Decision	to	Target

Actual
CLASS

0=NO 1=YES

0=NO 	0 -100

	1=YES 	0			 +900

Note	first,	that	if	a	homeowner	is	not	targeted	for	business
(Decision=NO),	the	cost	incurred	is	$0;	therefore,	the	total
profit/cost	for	true	negatives	and	false	negatives	is	$0.	The	true
positives	(TP)	are	those	that	were	targeted	(cost=$100)	and	the
event	resulted	in	earning	a	bonus	($1000),	so	the	total	profit	is
$900.

In	this	case,	the	analyst	would	set	the	optimal	cutoff	probability	as:

Now,	given	profit	information,	the	analyst	can	build	a	classifier	and
use	the	optimal	cutoff	for	classifying	observations.	Once	an
observation	is	classified,	its	profit	can	be	calculated.	Then,	profit
can	be	added	across	all	observations	to	get	a	total	profit	for	the
model	(note	that	this	can	be	done	for	both	the	training	and
validation	data	sets).	In	short,	total	profit	can	be	used	as	an
assessment	criterion	for	model	performance	and	provides	a	good



approach	for	model	selection.

In	the	event	that	profit	information	is	not	available,	the	analyst	can
use	the	population	prior	(π1)	as	the	cutoff.		Using	this	cutoff	results
in	a	fixed	number	for	both	sensitivity	and	specificity,	where	the
mean	of	those	two	numbers	is	maximized	compared	to	other	cutoff
values.		Recall	that	it	is	impossible	to	control	both	sensitivity	and
specificity	at	the	same	time.	Therefore,	using	π1	as	a	cutoff	is	a	way
to	equalize	both.

Consider,	again,	the	Ames	Housing	Case	where	we	will	assess
classifier	performance	based	upon	total	and	average	profits.
Suppose	the	analyst	uses	the	profit	matrix	as	defined	in	Table	11.7
Profit	Matrix	for	Ames	Housing,	thereby

	

implementing	a	cutoff	value	of	0.10.	Program	11.12	Classification
Results	and	Profit	Information	for	Ames	Validation	Data	can	be
used	to	provide	profit	information:
Program	11.12	Classification	Results	and	Profit	Information	for	Ames	Validation
Data

libname	sasba	‘c:\sasba\ames’;

proc	format;

value	yesno	0=‘NO’	1=‘YES’;

run;

	

data	ames70;

set	sasba.ames70;

data	ames30;

set	sasba.ames30;

run;

	

proc	logistic	data=ames70	noprint;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

score	data=ames30	out=pred_amesvalidation;

run;

	

data	profit;



set	pred_amesvalidation;

target=0;	profit=0;

if	p_1	>	.10	then	do;

target=1;	profit=bonus*900	-	(1-bonus)*100;

end;

run;

	

proc	freq	data=profit;

tables	bonus*target;

format	bonus	target	yesno.;

run;

	

proc	means	data=profit;

var	profit;

run;

	

proc	print	data=profit;

var	p_1	bonus	target	profit;

run;

Just	as	in	the	previous	example,	the	logistic	regression	model	is	fit
using	the	training	data	set	(AMES70)	and	scored	using	the
validation	data	set	(AMES30),	and	the	resulting	posterior
probabilities	(P_1)	are	saved	for	all	observations	in	the	validation
data	PROFIT	data	set	using	the	DATA	step.

For	the	PROFIT	data	set,	all	observations	are	initially	defined	as	not
targeted	(TARGET=0)	and	earning	no	profit	(PROFIT=0)	until	the
posterior	probability	is	used	for	targeting	that	observation.	If	the
posterior	probability	exceeds	0.10,	the	decision	criterion,	then	that
observation	is	targeted	(TARGET=1)	and	the	profit	is	defined	as
follows:

If	the	agent	was	not	awarded	a	bonus	on	the	sale	of	the	house
(BONUS=0),	then	the	profit	is:

Profit	=	(0)($900)	–	(1-0)($100)	=	-$100

which	is	the	case	for	the	house	(observation	10)	displayed	in
Output	11.13c	Line	Listing	for	Several	Houses	in	the	Ames
Validation	Data	Set.		If	the	agent	was	awarded	a	bonus	on	the	sale
of	the	house	(BONUS=1),	then	the	profit	is:



Profit	=	(1)($900)	–	(1-1)*100	=	$900

which	is	the	case	for	the	house	(observation	355)	displayed	in
Output	11.13c	Line	Listing	for	Several	Houses	in	the	Ames
Validation	Data	Set.	Furthermore,	if	the	posterior	probability	was
less	than	0.10,	then	the	observation	is	not	targeted	(TARGET=0)
and	there	is	no	chance	to	make	a	profit	(PROFIT=0),	which	is	the
case	for	both	houses	(observations	1	and	580).

The	classification	results	are	displayed	in	Output	11.13a
Classification	Matrix	for	Ames	Validation	Data	Based	upon	0.10
Cutoff,	using	the	FREQ	procedure.	There	the	analyst	can	see	that	of
the	595	houses,	346	are	targeted	(TARGET=1)	because	their
posterior	probabilities	exceed	0.10.	Of	those,	238	are	houses	where
a	bonus	is	earned	(BONUS=1),	whereas	108	houses	resulted	in	no
bonus	earned	(BONUS=0).	As	a	result,	$900	is	earned	for	each	of
the	238	houses,	whereas	$100	cost	is	incurred	for	soliciting	the	108
houses	where	no	bonus	is	earned.	In	short,	the	total	expected	profit
for	the	houses	in	the	validation	data	set	is:

Total	Expected	Profit	=	238($900)	+	108(-$100)	=	$203,400,

resulting	in	an	average	profit	per	house	of	$341.84
(=$203,400/595),	as	produced	in	Output	11.13b	Average
Expected	Profit	for	Ames	Validation	Data	Based	upon	0.10	Cutoff,
using	the	MEANS	procedure.	Finally,	a	line	listing	is	created	using
the	PRINT	procedure,	with	excerpts	provided	in	Output	11.13c	Line
Listing	for	Several	Houses	in	the	Ames	Validation	Data	Set	.
Output	11.13a		Classification	Matrix	for	Ames	Validation	Data	Based	upon	0.10
Cutoff

Table	of	Bonus	by	target

Bonus target

Frequency
Percent
Row	Pct
Col	Pct NO YES Total

NO 246
41.34
69.49
98.80

108
18.15
30.51
31.21

354
59.50

YES 3
0.50
1.24

238
40.00
98.76

241
40.50



1.20 68.79

Total 249
41.85

346
58.15

595
100.00

	

Output	11.13b		Average	Expected	Profit	for	Ames	Validation	Data	Based	upon	0.10
Cutoff

Analysis	Variable	:	profit

N Mean Std	Dev Minimum Maximum

595 341.8487395 457.5000991 -100.0000000 900.0000000

	

	

	

	

	

	
Output	11.13c		Line	Listing	for	Several	Houses	in	the	Ames	Validation	Data	Set

Obs P_1 Bonus target profit

1 0.02341 0 0 0

… 	 	 	 	

10 0.22602 0 1 -100

… 	 	 	 	

355 0.99505 1 1 900

… 	 	 	 	

580 0.07608 1 0 0

… 	 	 	 	

Keep	in	mind,	that	if	the	analyst	targeted	every	observation	(595
houses),	where	241	agents	earned	a	bonus	and	354	did	not,	the
total	expected	profit	is:



Total	Expected	Profit	=	241($900)	+	354(-$100)	=	$181,500,

which	is	clearly	less	profit	than	that	when	the	analyst	targeted	346
houses.	It	should	be	noted	that	the	average	expected	profit	can	be
used	to	compare	this	model	to	other	candidate	models.	Also,	in	the
case	of	oversampling,	a	weight	can	be	used	for	each	observation
before	calculating	the	average	profit.

Using	Estimated	Posterior	Probabilities	to	Determine
Cutoffs
In	the	previous	section,	we	discussed	an	extension	of	Bayes’	rule	for
determining	the	optimal	cutoff	value	for	maximizing	the	profit.
Because	the	posterior	probabilities	are	estimated	from	a	model,	the
average	expected	profit	may	not	be	optimal	if	the	posterior
probabilities	are	poorly	estimated.	Consequently,	the	analyst	can
explore	various	cutoff	values	(or	depth)	for	a	given	model	to	see
how	average	profit	varies	across	cutoff	values.		Here	the	analyst	is
answering	the	question—how	many	observations	should	be
targeted—or	what	is	the	depth—to	ensure	maximal	profits.	To
illustrate	this	concept,	consider	Program	11.13	Average	Profit	for
Ames	Validation	Data	by	Depth	and	Cutoff	applied	to	the	Ames
Housing	Case.
Program	11.13	Average	Profit	for	Ames	Validation	Data	by	Depth	and	Cutoff

libname	sasba	‘c:\sasba\ames’;

proc	format;

value	yesno	0=‘NO’	1=‘YES’;

data	ames70;

set	sasba.ames70;

run;

	

data	ames30;

set	sasba.ames30;

run;

	

proc	logistic	data=ames70	noprint;

model	Bonus	(Event	=	‘1’)=	Gr_Liv_Area	Total_Bsmt_SF	Lot_Area

Fullbath_2Plus;

score	data=ames30	out=pred_amesvalidation	outroc=roc;



run;

	

data	cutoff;

set	roc;

cutoff=_prob_;		pi1=0.4053;	specificity	=	1	-	_1mspec_;

tp_prop	=	pi1*_sensit_;		fp_prop	=	(1-pi1)*_1mspec_;

depth	=	tp_prop	+	fp_prop;

aveprof	=	900*tp_prop	-	100*fp_prop;

run;

	

proc	sgplot	data=cutoff;

where	0.000	<	depth	<	1.00;

series	y	=	aveprof	x	=	depth;

refline	0.5733	/axis=x;

xaxis	values=(0	to	1.0	by	0.10);

yaxis	label	=	‘Average	Profit’;

run;

	

proc	sgplot	data=cutoff;

where	0.000	<	cutoff	<	1.00;

series	y	=	aveprof	x	=	cutoff;

refline	0.11505	/	axis=x;

xaxis	values=(0	to	1.0	by	0.10);

yaxis	label=‘Average	Profit’;

run;

	

proc	sort	data=cutoff;	by	descending	aveprof;

data	maxprofit;

set	cutoff;	by	descending	aveprof;

run;

	

proc	print	data=maxprofit	(obs=1);

var	depth	cutoff	aveprof;

run;

As	illustrated	previously,	the	logistic	regression	model	is	fit	using
the	training	data	set,	AMES70,	and	that	model	is	used	to	score	the
validation	data	set	(AMES30)	as	requested	in	the	SCORE
statement.		ROC	information	for	each	cutoff	(_PROB_)	value	is



saved	in	a	temporary	SAS	data	set	(called	ROC)	as	requested	using
the	OUTROC=	option.		For	each	cutoff	value,	both	the	depth	and
average	profit	(AVEPROF)	are	calculated.	The	two	SGPLOT
procedures	are	used	to	create	the	average	profit	by	depth	and
cutoff,	respectively,	as	displayed	in	Output	11.14a	Average	Profit
for	Ames	Validation	Data	by	Depth	and	Cutoff.
Output	11.14a		Average	Profit	for	Ames	Validation	Data	by	Depth	and	Cutoff

The	SORT	procedure,	DATA	step,	and	PRINT	procedure	are	used	to
determine	the	highest	average	profit,	along	with	its	depth	and
cutoff	value,	as	displayed	in	Output	11.14b	Maximum	Average
Profit	for	Ames	Validation	Data.	Using	the	reference	lines,	the	plots
show	that	the	highest	average	profit	of	$342.93	occurs	at	a	depth
of	0.573	obtained	by	using	a	cutoff	value	of	0.115.	
Output	11.14b		Maximum	Average	Profit	for	Ames	Validation	Data

Obs depth cutoff aveprof

1 0.57329 0.11505 342.926
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Chapter	Quiz
1.						When	data	is	partitioned,	what	data	is	best	for	model
assessment?

a.						training	data

b.						validation	data

c.						all	of	the	data

d.						complete	data

2.						Suppose	you	have	a	customer	database	where	you	want	to
build	a	predictive	model	to	predict	whether	or	not	your
customer	purchased	your	new	product,	where	the	variable
PURCHASE	is	coded	as	0	for													‘No’	or	1	for
“Yes.’		Which	of	the	following	SAS	statements	will	divide	the
original	data	set	into	70%	training	and	30%	validation	data
sets,	stratified	by	PURCHASE?

a.						proc	sort	data=customerdata	out=one;		by	purchase;

proc	surveyselect	data=one	samprate=0.70	out=sample
outall;

by	purchase;

run;

b.						proc	sort	data=customerdata	out=one;		by	purchase;

proc	surveyselect	data=one	samprate=0.70	out=sample
outall;

strata	purchase;

run;

c.						proc	sort	data=customerdata	out=one;		strata	purchase;

proc	surveyselect	data=one	samprate=0.70	out=sample;

strata	purchase;

run;

d.						proc	surveyselect	data=one	samprate=0.70
out=sample;



strata	purchase;

run;

3.						A	logistic	regression	model	is	fit	and	the	classification	matrix
is	adjusted	for	oversampling	due	to	rare	events.		Which	of	the
following	is	not	affected	by	oversampling?

a.						Sensitivity	and	Positive	Predictive	Value	(PV+)

b.						Specificity	and	Negative	Predicted	Value	(PV-)

c.						Accuracy

d.						The	ROC	curve

	

4.						Using	the	lift	chart	below,	interpret	the	chart	at	a	depth	of
0.2	where	Lift	=	2.34.

	

a.						Selecting	the	top	20%	of	the	population	scored	by	the
model	should	result	in	2.34	times	more	responders	than	a
random	draw	of	20%.

b.						Selecting	the	observations	with	a	response	probability	of



at	least	20%	should	result	in	2.34	times	more	responders
than	a	random	draw	of	20%.

c.						Selecting	the	top	20%	of	the	population	scored	by	the
model	should	result	in	2.34	times	greater	accuracy	than	a
random	draw	of	20%.

d.						Selecting	the	observations	with	a	response	probability	of
at	least	20%	should	result	in	2.34	times	greater	accuracy
than	a	random	draw	of	20%.

5.						Suppose	the	following	classification	matrix	is	obtained	when
a	logistic	regression	model	is	fit	using	four	predictors	and
applied	to	the	Ames	Housing	validation	data	set	with	a	cutoff
value	of	0.20.		Which	of	the	following	statements	is	true?

	

	 Into_Bonus

From
_Bonus NO YES Total

NO 291 63 354

YES 16 225 241

Total 307 288 595

	

a.						accuracy	=	0.1328

b.						depth	=	0.5160

c.						sensitivity	=	0.9336

d.						PV+	=	0.9479

6.						Suppose	you	have	a	customer	database	where	you	want	to
build	a	predictive	model	to	predict	whether	or	not	your
customer	purchased	your	new	product,	where	the	variable
PURCHASE	is	coded	as	0	for													‘No’	or	1	for	“Yes,’	using
three	predictors	X1,	X2,	and	X3.		Suppose	only	10%	of
customers	ordinarily	respond	and	you	oversample	to	account
for	rare	events,	so	that	50%	of	your	sample	is
responders.		Which	of	the	following	MODEL	statements	will
give	you	an	accuracy	rate	adjusted	for	oversampling?



a.						model	Purchase	(Event	=	‘1’)=	X1	X2	X3

/	ctable	pprob=0.10	pevent=	0.50;

b.						model	Purchase	(Event	=	‘1’)=	X1	X2	X3

/	ctable	pprob=0.10;

c.						model	Purchase	(Event	=	‘1’)=	X1	X2	X3

/	ctable	pprob=0.50	pevent=	0.10;

d.						model	Purchase	(Event	=	‘1’)=	X1	X2	X3

/	ctable	pevent=	0.10	0.50;

	

7.						Using	the	following	profit	matrix,	what	is	the	optimal	cutoff
value	if	the	goal	of	the	model	is	to	maximize	the	average
expected	profit?

	

	 Decision	to	Target

Actual
CLASS

0=NO 1=YES

0=NO 	0 -100

	1=YES 	0			 +400

a.						0.20

b.						0.25

c.						0.04

d.						0.01

8.						Suppose	three	logistic	regression	models	are	estimated	and
applied	to	the	Ames	Housing	validation	data	and	the
following	information	is	provided	for	model	selection.		Which
of	the	following	statements	is	true?



	

ROC	Association	Statistics

ROC	Model

Mann-Whitney

Somers’	D Gamma Tau-aArea
Standard
Error

95%	Wald
Confidence	Limits

Nine	Preds 0.9800 0.00441 0.9714 0.9887 0.9601 0.9601 0.4635

Four	Preds 0.9550 0.00747 0.9404 0.9697 0.9101 0.9101 0.4394

Two	Preds 0.9121 0.0112 0.8902 0.9340 0.8242 0.8242 0.3979

	

ROC	Contrast	Test	Results

Contrast DF
Chi-
Square Pr	>	ChiSq

Comparing	THREE
Models

2 44.2375 <.0001

a.						There	is	a	difference	in	performance	between	at	least	two
models	because	the	p-value	<	0.0001.

b.						The	nine	variable	model	and	the	four	variable	model	are



significantly	different	in	performance	because	the	p-value
<	0.0001.

c.						The	model	with	nine	predictors	is	best	because	it	is	the
only	model	that	performs	better	than	chance.

d.						All	of	the	above	statements	are	true.

	

9.						Suppose	the	analyst	is	trying	to	determine	how	many
customers	to	select	in	order	to	maximize	the	average	expected
profit.		Using	the	plots	below,	which	of	the	following
statements	is	true?

	

	

a.						The	average	expected	profit	is	maximized	if	19%	of	the
customer	base	is	targeted,	resulting	in	a	60%	response	rate.

b.						The	average	expected	profit	is	maximized	if	60%	of	the
customer	base	is	targeted,	resulting	in	a	19%	response	rate.

c.						The	average	expected	profit	is	60%	higher	than	chance	is
the	analyst	uses	a	cutoff	value	of	0.19.

d.						The	average		expected	profit	is	maximized	if	the	analyst
uses	a	cutoff	value	of	0.19,	resulting	in	targeting	60%	of
the	customer	base.

10.			Suppose	you	have	a	customer	database	where	you	want	to
build	a	predictive	model	to	predict	whether	or	not	your
customer	purchased	your	new	product,	where	the	variable
PURCHASE	is	coded	as	0	for	‘No’	or	1	for	“Yes,’	using	three
predictors	X1,	X2,	and	X3.		When	using	the	LOGISTIC



procedure	is	applied	to	validation	data	(called	CUST_VAL),
which	of	the	following	is	required	in	order	to	generate	the
sensitivity	and	specificity	values	for	various	cutoff	values?

a.						model	purchase	(event=	‘1’)	=	x1	x2	x3	/	outroc=roc;

b.						mode1	purchase	(event”1”)	=	x1	x2	x3	/	out=roc;

c.						score	data=cust_val	outroc=roc;

d.						score	data=cust_val	out=roc;
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